Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Rapid protein-folding assay using green fluorescent protein

Abstract

Formation of the chromophore of green fluorescent protein (GFP) depends on the correct folding of the protein. We constructed a "folding reporter" vector, in which a test protein is expressed as an N-terminal fusion with GFP. Using a test panel of 20 proteins, we demonstrated that the fluorescence of Escherichia coli cells expressing such GFP fusions is related to the productive folding of the upstream protein domains expressed alone. We used this fluorescent indicator of protein folding to evolve proteins that are normally prone to aggregation during expression in E. coli into closely related proteins that fold robustly and are fully soluble and functional. This approach to improving protein folding does not require functional assays for the protein of interest and provides a simple route to improving protein folding and expression by directed evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Solubility of proteins expressed in E. coli is highly correlated with fluorescence of E. coli expressing corresponding GFP fusions.
Figure 2: Improved solubility of nonfusion (black bars) and GFP fusion fluorescence (crosshatched bars) for (A) gene V (C33T) and (B) bullfrog H-subunit ferritin during rounds of directed evolution.
Figure 3: GFP fusion fluorescence, nonfusion solubility, and activity of ferritin variants.
Figure 4: Fraction of indicated ferritin variant that is overexpressed in soluble form in E. coli at 37°C (crosshatched bars) or 27°C (black bars).

Similar content being viewed by others

References

  1. King, J., Haasepettingell, C., Robinson, A.S., Speed, M. & Mitraki, A. Thermolabile folding intermediates: inclusion-body precursors and chaperonin substrates. FASEB J. 10, 57–66 (1996).

    Article  CAS  Google Scholar 

  2. Makrides, S.C. Strategies for achieving high-level expression of genes in Escherichia-coli . Microbiol. Rev. 60, 512– 538 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Plaxco, K.W., Simons, K.T. & Baker, D. Contact order, transition-state placement and the refolding rates of single-domain proteins. J. Mol. Biol. 277, 985–994 (1998).

    Article  CAS  Google Scholar 

  4. Wilkinson D.L. & Harrison R.G. Predicting the solubility of recombinant proteins in Escherichia-coli. Bio/Technology 9, 443–448 (1991).

    CAS  PubMed  Google Scholar 

  5. Anfinsen, C.B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    Article  CAS  Google Scholar 

  6. Stemmer, W.P.C. Rapid evolution of a protein in-vitro by DNA shuffling. Nature 370, 389–391 ( 1994).

    Article  CAS  Google Scholar 

  7. Macbeath, G., Kast, P. & Hilvert, D. Redesigning enzyme topology by directed evolution. Science 279, 1958–1961 ( 1998).

    Article  CAS  Google Scholar 

  8. Martineau, P., Jones, P. & Winter, G. Expression of an antibody fragment at high-levels in the bacterial cytoplasm. J. Mol. Biol. 280, 117–127 (1998).

    Article  CAS  Google Scholar 

  9. Proba, K., Worn, A., Honegger, A. & Pluckthun, A. Antibody scFv fragments without disulfide bonds made by molecular evolution. J. Mol. Biol. 275, 245–253 (1998).

    Article  CAS  Google Scholar 

  10. Ward, W.W. in Bioluminescence and chemiluminescence (eds DeLuca, M.A. & McElroy, W.D.) 235–242 (Academic, New York; 1981).

    Book  Google Scholar 

  11. Cody, C.W., Prasher, D.C., Westler, W.M., Prendergast, F.G. & Ward, W.W. Chemical-structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry 32, 1212–1218 (1993).

    Article  CAS  Google Scholar 

  12. Fitz-Gibbon, S. et al. A fosmid-based genomic map and identification of 474 genes of the hyperthermophilic archaeon Pyrobaculum aerophilum. Extremophiles 1, 36–51 ( 1997).

    Article  CAS  Google Scholar 

  13. Zubay, G. In vitro synthesis of protein in microbial systems. Annu. Rev. Genet. 7, 267–287 ( 1973).

    Article  CAS  Google Scholar 

  14. Neidhardt, F.C. in Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (ed. Neidhardt, F.C.) 3– 6 (American Society of Microbiology, Washington, DC; 1987).

    Google Scholar 

  15. Fedorov, A.N. & Baldwin, T.O. Cotranslational protein-folding. J. Biol. Chem. 272, 32715– 32718 (1997).

    Article  CAS  Google Scholar 

  16. Arnold, F.H. Directed evolution: creating biocatalysts for the future. Chem. Eng. Sci. 51, 5091–5102 (1996).

    Article  CAS  Google Scholar 

  17. Zhao, H.M. & Arnold, F.H. Optimization of DNA shuffling for high-fidelity recombination. Nucleic Acids Res. 25, 1307–1308 (1997).

    Article  CAS  Google Scholar 

  18. Terwilliger, T.C., Zabin, H.B., Horvath, M.P., Sandberg, W.S. & Schlunk, P.M. In-vivo characterization of mutants of the bacteriophage-F1 gene-V protein isolated by saturation mutagenesis. J. Mol. Biol. 236, 556– 571 (1994).

    Article  CAS  Google Scholar 

  19. Dickey, L.F. et al. Differences in the regulation of messenger-RNA for housekeeping and specialized-cell ferritin: a comparison of 3 distinct ferritin complementary DNAS, the corresponding subunits, and identification of the 1st processed pseudogene in Amphibia. J. Biol. Chem. 262, 7901–7907 (1987).

    PubMed  Google Scholar 

  20. Waldo, G.S. & Theil, E.C. in Ferritin and Iron Biomineralization. Comprehensive Supramolecular Chemistry 5. (vol. ed. Susslick, K.) 65–91 (Pergamon Press, Elsevier Science Ltd, Oxford, UK,1996).

    Google Scholar 

  21. Harrison, P.M. & Arosio P. The ferritins: molecular-properties, iron storage function and cellular-regulation. Biochim. Biophys. Acta-Bioenerg. 1275, 161–203 (1996).

    Article  Google Scholar 

  22. Crameri, A., Whitehorn, E.A., Tate, E. & Stemmer, W.P.C. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 14, 315– 319 (1996).

    Article  CAS  Google Scholar 

  23. Heim, R., Prasher, D.C. & Tsien, R.Y. Wavelength mutations and posttranslational autooxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91, 12501–12504 (1994).

    Article  CAS  Google Scholar 

  24. Reid, B.G. & Flynn, G.C. Chromophore formation in green fluorescent protein. Biochemistry 36, 6786– 6791 (1997).

    Article  CAS  Google Scholar 

  25. Makino, Y., Amada, K., Taguchi, H. & Yoshida, M. Chaperonin-mediated folding of green fluorescent protein. J. Biol. Chem. 272, 12468–12474 (1997).

    Article  CAS  Google Scholar 

  26. Jappelli, R., Luzzago, A., Tataseo, P., Pernice, I. & Cesareni G. Loop mutations can cause a substantial conformational change in the carboxy terminus of the ferritin protein. J. Mol. Biol. 227, 532–543 ( 1992).

    Article  CAS  Google Scholar 

  27. Cormack, B.P., Valdivia, R.H. & Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38 (1996).

    Article  CAS  Google Scholar 

  28. Terwilliger, T.C. et al. Class-directed structure determination: foundation for a protein structure initiative. Protein Sci. 9, 1851 –1856 (1998).

    Article  Google Scholar 

  29. Heim R., Cubitt A.B. & Tsien R.Y. Improved green fluorescence. Nature 373, 663–664 (1995).

    Article  CAS  Google Scholar 

  30. Zhang, Y. et al. Expression of eukaryotic proteins in soluble form in Escherichia coli. Protein Expr. Purif. 12, 159– 165 (1998).

    Article  CAS  Google Scholar 

  31. http://rsb.info.nih.gov/nih-image/. NIH-Image is a public domain image processing program developed at the U.S. by the National Institutes of Health.

  32. Moos, T. & Mollgard, K. A sensitive post-DAB enhancement technique for demonstration of iron in the central-nervous-system. Histochem. J. 99, 471– 475 (1993).

    CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Sorel Fitz-Gibbon and Jeffrey Miller (UCLA) for P. aerophilum DNA, sequence data, and BLAST searches. We also thank Thomas Peat, James Jett, Scott Peterson, Chia-Hwa Chang, and Raymond Nanni for helpful discussions and review of the manuscript, and the NIH and LDRD program LANL for generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey S. Waldo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldo, G., Standish, B., Berendzen, J. et al. Rapid protein-folding assay using green fluorescent protein. Nat Biotechnol 17, 691–695 (1999). https://doi.org/10.1038/10904

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10904

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing