Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mammary Gland Expression of Transgenes and the Potential for Altering the Properties of Milk

Abstract

Transgenic animals are a useful in vivo experimental model for assessing the ability and impact of foreign gene expression in a biological system. Transgenic mice are most commonly used, while transgenic steep, goats, pigs and cows have also been developed for specific, “applied” purposes. Most of the work directed at targeting expression of transgenes to the mammary gland of an animal, by using a milk gene promoter, has been with the intent of either studying promoter function or recovering the desired protein from the milk. Transgenic technology can also be used to alter the functional and physical properties of milk resulting in novel manufacturing properties. The properties of milk have been altered by adding a new protein with the aim of improving the milk, not of recovering the protein for other uses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mercier, J.C. and Vilotte, J.L. 1993. Structure and function of milk protein genes. J. Dairy Sci. 76: 3079–3098.

    CAS  PubMed  Google Scholar 

  2. Bawden, W.S., Passey, R.J. and Mackinlay, A.G. 1994. The genes encoding the major milk specific proteins and their use in transgenic studies and protein engineering. Biotech. Gen. Eng. Rev. 12: 89–137.

    CAS  Google Scholar 

  3. Wilmut, I., Archibald, A.L., McClenaghan, M., Simons, J.P., Whitelaw, C.B.A. and Clark, A.J. 1991. Production of pharmaceutical proteins in milk. Experientia 47: 905–912.

    CAS  PubMed  Google Scholar 

  4. Fennema, O.R. 1985. In: Food Chemistry, 2nd Edition, Fennema, O. R. (Ed.). M. Dekker, New York.

    Google Scholar 

  5. Threadgill, D.W. and Womack, J.E. 1990. Genomic analysis of the major bovine milk protein genes. Nucleic Acids Res. 23: 6935–6942.

    Google Scholar 

  6. Lee, L.-Y. and Rosen, J.M. 1988. A transfected α-casein minigene bypasses post-transcriptional control by hormones, but retains cell-substratum regulation in mammary epithelial cells. Mol. Endocrinol. 2: 431–443.

    Google Scholar 

  7. Koczan, D., Hobom, G. and Seyfert, H.-M. 1991. Genomic organization of the bovine αs1-casein gene. Nucleic Acids Res. 19: 5591–5596.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jolivet, G., Devinoy, E., Fontaine, M.L. and Houdebine, L.M. 1992. Structure of the gene encoding rabbit αs1-casein. Gene 113: 257–262.

    CAS  PubMed  Google Scholar 

  9. Groenen, M.A.M., Dijkhof, R.J.M., Verstege, A.J.M. and van der Poel, J.J. 1993. The complete sequence of the gene encoding bovine αs2-casein. Gene 123: 187–193.

    CAS  PubMed  Google Scholar 

  10. Bonsing, J., Ring, J.M., Stewart, A.F. and Mackinlay, A.G. 1988. Complete nucleotide sequence of the bovine β-casein gene. Aust. J. Biol. Sci. 41: 527–537.

    CAS  PubMed  Google Scholar 

  11. Gorodetsky, S.I., Tkach, T.M. and Kapelinskaya, T.V. 1988. Isolation and characterization of the Bos taunts β-casein gene. Gene 66: 87–96.

    CAS  PubMed  Google Scholar 

  12. Roberts, B., DiTullio, P., Vitale, J., Hehir, K. and Gordon, K. 1992. Cloning of the goat β-casein encoding gene and expression in transgenic mice. Gene 121: 255–262.

    CAS  PubMed  Google Scholar 

  13. Jones, W.K., Yu-Lee, L.-Y., Clift, S.M., Brown, T.L. and Rosen, J.M. 1985. The rat casein multigene family. Fine structure and evolution of the β-casein gene. J. Biol. Chem. 260: 7042–7050.

    CAS  PubMed  Google Scholar 

  14. Yoshimura, M. and Oka, T. 1989. Isolation and structural analysis of the mouse β-casein gene. Gene 78: 267–275.

    CAS  PubMed  Google Scholar 

  15. Thepot, D., Devinoy, E., Fontaine, M.L. and Houdebine, L.M. 1991. Structure of the gene encoding rabbit β-casein. Gene 97: 301–306.

    CAS  PubMed  Google Scholar 

  16. Hansson, L., Edlund, A., Johansson, T., Hernell, O., Stromquist, M., Lindquist, S., Lonnerdal, B. and Bergstrom, S. 1994. Structure of the human β-casein encoding gene. Gene 13: 193–199.

    Google Scholar 

  17. Alexander, J., Stewart, A.F., Mackinlay, A.G., Kapelinskaya, T.V., Tkach, M. and Gorodetsky, S.I. 1988. Isolation and characterization of the bovine κ-casein gene. Biochem. J. 178: 395–401.

    CAS  Google Scholar 

  18. Thompson, M.D., Dave, J.R. and Nakhasi, H.L. 1985. Molecular cloning of mouse mammary gland κ-casein: comparison with rat κ-casein and rat and human γ-fibrinogen. DNA 4: 263–271.

    CAS  PubMed  Google Scholar 

  19. Hall, L., Emery, D.C., Davies, M.S., Parker, D. and Craig, R.K. 1987. Organization and sequence of the human α-lactalbumin gene. Biochem. J. 242: 735–742.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Quasba, P.K. and Safaya, S.K. 1984. Similarity of the nucleotide sequences of the rat α-lactalbumin and chicken lysozyme genes. Nature 308: 377–380.

    Google Scholar 

  21. Vilotte, J.L. and Soulier, S. 1992. Isolation and characterization of the mouse α-lactalbumin-encoding gene: interspecies comparison, tissue- and stage-specific expression. Gene 119: 287–292.

    CAS  PubMed  Google Scholar 

  22. Vilotte, J.L., Soulier, S., Merrier, J.C., Gaye, P., Hue-Delahaie, D. and Furet, J.P. 1987. Complete nucleotide sequence of bovine α-lactalbumin gene. Comparison with its rat counterpart. Biochimie 69: 609–620.

    CAS  PubMed  Google Scholar 

  23. Vilotte, J.L., Soulier, S., Printz, C. and Mercier, J.C. 1991. Sequence of the goat α-lactalbumin-encoding gene: comparison with the bovine gene and evidence of related sequences in the goat genome. Gene 98: 271–276.

    CAS  PubMed  Google Scholar 

  24. Laird, J.E., Lack, L., Hall, L., Boulton, A., Parker, D. and Craig, R.K. 1988. Structure and expression of the guinea pig α-lactalbumin gene. Biochem. J. 254: 85–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Harris, S., Ali, S., Anderson, S., Archibald, A.L. and Clark, A.J. 1988. Complete nucleotide sequence of the ovine β-lactoglobulin gene. Nucleic Acids Res. 16: 10379–10380.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Watson, C.J., Gordon, K.E., Robertson, M. and Clark, A.J. 1991. Interaction of DNA binding proteins with a milk protein gene promoter in vitro: identification of a mammary gland-specific factor. Nucleic Acids Res. 19: 6603–6610.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Alexander, L.J., Hayes, G., Bawden, W., Stewart, A.F. and Mackinlay, A.G. 1993. Complete nucleotide sequence of the bovine β-lactoglobulin gene. Animal Biotech. 4: 110.

    Google Scholar 

  28. Hennighausen, L.G. and Sippel, A.E. 1982. Characterization and cloning of the mRNAs specific for the lactating mouse mammary gland. Eur. J. Biochem. 125: 131–141.

    CAS  PubMed  Google Scholar 

  29. Campbell, S.M. and Rosen, J.M. 1984. Comparison of the whey acidic protein genes of the rat and mouse. Nucleic Acids Res. 12: 8685–8696.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Thepot, D., Devinoy, E., Fontaine, M.L. and Houdebine, L.M. 1991. Complete sequence of the rabbit whey acidic protein gene. Nucleic Acids Res. 18: 3641.

    Google Scholar 

  31. Bayna, E.M. and Rosen, J.M. 1990. Tissue specific expression of the rat whey acidic protein gene in transgenic mice. Nucleic Acids Res. 18: 2977–2985.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Andres, A.-C., Schonenberger, C.-A., Groner, B., Hennighausen, L., LeMeur, M. and Gerlinger, P. 1987. Ha-ras oncogene expression directed by a milk protein gene promoter: Tissue specificity, hormonal regulation, and tumor induction in transgenic mice. Proc. Natl. Acad. Sci. USA 84: 1299–1303.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gorden, K., Lee, E., Vitale, J.A., Smith, A.E., Westphal, H. and Hennighausen, L. 1987. Production of human tissue plasminogen activator in transgenic mouse milk. Bio/Technology 5: 1183–1187.

    Google Scholar 

  34. Ebert, K.M., Selgrath, J.P., DiTullio, P., Denman, J., Smith, T.E., Memon, M.A., Schindler, J.E., Monastersky, G.M., Vitale, J.A. and Gorden, K. 1991. Transgenic production of a variant of human tissue type plasminogen activator in goat milk: Generation of transgenic goats and analysis of expression. Bio/Technology 9: 835–838.

    CAS  Google Scholar 

  35. Wall, R.J., Pursel, V.G., Shamay, A., McKnight, R.A., Pittius, C.W. and Hennighausen, L. 1991. High level synthesis of a heterologous milk protein in the mammary glands of transgenic swine. Proc. Natl. Acad. Sci. USA 88: 1696–1700.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hansson, L., Edlund, M., Edlund, A., Johansson, T., Marklund, S.L., Fromm, S., Stromqvist, M. and Tornell, J. 1994. Expression and characterization of biologically active human extracellular superoxide dismutase in milk of transgenic mice. J. Biol. Chem. 69: 5358–5363.

    Google Scholar 

  37. Velander, W.H., Page, R.L., Morcol, T., Russell, C.G., Canseco, R., Young, J.M., Drohan, W.N., Gwazdauskas, F.C., Wilkins, T.D. and Johnson, J.L. 1992. Production of biologically active protein C in the milk of transgenic mice. Ann. N. Y. Acad. Sci. 665: 391–403.

    CAS  PubMed  Google Scholar 

  38. Velander, W.H., Johnson, J.L., Page, R.L., Russell, C.G., Subramanian, A., Wilkins, T.D., Gwazdauskas, F.C., Pittius, C. and Drohan, W.N. 1992. High-level expression of a heterologous protein in the milk of transgenic swine using the cDNA encoding human protein C. Proc. Natl. Acad. Sci. USA 89: 12003–12007.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Drohan, W.N., Zhang, D., Paleyanda, R.K., Chang, R., Wroble, M., Velander, W. and Lubon, H. 1994. Inefficient processing of human protein C in the mouse mammary gland. Transgenic Res. 3: 355–364.

    CAS  PubMed  Google Scholar 

  40. Bischoff, R., Degryse, E., Perraud, E., Dalemans, W., Ali-Hadji, D., Thepot, D., Devinoy, E., Houdebine, L.M. and Pavirani, A. 1992. A 17.6 kbp region located upstream of the rabbit WAP gene directs high level expression of a functional human protein variant in transgenic mouse milk. FEBS 305: 265–268.

    CAS  Google Scholar 

  41. Devinoy, E., Thepot, D., Stinnakre, M.-G., Fontaine, M.-L., Grabowski, H., Puissant, C., Pavirani, A. and Houdebine, L.-M. 1994. High level production of human growth hormone in the milk of transgenic mice: the upstream region of the rabbit whey acidic protein (WAP) gene targets transgene expression to the mammary gland. Transgenic Res. 3: 79–89.

    CAS  PubMed  Google Scholar 

  42. Maschio, A., Brickell, P.M., Kioussis, D., Mellor, A.L., Katz, D. and Graig, R.K. 1991. Transgenic mice carrying the guinea-pig α-lactalbumin gene transcribe milk protein genes in their sebaceous glands during lactation. Biochem. J. 275: 459–467.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bleck, G.T. and Bremel, R.D. 1993. Variation in expression of a bovine α-lactalbumin transgene in milk of transgenic mice. J. Dairy Sci. 77: 1897–1904.

    Google Scholar 

  44. Vilotte, J.L., Soulier, S., Stinnakre, M.G., Massoud, M. and Mercier, J.C. 1989. Efficient tissue-specific expression of bovine α-actalbumin in transgenic mice. Eur. J. Biochem. 186: 43–48.

    CAS  PubMed  Google Scholar 

  45. Soulier, S., Vilotte, J.L., Stinnakre, M.G. and Mercier, J.C. 1992. Expression analysis ruminant α-lactalbumin in transgenic mice: developmental regulation and general location of important cis-egulatory elements. FEBS 297: 13–18.

    CAS  Google Scholar 

  46. Simons, J.P., McClenaghan, M. and Clark, A.J. 1987. Alteration of the quality of milk by expression of sheep β-lactoglobulin in transgenic mice. Nature 328: 530–532.

    CAS  PubMed  Google Scholar 

  47. Archibald, A.L., McClenaghan, M., Hornsey, V., Simons, J.P. and Clark, A.J. 1990. High level expression of biologically active human α1-antitrypsin in the milk of transgenic mice. Proc. Natl. Acad. Sci. USA 87: 5178–5182.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wright, G., Carver, A., Cottom, D., Reeves, D., Scott, A., Simons, P., Wilmut, I., Garner, I. and Colman, A. 1991. High level expression of active human α1-antitrypsin in the milk of transgenic sheep. Bio/Technology 9: 830–834.

    CAS  Google Scholar 

  49. Shani, M., Barash, I., Nathan, M., Ricca, G., Searfoss, G.H., Dekel, I., Faerman, A., Givol, D. and Hurwitz, D.R. 1992. Expression of human serum albumin in the milk of transgenic mice. Transgenic Res. 1: 195–208.

    CAS  PubMed  Google Scholar 

  50. Lee, K.-F., DeMayo, F.J., Atiee, S.H. and Rosen, J.M. 1988. Tissue specific expression of the rat β-casein gene in transgenic mice. Nucleic Acids Res. 16: 1027–1041.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, K.-F., Atiee, S.H. and Rosen, J.M. 1989. Differential regulation of rat β-casein-chloramphenicol acetyltransferase fusion gene expression in transgenic mice. Mol. Cell Biol. 9: 560–565.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Buhler, T.A., Bruyere, T., Went, D.E., Stranzinger, G. and Burki, K. 1990. Rabbit β-casein promoter directs secretion of human interleukin-2 into the milk of transgenic rabbits. Bio/Technology 8: 140–143.

    CAS  Google Scholar 

  53. Persuy, M.-A., Stinnakre, M.-G., Printz, C., Mahe, M.-F. and Mercier, J.C. 1992. High expression of the caprine β-casein gene in transgenic mice. Eur. J. Biochem. 205: 887–893.

    CAS  PubMed  Google Scholar 

  54. DiTullio, P., Cheng, S.H., Marshall, J., Gregory, R.J., Ebert, K.M., Meade, H.M. and Smith, A.E. 1992. Production of cystic fibrosis transmembrane conductance regulator in the milk of transgenic mice. Bio/Technology 10: 74–77.

    CAS  Google Scholar 

  55. Gutierrez, A., Meade, H.M., Jimenez-Flores, R., Anderson, G.B., Murray, J.D. and Medrano, J.F. 1995. Expression analysis of bovine κ-casein in the mammary gland of transgenic mice. Transgenic Res. In press.

    Google Scholar 

  56. Clarke, R.A., Sokol, D., Rigby, N., Ward, K., Murray, J.D. and Mackinlay, A.G. 1994. Mammary gland specific expression of bovine αs1-casein derived transgenes in mice. Transgenics 1: 313–319.

    CAS  Google Scholar 

  57. Brem, G., Haiti, P., Besenfelder, U., Wolf, E., Zinovieva, N. and Pfaller, R. 1994. Expression of synthetic cDNA sequences encoding human insulin-like growth factor-1 (IGF-1) in the mammary gland of transgenic rabbits. Gene 149: 351–355.

    CAS  PubMed  Google Scholar 

  58. Meade, H., Gates, L., Lacy, E. and Lonberg, N. 1990. Bovine αs1-casein gene sequences direct high level expression of active human urokinase in mouse milk. Bio/Technology 8: 443–446.

    CAS  Google Scholar 

  59. Maga, E.A., Anderson, G.B., Huang, M.C. and Murray, J.D. 1994. Expression of human lysozyme mRNA in the mammary gland of transgenic mice. Transgenic Res. 3: 36–42.

    CAS  PubMed  Google Scholar 

  60. Platenburg, G.J., Kootwijk, E.P.A., Kooiman, P.M., Woloshuk, S.L., Nuijens, J.H., Krimpenfort, P.J.A., Pieper, F.R., de Boer, H.A. and Strijker, R. 1994. Expression of human lactoferrin in milk of transgenic mice. Transgenic Res. 3: 99–108.

    CAS  PubMed  Google Scholar 

  61. Krimpenfort, P., Rademakers, A., Eyestone, W., van der Schans, A., van den Broek, S., Kooiman, P., Kootwijk, E., Platenburg, G., Pieper, F., Strijker, R. and de Boer, H. 1991. Generation of transgenic dairy cattle using in vitro embryo production. Bio/Technology 9: 844–847.

    CAS  Google Scholar 

  62. Whitelaw, C.B.A., Archibald, A.L., Harris, S., McClenaghan, M., Simons, J.P. and Clark, A.J. 1991. Targeting expression to the mammary gland: intronic sequences can enhance the efficiency of gene expression in transgenic mice. Transgenic Res. 1: 3–13.

    CAS  PubMed  Google Scholar 

  63. Hurwitz, D.R., Nathan, M., Barash, I., Ilan, N. and Shani, M. 1994. Specific combinations of human serum albumin introns direct high level expression of albumin in transfected COS cells and in the milk of transgenic mice. Transgenic Res. 3: 365–375.

    CAS  PubMed  Google Scholar 

  64. Webb, B.H., Johnson, A.H. and Alford, J.A. 1974. In: Fundamentals in Dairy Chemistry, 2nd Edition, Webb, B. H., Johnson, A. H. and Alford, J. A. (Eds.). AVI Publishing Co. Inc., Westport, Connecticut.

    Google Scholar 

  65. Fox, P.F. 1982. Chemistry of milk protein. Vols. 1 and 2 In: Developments in Dairy Chemistry, Fox, P. F. (Ed.). Applied Sci. Pub., New York.

    Google Scholar 

  66. Mercier, J.C. 1981. Phosphorylation of caseins: evidence for an amino acid triplet code posttranslationally recognized by specific kinases. Biochimie 63: 1–17.

    CAS  PubMed  Google Scholar 

  67. Holt, C. 1992. Structure and stability of bovine casein micelles. Adv. in Prot. Chem. 43: 63–157.

    CAS  Google Scholar 

  68. Phillips, D.C. 1966. The 3-dimensional structure of an enzyme molecule. Sci. Am. 215: 78–90.

    CAS  PubMed  Google Scholar 

  69. Jolles, P. and Jolles, J. 1984. What's new in lysozyme research. Mol. and Cell. Biochem. 63: 165–189.

    CAS  Google Scholar 

  70. Fleming, A. 1922. On a remarkable bacteriolytic element found in tissues and secretions. Proc. Roy. Soc. London Ser. B 93: 306–317.

    CAS  Google Scholar 

  71. Dobson, D.E., Prager, E.M. and Wilson, A.C. 1984. Stomach lysozyme of ruminants, I. Distribution and catalytic properties. J. Biol. Chem. 259: 11607–11616.

    CAS  PubMed  Google Scholar 

  72. Costerton, J.W., Ingram, J.M. and Chang, K.J. 1974. Structure and function of the cell envelope of bacteria. Bacteriol. Rev. 38: 87–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Smith, G.N. and Stoker, C. 1949. Inhibition of crystalline lysozyme. Arch. Biochem. 21: 383.

    CAS  PubMed  Google Scholar 

  74. Chandan, R.C., Parry, R.M. and Shahani, K.M. 1968. Lysozyme, lipase, and ribonuclease in milk of various species. J. Dairy Sci. 51: 606–607.

    CAS  Google Scholar 

  75. Vakil, J.R., Chandan, R.C., Parry, R.M. and Shahani, K.M. 1970. Susceptibility of several microorganisms to milk lysozymes. J. Dairy Sci. 52: 1192–1197.

    Google Scholar 

  76. Chang, S.S. 1990. Antimicrobial proteins of maternal and cord sera and human milk in relation to maternal nutritional studies. Am. J. Clin. Nutr. 51: 183–187.

    CAS  PubMed  Google Scholar 

  77. Hughey, V.L., Wilger, P.A. and Johnson, E.A. 1989. Antibacterial activity of hen egg white lysozyme against Listeria monocytogenes ScottA in foods. Appl. Environ. Microbiol. 55: 631–638.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hughey, V.L. and Johnson, E.A. 1987. Antimicrobial activity of lysozyme against bacteria involved in food spoilage and food borne disease. Appl. Environ. Microbiol. 53: 2165–2170.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Panfil-Kuncewicz, H. and Kisza, J. 1976. Studies on the lysozyme content of human and cow milk. Zesz. Nauk. Akad. Roln.-Tech. Olsztynie, Technol. Zywn. 8: 105–112.

    CAS  Google Scholar 

  80. Grinde, B. 1989. A lysozyme isolated from rainbow trout acts on mastitis pathogens. FEMS Micro. Letters 60: 179–182.

    CAS  Google Scholar 

  81. Redhead, K., Hill, T. and Mulloy, B. 1990. Antimicrobial effect of human milk on Bordetella pertussis . FEMS Micro. Letters 70: 179–182.

    Google Scholar 

  82. Carlsson, A., Bjorck, L. and Persson, K. 1989. Lactoferrin and lysozyme in milk during acute mastitis and their inhibitory effect in Delvotest P. J. Dairy Sci. 72: 3166–3175.

    CAS  PubMed  Google Scholar 

  83. Hennart, P.F., Brasseur, D.J., Delogne-Desnoeck, J.B., Dramaix, M.M. and Robyn, C.E. 1991. Lysozyme, lactoferrin, and secretory immunoglobulin A content in breast milk: Influence of duration of lactation, nutritional status, prolactin status, and parity of mother. Am. J. Clin. Nutr. 53: 32–39.

    CAS  PubMed  Google Scholar 

  84. Shahani, K.M., Chandan, R.C., Kelly, P.L. and MacQuiddy, E.L. 1962. Determination of lysozyme in milk and factors affecting its concentration and properties. Proc. 16th Intern. Dairy Congr. 8: 285–293.

    Google Scholar 

  85. Yoshida, A., Takagaki, Y. and Nishimune, T. 1991. Enzyme immunoassay for hen egg white lysozyme used as a food additive. J. Assoc. Off. Anal. Chem. 74: 502–505.

    CAS  PubMed  Google Scholar 

  86. Osserman, E.F., Klockars, M., Halper, J. and Fischel, R.E. 1973. Effects of lysozyme on normal and transformed cells. Nature 243: 331.

    CAS  PubMed  Google Scholar 

  87. Green, M.L. and Marshall, R.J. 1977. The acceleration by cationic materials of the coagulation of casein micelles by rennet. J. Dairy Res. 44: 521–531.

    CAS  Google Scholar 

  88. Pearce, K.N. 1976. Moving boundary electrophoresis of native and rennet-treated casein micelles. J. Dairy Res. 43: 27–36.

    CAS  Google Scholar 

  89. Marshall, R.J. and Green, M.L. 1980. The effect of the chemical structure of additives on the coagulation of casein micelle suspensions by rennet. J. Dairy Res. 47: 359–369.

    CAS  Google Scholar 

  90. DiGregorio, F. and Sisto, R. 1981. Milk coagulation by cationic polypeptides. J. Dairy Res. 48: 267–271.

    CAS  Google Scholar 

  91. Giangiacomo, R., Nigro, F., Messina, G. and Cattaneo, T.M.P. 1992. Lysozyme: just an additive or a technological aid as well? Food Additives and Contaminants 9: 427–433.

    CAS  PubMed  Google Scholar 

  92. Waugh, D.F. 1971. Formation and structure of casein micelles, p. 3–85. In: Milk Proteins Chemistry and Molecular Biology, McKenzie, H. A. (Ed.). Academic Press, New York.

    Google Scholar 

  93. Schmidt, D.G. 1982. Association of caseins and casein micelle structure, p. 61–82, Vol. 1. In: Developments in Dairy Chemistry, Fox, P. F. (Ed.). Applied Sci Pub., New York.

    Google Scholar 

  94. Fox, P.F. 1982. Heat-induced coagulation of milk, p. 189–223, Vol. 1. In: Developments in Dairy Chemistry, Fox, P. F. (Ed.) Applied Sci. Pub., New York.

    Google Scholar 

  95. Jimenez-Flores, R. and Richardson, T. 1985. Genetic engineering of the caseins to modify the behavior of milk during processing: a review. J. Dairy Sci. 71: 2640–2654.

    Google Scholar 

  96. Clark, A.J. 1992. Prospects for the genetic engineering of milk. J. Cell Biochem. 49: 121–127.

    CAS  PubMed  Google Scholar 

  97. Yom, H.G. and Bremel, R.D. 1993. Genetic engineering of milk composition: modification of milk components in lactating transgenic animals. Am. J. Clin. Nutr. Suppl. 8: 2995–3065.

    Google Scholar 

  98. Schaar, J. 1984. Effect of κ-casein genetic variants and lactation number on the renneting properties of individual milks. J. Dairy Res. 51: 97–406.

    Google Scholar 

  99. Marziali, A.S. and Ng-Kwan-Hang, K.F. 1986. Effect of milk composition and genetic polymorphism on coagulating properties of milk. J. Dairy Sci. 69: 1793–1798.

    CAS  Google Scholar 

  100. Conneely, O.M. and Headon, D.R. 1993. Lactoferrin, lactoperoxidase and lysozyme: nature's protective proteins, p. 123–131. In: Biotechnology in the Feed Industry, Proceedings of Alltech's Ninth Annual Symposium, Lyons, T. P. (Ed.). Alltech Tech. Pub., Nicholasville, KY.

    Google Scholar 

  101. Arnold, R.R., Cole, M.F. and McGhee, J.R. 1977. A bacteriocidal effect for human lactoferrin. Science 197: 263–265.

    CAS  PubMed  Google Scholar 

  102. Kuizinga, A., vanHaeringen, N.J. and Kijlstra, A. 1987. Inhibition of hydroxyl radical formation by human tears. Invest. Ophthalmol. Vis. Sci. 28: 305–313.

    Google Scholar 

  103. Masson, P.L. and Heremans, J.F. 1971. Lactoferrin in milk from different species. Comp. Biochem. Physiol. 39B: 143–147.

    Google Scholar 

  104. Ellison, R.T. and Giehl, T.J. 1991. Killing gram-negative bacteria by lactoferrin and lysozyme. J. Clin. Invest. 88: 1080–1091.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Stuart, J., Norrell, S. and Harrington, J.P. 1984. Kinetic effect of human lactoferrin on the growth of Escherichia coli 0111. Int. J. Biochem. 16: 1043–1048.

    CAS  PubMed  Google Scholar 

  106. Stephens, S., Dolby, J.M., Montreiul, J. and Spik, G. 1980. Differences in inhibition of the growth of commensal and enteropathogenic strains of Escherichia coli by lactoferrin and secretory immunoglobulinA isolated form human milk. Immunology. 41: 597–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Schulz-Lell, G., Dorner, K., Oldigs, H.-D., Sievers, E. and Scaule, E. 1991. Iron availability from an infant formula supplemented with bovine lactoferrin. Acta. Pediat. Scand. 80: 155–158.

    CAS  Google Scholar 

  108. Hekman, A.M. 1971. Association of lactoferrin with other proteins, as demonstrated by changes in electrophoretic mobility. Biochim. Biophys. Acta. 251: 380.

    CAS  PubMed  Google Scholar 

  109. Maga, E.A., Anderson, G.B. and Murray, J.D. 1995. The effect of mammary gland expression of human lysozyme on the properties of milk in transgenic mice. J. Dairy Sci. In press.

  110. Gutierrez, A., Maga, E.A., Meade, H.M., Shoemaker, C.F., Medrano, J.F., Anderson, G.B. and Murray, J.D. 1995. Alteration of physical characteristics of milk from bovine kappa-casein transgenic mice. J. Dairy Sci. Submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maga, E., Murray, J. Mammary Gland Expression of Transgenes and the Potential for Altering the Properties of Milk. Nat Biotechnol 13, 1452–1457 (1995). https://doi.org/10.1038/nbt1295-1452

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1295-1452

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing