Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Modification of rhizobacterial populations by engineering bacterium utilization of a novel plant-produced resource

Abstract

The ability to catabolize distinct nutrients produced by a plant may be a factor in the successful colonization of that host by a bacterium when in competition with other rhizosphere microorganisms. We tested this hypothesis by examining the influence of a novel substrate produced by a transgenic plant on root colonization by near-isogenic bacteria, differing only in their ability to use the resource. When inoculated alone, both bacteria colonized the roots of the normal and transgenic plants with equal kinetics and to indistinguishable levels. When the two bacteria were coinoculated, the catabolizer reached a population density significantly higher than that of the noncatabolizer on the roots of the resource-producing plant. No such advantage was observed on the roots of normal plants. These results support the theory that resources produced and exuded by a plant host can confer a selective advantage to microorganisms that use the substrate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. O'Connell, K.P., Goodman, R.M., and Handelsman, J. 1996. Engineering the rhizosphere: expression of bias. TIBTECH 14: 83–88.

    Article  CAS  Google Scholar 

  2. Dowling, D.N. and Broughton, W.J. 1986. Competition of nodulation of legumes. Annu. Rev. Microbiol. 40: 131–157.

    Article  CAS  Google Scholar 

  3. van Egeraat, A.W.S.M. 1975. The possible role of homoserine in the development of Rhizobium leguminosarum in the rhizosphere of pea seedlings. Plant and Soil 42: 381–386.

    Article  Google Scholar 

  4. Johnston, A.W.B. et al. 1988. Genetic factors affecting host range in Rhizobium Leguminosarum. pp. 374–384, in: Molecular genetics of plant-microbe interactions. Palacios, R. and Verma, D.P. (eds). APS Press, St. Paul, MM.

    Google Scholar 

  5. Zambryski, P.C. 1988. Basic processes underlying Agrobacterium mediated DMA transfer to plant cells. Annu. Rev. Genet. 22: 1–30.

    Article  CAS  Google Scholar 

  6. Dessaux, Y., Petit, A., and Tempé, J., 1992. Opines in Agrobacterium. Biology. pp. 109–136 in: Molecular signalling in plant-microbe communication. Verma, D.P. (ed). CRC Press, Boca Baton, FL.

    Google Scholar 

  7. Tempé, J., Guyon, P., Tepfer, D.A., and Petit, A. 1979. The role of opines in the ecology of the Ti plasmids of Agrobacterium, pp. 353–363 in Plasmids of medical, environmental and commercial importance. Timmis, K.N. and Pülher, A. (eds). Elsevier North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  8. Guyon, P., Petit, A., Tempé, J., and Dessaux, Y. 1993. Transformed plants producing opines specifically promote growth of opine-degrading agrobacteria. Mol. Plant-Microbe Interact. 6: 92–98.

    Article  CAS  Google Scholar 

  9. Scott, D.B., Wilson, R., Shaw, J., Petit, A., and Tempé, J. 1987. Biosynthesis and degradation of nodule-specific Rhizobium loti compounds in Lotus nodules. J. Bacteriol. 169: 278–282.

    Article  CAS  Google Scholar 

  10. Murphy, P.J. and Saint, C.P. 1992. Rhizopines in the legume-rhizobium symbiosis, pp. 377—390 in Molecular signalling in plant-microbe communication. Verma, D.P. (ed). CRC Press, Boca Raton, FL.

    Google Scholar 

  11. Tepfer, D. et al. 1988. A plasmid of Rhizobium meliloti 41 encodes catabolism of two compounds from root exudates of Calystegium sepium. J. Bacteriol. 170: 1153–1161.

    Article  CAS  Google Scholar 

  12. Rossbach, S., Rasul, G., Schneider, M., Eardly, B., and de Bruijn, F.J. 1995. Structural and functional conservation of the rhizopine catabolism (moc) locus is limited to selected Rhizobium meliloti strains and unrelated to their geographical origin. Mol. Plant-Microbe Interact. 4: 549–559.

    Article  Google Scholar 

  13. Murphy, J.P., Wexler, W., Grzemski, W., Rao, J.P., and Gordon, D. 1995. Rhizopines—their role in symbiotic and competition. Soil Biol. Biochem. 27: 525–529.

    Article  CAS  Google Scholar 

  14. Oger, P., Petit, A., and Dessaux, Y. 1997. Genetically engineered plants producing opines alter their biological environment. Nature Biotechnology 15: 369–372.

    Article  CAS  Google Scholar 

  15. Wilson, M., Savka, M.A., Hwang, I., Farrand, S.K., and Lindow, S.E. 1995. Altered epiphytic colonization of mannityl opine-producing transgenic tobacco plants by a mannityl opine-catabolizing strain of Pseudomonas syringae. Appl. Environ. Microbiol. 61: 2151–2158.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wilson, M. and Lindow, S.E. 1994. Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Appl. Environ. Microbiol. 60: 4468–4477.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bowen, G.D. and Rovira, A.D. 1976. Microbial colonization of plant roots. Annu. Rev. Phytopathol. 14: 121–144.

    Article  Google Scholar 

  18. Lynch, J.M. and Whipps, J.M. 1990. Substrate flow in the rhizosphere. Plant and Soil 129: 1–10.

    Article  CAS  Google Scholar 

  19. Lindow, S.E. 1987. Competitive exclusion of epiphytic bacteria by Ice–Pseudomonas syringae mutants. Appl. Environ. Microbiol. 53: 2520–2527.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Savka, M.A. and Farrand, S.K. 1992. Mannityl opine accumulation and exudation by transgenic tobacco. Pl. Physiol. 98: 784–789.

    Article  CAS  Google Scholar 

  21. Ellis, J.G., Ryder, M.H., and Tate, M.E. 1984. Agrobacterium tumefaciens TR-DNA encodes a pathway for agropine biosynthesis. Mol. Gen. Genet. 181: 466–473.

    Article  Google Scholar 

  22. Tate, M.E. et al. 1982. Agropine: a revised structure. Carbohydr. Res. 104: 105–120.

    Article  CAS  Google Scholar 

  23. Salomon, F., Deblaere, R., Leemans, J., Hernalsteens, J.P., and van Montagu, M. 1984. Genetic identification of functions of TR-DNA transcripts in octopine crown galls. EMBO J. 3: 141–146.

    Article  CAS  Google Scholar 

  24. Hwang, I. and Farrand, S.K. 1994. A novel gene tag for identifying microorganisms released into the environment. Appl. Environ. Microbiol. 60: 913–920.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dessaux, Y., Tempé, J., and Farrand, S.K. 1987. Genetic analysis of mannityl opine catabolism in octopine-type Agrobacterium tumefaciens strain 15955. Mol. Gen. Genet. 208: 301–308.

    Article  CAS  Google Scholar 

  26. Savka, M.A. 1993. Validity of the opine concept in plant—bacterial interactions. Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana, IL.

  27. Petit, A. and Tempé, J. 1978. Isolation of Agrobacterium Ti plasmid regulatory mutants. Mol. Gen. Genet. 167: 147–155.

    Article  CAS  Google Scholar 

  28. Savka, M.A., Ravillion, B., Noel, G.R. and Farrand, S.K. 1990. Induction of hairy roots on cultivated soybean genotypes and their use to propagate the soybean cyst nematode. Phytopathology 80: 503–508.

    Article  Google Scholar 

  29. Trevelyan, W.E., Procter, D.P., and Harrisson, J.P. 1950. Detection of sugars on paper chromatography. Nature 166: 444–445.

    Article  CAS  Google Scholar 

  30. Ryder, M.H., Tate, M.E., and Jones, G.P. 1984. Agrocinopine A, a tumor-inducing plasmid-encoded enzyme product, is a phosphodieter of sucrose and arabinose. J. Biol. Chem. 259: 9704–9710.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savka, M., Farrand, S. Modification of rhizobacterial populations by engineering bacterium utilization of a novel plant-produced resource. Nat Biotechnol 15, 363–368 (1997). https://doi.org/10.1038/nbt0497-363

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0497-363

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing