Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

The molecular structure of green fluorescent protein

Abstract

The crystal structure of recombinant wild-type green fluorescent protein (GFP) has been solved to a resolution of 1.9 Å by multiwavelength anomalous dispersion phasing methods. The protein is in the shape of a cylinder, comprising 11 strands of ß-sheet with an α-helix inside and short helical segments on the ends of the cylinder. This motif, with ß-structure on the outside and α-helix on the inside, represents a new protein fold, which we have named the ß-can. Two protomers pack closely together to form a dimer in the crystal. The fluorophores are protected inside the cylinders, and their structures are consistent with the formation of aromatic systems made up of Tyr86 with reduction of its Cα-Cß bond coupled with cyclization of the neighboring glycine and serine residues. The environment inside the cylinder explains the effects of many existing mutants of GFP and suggests specific side chains that could be modified to change the spectral properties of GFP. Furthermore, the identification of the dimer contacts may allow mutagenic control of the state of assembly of the protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Morin, J. and Hastings, J. 1971. Energy transfer in a bioluminescent system. J. Cell Physiol. 77: 313–318.

    Article  CAS  PubMed  Google Scholar 

  2. Ward, W. 1979 pp. 1–57 in Photochemical and photobiological reviews. K. Smith (ed.). Plenum Press, New York.

    Book  Google Scholar 

  3. Prasher, D., Eckenrode, V., Ward, W., Prendergast, F., and Cormier, M. 1992. Primarystructure of the Aequorea victoria green fluorescent protein. Gene 111: 229–233.

    Article  CAS  PubMed  Google Scholar 

  4. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W., and Prasher, D. 1994 Green fluorescent protein as a marker for gene expression. Science 263: 802–805.

    Article  CAS  PubMed  Google Scholar 

  5. Kahana, J., Schapp, B., and Silver, P. 1995. Kinetics of spindle pole body sepa ration in budding yeast Proc. Natl. Acad. Sci. USA 92: 9707–9711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moores, S., Sabry, J., and Spudich, J. 1996. Myosin dynamics in live Dictyostelium cells. Proc. Natl. Acad. Sci. USA 93: 443–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Casper, S. and Holt, C. 1996. Expression of the green fluorescent protein-encoding gene from a tobacco mosaic virus-based vector. Gene 173: 69–7.

    Article  CAS  PubMed  Google Scholar 

  8. Epel, B., Padgett, H., Heinlein, M., and Beachy, R. 1996. Plant virus movement protein dynamics probed with a GFP-protein fusion. Gene 173: 75–79

    Article  CAS  PubMed  Google Scholar 

  9. Wang, S. and Hazelrigg, T. 1994. Implications for bed mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature 369: 400–403.

    Article  CAS  PubMed  Google Scholar 

  10. Amsterdam, A., Lin, S., Moss, L., and Hopkins, N. 1996. Requirements for green fluorescent protein detection in transgenic zebrafish embryos. Gene 173: 99–103.

    Article  CAS  PubMed  Google Scholar 

  11. Ludin, B., Doll, T., Meill, R., Kaech, S., and Matus, A. 1996. Application of novel vectors for GFP-tagging of proteins to study microtubule-associated proteins. Gene 173: 107–111.

    Article  CAS  PubMed  Google Scholar 

  12. DeGiorgi, F., Brini, M., Bastianutto, C., Marsault, R., Monteto, M. Pezo, P. et al. 1996. Targeting aequorin and green fluorescent protein to intracelular oganelles. Gene 173: 113–117.

    Article  CAS  Google Scholar 

  13. Cubitt, A., Heim, R., Adams, S., Boyd, A., Gross, L., and Tsien R. 1995. Understanding, improving and using green fluorescent proteins. TIBS 2: 448–455.

    Google Scholar 

  14. Olsen, K., Mclntosh, J., and Olmstead, J. 1995. Analysis of MAP4 function in living cells using green fluorescent protein (GFP) chimeras. J. Cell Biol. 13O: 639–650.

    Article  Google Scholar 

  15. Rizzuto, R., Brini, M., De Giorgi, F., Rossi, R., Heim, R. Tsien R. et al. 1996. Double labeling of subcellular structures with organelle-targeted GFP mutants in vivo. Curr. Biol. 6: 183–188.

    Article  CAS  PubMed  Google Scholar 

  16. Kaether, C. and Gerdes, H. 1995. Visualization of protein transport along the secretory pathway using green fluorescent protein. FEBS Lett. 369: 267–271.

    Article  CAS  PubMed  Google Scholar 

  17. Marshall, J., Molloy, R., Moss, G., Howe, J., and Hughes, T. 1995. The jellyfish green fluorescent protein a new tool for studying ion channel expression and function. Neuron 14: 211–215.

    Article  CAS  PubMed  Google Scholar 

  18. Mitra, R., Silva, C., and Youvan D. 1996. Fluorescence resonance energy trans fer between blue-emitting and red-shifted excitation derivatives of the green fluorescent protein. Gene 173: 13–7.

    Article  CAS  PubMed  Google Scholar 

  19. Kahana, J. and Silver, P. 1996. pp 9. 7. 22-9.7-28 in Current protocols in molecular biology. Ausabel F., et al. (eds.). Green and Wiley, New York.

    Google Scholar 

  20. Cody, C.W., Prasher, D.C., Westler, W.M., Prendergast, F.G. and Ward W.W. 1993. Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry 32: 1212–1218.

    Article  CAS  PubMed  Google Scholar 

  21. Heim, R., Prasher, D.C., and Tsien, R.Y. 1994. Wavelength mutations and post translational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91: 12501–12504.

    Article  CAS  Google Scholar 

  22. Delagrave, S., Hawtin, R., Silva, C., Yang, M., and Youvan, D. 1995. Red-shifted excitation mutants of the green fluorescent protein. Bio/Technology 13: 151–154.

    CAS  Google Scholar 

  23. Lim, C., Kimata, K., Oka, M., Nomaguchi, K., and Kohno, K., 1995. Thermo-sensitivrty of a green fluorescent protein utilized to reveal novel nuclear like com partments. J. Biochem. (Tokyo) 118: 13–17.

    Article  CAS  Google Scholar 

  24. Ward W.W. and Bokman, S.H. 1982. Reversible denaturation of Aequorea green-fluorescent protein physical separation and characterization of the renatured protein. Biochemistry 21: 4535–4540.

    Article  CAS  PubMed  Google Scholar 

  25. Ward, W., Prentice H., Roth, A. Cody, C. and Reeves S. 1982. Spectral perturbations of the Aequona green fluorescent protein. Photochem. Photobiol. 35: 803–808.

    Article  CAS  Google Scholar 

  26. Inouye, S. and Tsuji, F.I 1994 Evidence for redox forms of the Aequorea green fluorescent protein. FEBS Lett. 351: 211–214.

    Article  CAS  PubMed  Google Scholar 

  27. Dopf, J. and Horiagan, T. 1996. Deletion mapping of the Aequoria victoria green fluorescent protein. Gene 173: 39–44.

    Article  CAS  PubMed  Google Scholar 

  28. Heim, R., Cubitt A. and Tsien, R. 1995. Improved green fluorescence. Nature 373: 663–664.

    Article  CAS  PubMed  Google Scholar 

  29. Cormack B., Valdivia, R., and Falkow, S. 1996 FACS optimized mutants of the green fluorescent protein (GFP). Gene 173: 33–38.

    Article  CAS  PubMed  Google Scholar 

  30. Ehng, T., O'Kane, D., and Prendergast F. 1995. Green-fluorescent protein mutants with altered fluorescence excitation spectra. FEBS Lett 367: 163–166

    Article  Google Scholar 

  31. Crameri A., Whrtehom E., Tate, E., and Stemmer, W. 1996. Improved green fluorescent protein by molecular evolution using DMA shuffling. Nature Biotech. 14: 315–319.

    Article  CAS  Google Scholar 

  32. Perozzo, M., Ward, K., Thompson, R., and Ward, W. 1988. X-ray diffraction and time resolved fluorescence analyses of Aequorea green fluorescent protein crystals. J. Biol. Chem. 263: 7713–7716.

    CAS  PubMed  Google Scholar 

  33. Merbs S. and Nathans, J. 1992 Absorption spectra of the hybrid pigments responsible for anomalous color vision. Science 258: 464–466.

    Article  CAS  PubMed  Google Scholar 

  34. Rao, B., Kemple, M., and Prendergast, F. 1980. Proton nuclear magnetic resonance and fluorescence spectroscopic studies of segmental mobility in aequorin and a green fluorescent protein from Aequorea forskalea. Biophys. J. 32: 630–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ormö, M., Cubitt, A., Kallio, K., Gross, L., Tsien, R., and Remington, S. 1996. Crystal structure of the Aequorea victona green fluorescent protein. Science In press.

  36. Wright, H. 1991. Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins. Crit. Rev. Biochem. Mol. Biol.. 26: 1–52.

    Article  CAS  PubMed  Google Scholar 

  37. Chattoraj, M., King, B., Bublitz, G., and Boxer S. 1996. Ultra-fast excited state dynamics in green fluorescent protein Multiple states and proton transfer Proc. Natl. Acad. Sci. USA. 93: 8362–8367.

  38. Otwinowski, Z. 1993. Data collection and processing in Proceedings of the CCP4 study weekend. Warnngton, England Daresbury Laboratory.

    Google Scholar 

  39. Sheldrick, G., Dauter, Z., Wilson, K., Hope, H., and Sieker, L. 1993. The applica tion of direct methods and Patterson interpretation to high-resolution native protein data. Acta Cryst. D49: 18–23.

    CAS  Google Scholar 

  40. Terwilliger, T., Kim, S.-H., and Eisenberg, D. 1987. Generalized method of determining heavy-atom positions using the difference Patterson function. Acta Cryst. A43: 1–5.

    Article  CAS  Google Scholar 

  41. Yang, W., Hendrickson, W., Crouch R. and Satow Y. 1990. Structure of ribonuclease H phased at 2 A by MAD analysis of the selemomethionyl protein. Science 249: 1398–1405.

    Article  CAS  PubMed  Google Scholar 

  42. Collaborative Computational Project, N 1994. The CCP4 suite Programs for pro tem crystallography. Acta Crysf D50: 760–763.

  43. Jones, T., Zou, J., Cowan, S. and Kjeldgaard M. 1991. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. 47: 110–119.

    Article  Google Scholar 

  44. Brunger, A. 1992. X-PLOR Version 31 A system for X ray crystallography and NMR. Yale University Press, New Haven CT

    Google Scholar 

  45. Carson, M. 1987. Ribbon models of macromolecules. J. Mol. Graphics 5: 103–106.

    Article  CAS  Google Scholar 

  46. Sayle, R. and Milner-White, E. 1995. RasMol Biomolecular graphics for all. TIBS 20: 374–375.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, F., Moss, L. & Phillips, G. The molecular structure of green fluorescent protein. Nat Biotechnol 14, 1246–1251 (1996). https://doi.org/10.1038/nbt1096-1246

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1096-1246

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing