Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Expression of a cyanobacterial Δ6-desaturase gene results in γ-linolenic acid production in transgenic plants

Abstract

Gamma-linolenic acid (GLA), a nutritionally important fatty acid in human and animal diets, is not produced in oil seed crops. Many oil seed plants, however, produce significant quantities of linoleic acid, a fatty acid that could be converted to GLA by the enzyme Δ6-desaturase if it were present. As a first step to producing GLA in oil seed crops, we have cloned a cyanobacterial Δ6-desaturase gene. Expression of this gene in transgenic tobacco resulted in GLA accumulation. Octadecatetraenoic acid, a highly unsaturated, industrially important fatty acid, was also found in transgenic tobacco plants expressing the cyanobacterial Δ6-desaturase. This is the first example of engineering the production of ‘novel’ poly-unsaturated fatty acids in transgenic plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Browse, J., Lemieus, B., Guerra, D., and Somerville, C. 1990. Strategies for modifying plant lipid composition, in Plant Gene Transfer. Lamb, C.J. and Beachy, R.N. (eds.). Alan R. Liss, Inc., New York. pp. 301–309.

    Google Scholar 

  2. Wada, H., Gombos, Z., and Murata, N. 1990. Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 347: 200–203.

    Article  CAS  PubMed  Google Scholar 

  3. Shanklin, J. and Somerville, C. 1991. Stearoyl-acyl-carrier protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs. Proc. Natl. Acad. Sci. USA 88: 2510–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thompson, G.A., Scherer, D.E., Foxall-Van Aken, S., Kenny, J.W., Young, H.L., Shintani, D.K., Kridl, J.C., and Knauf, C.V. 1991. Primary structures of the precursor and mature forms of stearoyl acyl carrier protein desaturase from safflower embryos and requirement of ferredoxin for enzyme activity. Proc. Natl. Acad. Sci. USA 88: 2578–2582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cahoon, E.B., Shanklin, J., and Ohlrogge, J.B. 1992. Expression of a coriander desaturase results in petroselinic acid production in transgenic tobacco. Proc. Natl. Acad. Sci. USA 89: 11184–11188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arondel, V., Lemieux, B., Hwang, I., Gibson, S., Goddman, H.M., and Somerville, C.R. 1992. Map based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis . Science 258: 1353–1355.

    Article  CAS  PubMed  Google Scholar 

  7. Reddy, A.S., Nuccio, M.L., Gross, L.M., and Thomas, T.L. 1993. Isolation of a Δ6-desaturase gene from the cyanobacterium Synechocystis sp. strain PCC6803 by gain-offunction expression in Anabaena sp. strain PCC7120. Plant Mol. Biol. 22: 293–300.

    Article  CAS  PubMed  Google Scholar 

  8. Post-Beittenmiller, M.A., Schmid, K.M., and Ohlrogge, J.B. 1989. Expression of hob and apoforms of spinach acyl carrier protein-l in leaves of transgenic tobacco. Plant Cell 1: 889–899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Knutzon, D.S., Thompson, G.A., Radke, S.E., Johnson, W.B., Knauf, V.C., and Kridl, J.C. 1992. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc. Natl. Acad. Sci. USA 89: 2624–2628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grayburn, W.S., Collins, G.B., and Hildebrand, D.F. 1992. Fatty acid alteration by a Δ9-desaturase in transgenic tobacco tissue. Bio/Technology 10: 675–678.

    CAS  Google Scholar 

  11. Brenner, R.R. 1976. Regulatory function of Δ6-desaturase—a key enzyme of polyunsaturated fatty acid synthesis. Adv. Exp. Med. Biol. 83: 85–101.

    Article  Google Scholar 

  12. Hudson, B.J. 1984. Evening primrose (Oenothera spp.) oil and seed. JAOCS 61: 540–542.

    Article  CAS  Google Scholar 

  13. Stymne, S. and Stobart, A.K. 1986. Biosynthesis of -γ-linolenic acid in cotyledons and microsomal preparation of the developing seeds of common borage (Borago officinalis). Biochem J. 24: 385–393.

    Article  Google Scholar 

  14. Traitler, H., Wille, H.J., and Studer, A. 1988. Fractionation of black currant seed oil. JAOCS. 65: 755–760.

    Article  CAS  Google Scholar 

  15. Craig, M. and Bhatty, M.K. 1964. Naturally occurring all cis 6,9,12,15-octadecatetraenoic acid in plant oils. J. Amer. Oil. Chem. Soc. 41: 209–211.

    Article  CAS  Google Scholar 

  16. Gross, A.T.H. and Dorell, D. 1976. Seed and oil characteristics of Onosomodium occidentale . Can. J. Plant Sci. 56: 659–664.

    Article  CAS  Google Scholar 

  17. Griffiths, G., Brechany, E.Y., Christie, W.W., Stymne, S., and Stobart, K. 1989. Synthesis of octadecatetraenoic acid (OTA) in borage (Borago officinalis), pp. 151–154 in Biological Role of Plant Lipids. Biacs, PA, Gruiz, K., and Kremmer, T.I. (eds.). Plenum Press, New York.

    Chapter  Google Scholar 

  18. Bogue, M.A., Vonder Haar, R.A., Nuccio, M.L., Griffing, L.R., and Thomas, T.L. 1990. Developmentally regulated expression of a sunflower 11S seed protein gene in transgenic tobacco. Mol. Gen. Genet. 222: 49–57.

    Article  CAS  PubMed  Google Scholar 

  19. Murata, N. and Nishida, I. 1987. Lipids of blue-green algae (Cyanobacteria), pp. 315–347 in The Biochemistry of Plant Lipids, Vol. 9. Academic Press, Inc., New York.

    Google Scholar 

  20. Campbell, W.H. and Gowri, G. 1990. Codon usage in plants, green algae, and cyanobacteria. Plant Physiology 92: 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. 1990. Current Protocols in Molecular Biology. Greene Publishers/Wiley Interscience, New York.

    Google Scholar 

  22. Bevan, M.W., 1984. Binary Agrobacterium vector for plant transformation. Nucleic Acids Res. 12: 8711–8721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carrington, J.C. and Freed, D.D. 1990. Cap-independent enhancement of translation by a plant potyvirus 5′ nontranslated region. J. Virology 64: 1590–1598.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, J. and Varner, J.E. 1985. An extracellular matrix protein in plants: characterization of a genomic clone for carrot extensin. EMBO J. 4: 2145–2151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. VandenBroeck, G., Timko, M.P., Kausch, A.P., Cashmore, A.R., VanMontagu, M., and Herrera Estrella, L. 1985. Targeting of foreign protein to chloroplasts by fusion to the transit peptide from the small subunit of ribulose 1.5-bisphosphate carboxylase. Nature 313: 358–363.

    Article  CAS  Google Scholar 

  26. Leroux, B., Pellisier, B., and Lebrun, M. 1989. Gene chimerique de resistance herbicide. European Patent Pending PCT 508909.

  27. Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G., and Fraley, R.T. 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    Article  CAS  Google Scholar 

  28. Dahmer, M.L., Fleming, P.D., Colling, G.D., and Hildebrand, D.F. 1989. A rapid screening technique for determining the lipid composition of soybean seed. J. Amer. Oil. Chem. Soc. 66: 543–548.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, A., Thomas, T. Expression of a cyanobacterial Δ6-desaturase gene results in γ-linolenic acid production in transgenic plants. Nat Biotechnol 14, 639–642 (1996). https://doi.org/10.1038/nbt0596-639

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0596-639

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing