Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase

Abstract

Plants offer many advantages over bacteria as agents for bioremediation; however, they typically lack the degradative capabilities of specially selected bacterial strains. Transgenic plants expressing microbial degradative enzymes could combine the advantages of both systems. To investigate this possibility in the context of bioremediation of explosive residues, we generated transgenic tobacco plants expressing pentaerythritol tetranitrate reductase, an enzyme derived from an explosive-degrading bacterium that enables degradation of nitrate ester and nitroaromatic explosives. Seeds from transgenic plants were able to germinate and grow in the presence of 1 mM glycerol trinitrate (GTN) or 0.05 mM trinitrotoluene, at concentrations that inhibited germination and growth of wild-type seeds. Transgenic seedlings grown in liquid medium with 1 mM GTN showed more rapid and complete denitration of GTN than wild-type seedlings. This example suggests that transgenic plants expressing microbial degradative genes may provide a generally applicable strategy for bioremediation of organic pollutants in soil.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Growth of wild-type tobacco and ONR-11 tobacco seedlings in explosives-containing media 10 days after germination.
Figure 2: Degradation of GTN by wild-type tobacco and ONR-11 tobacco seedlings.

Similar content being viewed by others

References

  1. Hoeppel, R.E. & Hinchee, R.E. in Hazardous Waste Site Soil Remediation: Theory and Application of Innovative Technologies (eds Wilson, D.J. & Clarke, A.N.) 311–431 (Marcel Dekker, New York, 1994).

    Google Scholar 

  2. Shannon, M.J.R. & Unterman, R. Evaluating bioremediation: distinguishing fact from fiction. Annu. Rev. Microbiol. 47, 715–738 (1993).

    Article  CAS  Google Scholar 

  3. Cunningham, S.D. & Ow, D.W. Promises and prospects of phytoremediation. Plant Physiol. 110, 715–719 (1996).

    Article  CAS  Google Scholar 

  4. Raskin, I. Plant genetic engineering may help with environmental cleanup. Proc. Natl. Acad. Sci. USA 93, 3164– 3166 (1996).

    Article  CAS  Google Scholar 

  5. Rugh, C.L., Senecoff, J.F., Meagher, R.B. & Merkle, S.A. Development of transgenic yellow poplar for mercury phytoremediation. Nat. Biotechnol. 16, 925–928 (1998).

    Article  CAS  Google Scholar 

  6. Binks, P.R., French, C.E., Nicklin, S. & Bruce, N.C. Degradation of pentaerythritol tetranitrate by Enterobacter cloacae PB2. Appl. Environ. Microbiol. 62, 1214– 1219 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. French, C.E., Nicklin, S. & Bruce, N.C. Sequence and properties of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2. J. Bacteriol. 178, 6623–6627 (1996).

    Article  CAS  Google Scholar 

  8. French, C.E., Nicklin, S. & Bruce, N.C. Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. Appl. Environ. Microbiol. 64, 2864– 2868 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Goel, A., Kumar, G., Payne, G.F. & Dube, S.K. Plant cell biodegradation of a xenobiotic nitrate ester, nitroglycerin. Nat. Biotechnol. 15, 174–177 (1997).

    Article  CAS  Google Scholar 

  10. Taylor, I.W., Ioannides, C. & Parke, D.V. Organic nitrate reductase: reassessment of its subcellular localization and tissue distribution and its relationship to the glutathione transferases. Int. J. Biochem. 21, 67– 71 (1989).

    Article  Google Scholar 

  11. Hughes, J.B., Shanks, J., Vanderford, M., Lauritzen, J. & Bhadra, R. Transformation of TNT by aquatic plants and plant tissue cultures. Environ. Sci. Technol. 31, 266–271 (1997).

    Article  CAS  Google Scholar 

  12. Guerineau, F., Lucy, A. & Mullineaux, P. Effect of two consensus sequences preceding the translation initiator codon on gene expression in plant protoplasts. Plant Mol. Biol. 18, 815–818 (1992).

    Article  CAS  Google Scholar 

  13. Gleave, A.P. A versatile binary vector system with a T-DNA organizational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol. Biol. 20, 1203–1207 (1992).

    Article  CAS  Google Scholar 

  14. Ogawa, N. et al. Purification and characterization of glutathione-independent denitration enzyme of organic nitrate esters in rabbit hepatic cytosol. Biol. Pharm. Bull. 18, 1352–1355 (1995).

    Article  CAS  Google Scholar 

  15. Schnoor, J.L., Licht, L.A., McCutcheon, S.C., Wolfe, N.L. & Carreira, L.H. Phytoremediation of organic and nutrient contaminants. Environ. Sci. Technol. 29, 318A–323A (1995).

    Article  CAS  Google Scholar 

  16. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual 2nd edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  17. Horsch, R.B. et al. A simple and general method of transferring genes to plants. Science 227, 1229–1231 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by a grant from the Defence Evaluation and Research Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil C. Bruce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

French, C., Rosser, S., Davies, G. et al. Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nat Biotechnol 17, 491–494 (1999). https://doi.org/10.1038/8673

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/8673

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing