Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Genetically engineered plants producing opines alter their biological environment

Abstract

Little is known about the consequences of releasing genetically engineered plants (GEP) into the environment. Using opine-producing GEP, we show that transgenic plants alter their biological environment, more precisely the root-associated bacterial populations. The alterations were both transgene-specific and target population-specific. Therefore, assessment studies on the introduction of a given transgene into a GEP will be valid on the given transgene. Evidence of any transgene-associated biological effect will depend on the determination of the pertinent target populations, the identification of which is a key step of such studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Potrykus, I. 1991. Gene transfer to plants: assessment of published aproaches and results. Ann. Rev. Plant Physiol. Plant Mol. Blol. 42: 205–225.

    Article  CAS  Google Scholar 

  2. Kung, S.-D. and Wu, R. 1993. (eds). Transgenic plants, vol. 2. Academic Press, San Diego, CA.

    Google Scholar 

  3. Dessaux, Y., Petit, A., and Tempé, J. 1992. Opines in Agrobacterium biology, pp. 109–136 in Molecular signals in plant-microbe communications. Verma, D.P.S. (ed). CRC Press, Boca Raton, FL.

    Google Scholar 

  4. Zambryski, P.C. 1992. Chronicles from the Agrobacterium-plant cell DNA transfer story. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43: 465–490.

    Article  CAS  Google Scholar 

  5. Gaudin, V., Vrain, T., and Jouanin, L. 1994. Bacterial genes, modifying hormonal balances in plants. Plant Physiol. Biochem. 32: 11–29.

    CAS  Google Scholar 

  6. Tremblay, G., Gagliardo, R., Chilton, W.S., and Dion, P. 1987. Diversity among opine-utilizing bacteria: identification of coryneform isolates. Appl. Environ. Microbiol. 53: 1519–1524.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nautiyal, C.S. and Dion, P. 1990. Characterization of the opine-utilizing microflora associated with samples of soil and plants. Appl. Environ. Microbiol. 56: 2576–2579.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. O'Connell, K.P., Goodman, R.M., and Handelsman, J. 1996. Engineering the rhizosphere: expressing a bias. Trends Biotechnol. 14: 83–88.

    Article  CAS  Google Scholar 

  9. Dessaux, Y., Tempé, J., and Farrand, S.K. 1987. Genetic analysis of mannitylopine catabolism in octopine-type strain 15955. Mol. Gen. Genet. 208: 301–308.

    Article  CAS  PubMed  Google Scholar 

  10. Guyon, P., Petit, A., Tempé, J., and Dessaux, Y. 1993. Transformed plants producing opines specifically promote growth of opine-degrading Agrobacteria. Molec. Plant-Microbe Interactions 6: 92–98.

    Article  CAS  Google Scholar 

  11. Wilson, M., Savka, M.A., Farrand, S.K., and Lindow, S.E. 1995. Altered epiphytic colonization of mannityl opine-producing transgenic tobacco plants by a mannityl opine-catabolizing strain of Pseudomonas syringae. Appl. Environ. Microbiol. 61: 2151–2158.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Savka, M.A. and Farrand, S.K. . Modification of rhizobacterial populations by engineering bacterial utilization of a novel plant-produced resource. Nature Biotechnology. 15: 363–368.

    Article  CAS  PubMed  Google Scholar 

  13. Petit, A., Stougaard, J., Kühle, A., Marcker, K.A., and Tempé, J. 1987. Transformation and regeneration of the legume species Lotus corniculatus: a system for molecular studies of symbiotic nitrogen fixation. Mol. Gen. Genet. 207: 245–250.

    Article  CAS  Google Scholar 

  14. Cardarelli, M., et al. 1987. Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. Mol. Gen. Genet. 209: 475–480.

    Article  CAS  PubMed  Google Scholar 

  15. Spena, A., Schmülling, T., Koncz, C., and Schell, J. 1987. Independent and synergistic activity of rolA, B and C loci in stimulating adnormal growth in plants. EMBO J. 6: 3891–3899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tate, M.E. et al. 1982. Agropine: a revised structure. Carbohydrate Res. 104: 105–120.

    Article  CAS  Google Scholar 

  17. Savka, M.A. and Farrand, S.K. 1992. Mannityl opine accumulation and exudation by transgenic tobacco. Plant Physiol. 98: 784–789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Savka, M.A. et al. 1996. Translocation and exudation of tumor metabolites in crown galled plants. Molec Plant Microbe Interactions 9: 310–313.

    Article  CAS  Google Scholar 

  19. Dommergue, Y.R. and Mangenot, F. 1970. (eds). Ecologie Microbienne du Sol. Masson, Paris.

    Google Scholar 

  20. Wilson, M. and Lindow, S.E. 1994. Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Appl. Environ. Microbiol. 60: 4468–4477.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Curl, E.A. and Truelove, B. (eds). 1986. The rhizosphere. Springer-Verlag, Berlin.

    Book  Google Scholar 

  22. Oger, P. 1995. Etudes sur la possibilité de favoriser spécifiquement la croissance de bactéries de la rhizosphère—Le cas des plantes transgéniques productrices d'opines. Thèse de I'Université de Paris-sud, Orsay.

  23. Colbert, S.F. et al. 1993. Use of an exotic carbon source to selectively increase metabolic activity and growth of Pseudomonas putida in soil. Appl. Environ. Microbiol. 59: 2056–2063.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Colbert, S.F., Schroth, M.N., Weinhold, A.R., and Hendson, M. 1993. Enhancement of population densities of Pseudomonas putida PpG7 in agricultural ecosystems by selective feeding with the carbon source salycilate. Appl. Environ. Microbiol. 59: 2064–2070.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Brevet, J., Borowski, D. and Tempé, J. 1988. Identification of the region encoding opine synthesis and of a region involved in hairy root induction on the T-DNA of a cucumber-type Ri plasmid. Molec. Plant-Microbe Interactions 1: 75–79.

    Article  Google Scholar 

  26. White, F.F. and Nester, E.W. 1980. Hairy root: plasmid encodes virulence traits in A. rhizogenes. J. Bacteriol. 141: 1134–1141.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Brevet, J. and Tempé, J. 1988. Homology mapping of T-DNA regions on three Agrobacterium rhizogenes Ri plasmids by electron microscope heteroduplex studies. Plasmid 19: 75–83.

    Article  CAS  PubMed  Google Scholar 

  28. Morel, G. and Wetmore, R.H. 1951. Fern callus culture. Am. J. Bot. 38: 141–143.

    Article  CAS  Google Scholar 

  29. Hiltner, L. 1904. Über neuere Erfahrungen und Probleme auf dem Gebeit der Bodenbakteriologie und unter besonderer Berücksichtigung des Gründüngung und Brachte. Abs. Dtsch. Landwirt Ges. 98: 59–78.

    Google Scholar 

  30. Vaudequin-Dransart, V. et al. 1995. Novel Ti plasmids in Agrobacterium tumefaciens strains isolated from fig tree and chrysanthemum tumors and their opine-like molecules. Mol. Plant-Microbe Interactions 8: 311–321.

    Article  CAS  Google Scholar 

  31. Glickmann, E. and Dessaux, Y. 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytophatogenic bacteria. Appl. Environ. Microbiol. 61: 793–796.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Petit, A. and Tempé, J. 1978. Isolation of Agrobacterium regulatory mutants. Mol. Gen. Gent. 167: 147–155.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oger, P., Petit, A. & Dessaux, Y. Genetically engineered plants producing opines alter their biological environment. Nat Biotechnol 15, 369–372 (1997). https://doi.org/10.1038/nbt0497-369

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0497-369

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing