Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Case Study
  • Published:

Mammalian Cell Expression of Single–Chain Fv (sFv) Antibody Proteins and Their C–terminal Fusions with Interleukin–2 and Other Effector Domains

Abstract

The production of several single–chain Fv (sFv) antibody proteins was examined by three modes of mammalian cell expression. Our primary model was the 741F8 anti–c–erbB–2 sFv, assembled as either the VH–VL or VL–VH, and expressed alone, with C–terminal cysteine for dimerization, or as fusion proteins with carboxyl–terminal effector domains, including interleukin–2, the B domain of staphylococcal protein A, the S–peptide of ribonuclease S, or hexa–histidine metal chelate peptide. Constructs were expressed and secreted transiently in 293 cells and stably in CHO or Sp2/0 cell lines, the latter yielding up to 10 mg per liter. Single–chain constructs of MOPC 315 myeloma and 26–10 monoclonal antibodies were also expressed, as were hybrids comprising unrelated VH and VL regions. Our results suggest that mammalian expression is a practical and valuable complement to the bacterial expression of single–chain antibodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Huston, J.S., Levinson, D., Mudgett-Hunter, M., Tai, M.-S., Novotny, J., Margolies, M.N., Ridge, R.J., Bruccoleri, R., Haber, E., Crea, R. and Oppermann, H. 1988. Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85: 5879–5883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bird, R.E., Hardman, K.D., Jacobson, J.W., Johnson, S., Kaufman, B.M., Lee, S.-M., Lee T., Pope, S.H., Riordan, G.S. and Whitlow, M. 1988. Single chain antigen-binding proteins. Science 242: 423–426.

    Article  CAS  PubMed  Google Scholar 

  3. Huston, J.S., McCartney, J.E., Tai, M.-S., Mottola-Hartshorn C., Jin, D., Warren, F., Keck, P. and Oppermann, H. 1993. Medical application of single-chain antibodies. Intern. Rev. Immunol. 10: 195–217.

    Article  CAS  Google Scholar 

  4. Nedelman, M.A., Shealy, D.J., Boutin, R., Brunt, E., Seasholtz, J.I., Allen, I.E., Weisman, H.F., McCartney, J.E., Warren, F., Oppermann, H., Pang, R.H.L. and Berger, H.J. 1993. Rapid infarct imaging with a technetium-99m antimyosin sFv fragment: Evaluation in a canine model of acute myocardial infarction. J. Nuclear Med. 34: 234–241.

    CAS  Google Scholar 

  5. Adams, G.P., McCartney, J.E., Tai, M.-S., Oppermann, H., Huston, J.S., Stafford, W.F. III, Bookman, M.A., Fand, I., Houston, L.L. and Weiner, L.W. 1993. Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 sFv, an anti-c-erbB-2 single-chain Fv. Cancer Res. 53: 4026–4034.

    CAS  PubMed  Google Scholar 

  6. Colcher, D., Bird, R., Roselli, M., Hardman, K.D., Johnson, S., Pope, S., Dodd, S., Pentoliano, M.W., Milenic, D.E. and Schlom, J. 1990. In-vivo tumor targeting of a recombinant single chain antigen-binding protein. J. Nat. Cancer Inst. 82: 1191–1197.

    Article  CAS  PubMed  Google Scholar 

  7. Yokota, T., Milenic, D.E., Whitlow, M. and Schlom, J. 1992. Rapid tumor penetration of a single chain Fv and comparison with other immunoglobulin forms. Cancer Res. 52: 3402–3408.

    CAS  PubMed  Google Scholar 

  8. Frankel, A.E., Ring, D.B. and Laird, W. 1992. Monoclonal anti-human breast cancer antibodies. U.S. Patent 5,169,774 (Dec. 8, 1992).

    Google Scholar 

  9. Ring, D.B., Clark, R., Saxena, A. 1991. Reactivity of monoclonal antibodies against BCA200 with the recombinant extra cellular region of c-erbB-2. Molec. Immunol. 28: 915–917.

    Article  CAS  Google Scholar 

  10. Lee, J., Dull, T., Lax, I., Schlessinger, J. and Ullrich, A. 1989. HER2 cytoplasmic domain generates normal mitogenic and transforming signals in chimeric receptor. EMBO J. 8: 167–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Holmes, W.E., Sliwkowski, M.X., Akita, R.W., Henzel, W.J., Lee, J., Park, J.W., Yansura, D., Abadi, N., Raab, H., Lewis, G.D., Shepard, H.M., Kuang, W.-J., Wood, W.I., Goeddel, D.V. and Vandlen, R.L. 1992. Identification of Heregulin, a specific activator of p185 erb2. Science 256: 1205–1210.

    Article  CAS  PubMed  Google Scholar 

  12. Slamon, D.J., Clark, G.M., Wong, S.G., Levin, W.J., Ullrich, A. and McGuire, W.L. 1987. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182.

    Article  CAS  PubMed  Google Scholar 

  13. Tai, M.-S., Mudgett-Hunter, M., Levinson, D., Wu, G.-M., Haber, E., Oppermann, H. and Huston, J.S. 1990. A bifunctional fusion protein containing Fc-binding fragment B of staphylococcal protein A amino terminal to antidigoxin single-chain Fv. Biochemistry 29: 8024–8030.

    Article  CAS  PubMed  Google Scholar 

  14. Huston, J.S., Mudgett-Hunter, M., Tai, M.-S., McCartney, J.E., Warren, F., Haber, E. and Oppermann, H. 1991. Protein engineering of single-chain Fv analogues and fusion proteins. Methods Enzymol. 203 46–88.

    Article  CAS  PubMed  Google Scholar 

  15. Tai, M.-S., Jin, D., Haber, E., Timasheff, S.N., Stafford, W.F. III, Liu, S., Oppermann, H. and Huston, J.S. 1994. General and specific linker design and the analysis of a serine-rich linker in single-chain Fv proteins. In preparation

  16. McCartney, J.E., Tai, M.-S., Hudziak, R.M., Adams, G.P., Weiner, L.W., Jin D., Stafford, W.F. III, Liu, S., Bookman, M.A., Laminet, A., Fand, I., Houston, L.L., Oppermann, H. and Huston, J.S. 1994. Single-chain Fv with carboxyl-terminal cysteine (sFv′) prepared by protein folding: In vitro and in vivo properties of (sFv′)2 dimers comprising anti-digoxin 26-10 sFv′ and anti-c-erbB-2 741F8 sFv′. Submitted.

  17. Cockett, M.I., Bebbington, C.R. and Yarranton, G.T. 1990. The use of engineered E1A genes to transactivate the hCMV-MIE promoter in permanent CHO cell lines. Nucl. Acids Res. 19: 319–325.

    Article  Google Scholar 

  18. Schneider, R.J., Weinberg, C. and Shenk, T. 1984. Adenovirus VA1 RNA facilitates the initiation of translations in virus infected cells. Cell 37: 291–298.

    Article  CAS  PubMed  Google Scholar 

  19. McCartney, J.E., Lederman, L., Drier, E., Cabral-Deninson, N., Wu, G.-M., Batorsky, R., Huston, J.S. and Oppermann, H. 1991. Development of a single-chain Fv model based on anti-dinitrophenol IgA myeloma, MOPC 315. J. Protein Chem. 10: 669–683.

    Article  CAS  PubMed  Google Scholar 

  20. Huston, J.S., Cohen C., Maratea, D., Fields, F., Tai, M.S., Cabral-Denison, N., Juffras, R., Rueger, D.C., Ridge, R.J., Oppermann, H., Keck, P. and Baird, L.G. 1992. Multisite association by recombinant proteins can enhance binding selectivity: Preferential removal of immune complexes from serum by immobilised truncated FB analogues of the B domain from staphylococcal protein A. Biophys. J. 62: 87–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Porath, J. 1992. Immobilized metal ion chromatography. Protein Expression and Purification 3: 263–281.

    Article  CAS  PubMed  Google Scholar 

  22. Tao, M.-H. and Levy R., 1993 Idiotype/granulocyte-macrophage colony-stimulating factor fusion protein as a vaccine for B-Cell lymphoma. Nature 362: 755–758.

    Article  CAS  PubMed  Google Scholar 

  23. Savage, P., So, A., Spooner, R.A. and Epenetos, A.A. 1993. A recombinant single chain antibody interleukin-2 fusion protein. Br. J. Cancer 67: 304–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shu, L., Qi, C.-F., Schlom, J. and Kashmiri, S.V. 1993. Secretion of single-gene-encoded immunoglobulin from myeloma cells. Proc. Natl. Acad. Sci. USA 90: 7995–7999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Traunecker, A., Lanzavecchia, A. and Karjalainen, K. 1991. Bispecific single-chain molecules target cytotoxic lymphocytes on HIV infected cells. EMBO J. 10: 3655–3659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Davis, S.J., Ward, H.A., Puklavec, M.J., Willis, A.C., Williams, A.F. and Barclay, A.N. 1990. High level expression in CHO cells of soluble form of CD34 T-Lymphocyte glycoprotein including glycosylation variants. J. Biol. Chem. 265: 10410–10418.

    CAS  PubMed  Google Scholar 

  27. Biocca, S., Pierandrei-Amaldi, P. and Cattaneo, A. 1993. Intra cellular expression of anti-p21ras single chain Fv fragments inhibits meiotic maturation of xenopus oocytes. Biochim. Biophys. Res. Comm. 197: 422–427.

    Article  CAS  Google Scholar 

  28. Davis, G.T., Bedzyk, W.D., Voss, E.W. and Jacobs, T.W. 1991. Single-chain antibody (SCA) encoding genes: One-step construction and expression in euka-ryotic cells. Bio/Technology 9: 165–169.

    CAS  Google Scholar 

  29. Nicholls, P., Johnson, V., Andrew, S., Hugenbaum, H., Raus, J. and Youle, R. 1993. Characterization of single chain antibody (sFv)-Toxin fusion protein produced in-vitro in rabbit reticulocyte lysate. J. Biol. Chem. 268: 5302–5308.

    CAS  PubMed  Google Scholar 

  30. Jost, C.R., Kuracz, I., Jacobus, C.M., Titus, J.A., George, A.J.T. and Segal, D.M. 1994. Mammalian expression and secretion of functional single-chain Fv molecules. Submitted.

  31. Glockshuber, R., Malia, M., Pfitzinger, I. and Plückthun, A. 1990. A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry 29: 1362–1367.

    Article  CAS  PubMed  Google Scholar 

  32. Wu, X.-C., Ng, S.-C., Near, R.I. and Wong, S.-L. 1993. Efficient production of a functional single chain anti-digoxin antibody via an engineered B. subtilis expression-secretion system. Bio/Techology 11 71–76.

    CAS  Google Scholar 

  33. George, A.J.T., Titus, J.A., Jost, C.R., Kurucz I., Perez, P., Andrew, S.M., Nicholls, P.J., Huston, J.S. and Segal, D.M. 1994. Redirection of T Cell-mediated cytotoxicity by a recombinant single-chain Fv molecule. J. Immunol. 152: 1802–1811.

    CAS  PubMed  Google Scholar 

  34. Gillies, S.D., Morrison, J.L., Oi, V.T. and Tonegawa, S. 1983. A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunologlobin heavy-chain gene. Cell 33: 717–728.

    Article  CAS  PubMed  Google Scholar 

  35. Sahagan, B.G., Dorai, H., Saltzgaber-Muller, J., Toneguzzo F., Guindon, C.A., Lilly, S.P., McDonald, K.W., Morrissey, D.V., Stone, B.A., Davis, G.L., McIntosh, P.K. and Moore, G.P. 1986. A genetically engineered murine/ human chimeric antibody retains specificity for human tumor-associated antigen. J. Immunol. 137: 1066–1074.

    CAS  PubMed  Google Scholar 

  36. Lo, K.-M. and Gillies, S.D. 1990. High level expression of human proteins in murine hybridoma Cells: induction by methotrexate in the absence of gene amplification. Biochim. Biophys. Acta. 1088: 217–224.

    Google Scholar 

  37. Dorai, H. and Moore, G.P. 1987. The effect of dihydrofblate reductase-mediated gene amplification on the expression of transfected immunoglobulin genes. J. Immunol. 139: 4232–1241.

    CAS  PubMed  Google Scholar 

  38. Bebbington, C.R., Renner, G., Thompson D., King, D., Abrams, D., and Yarranton, G.T. 1992. High level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selection marker. Bio/Technology 10: 169–175.

    CAS  Google Scholar 

  39. Sedivy, J. (Personal communication).

  40. Cheadle, C., Hook, L.E., Givol, D. and Ricca, G.A. 1992 Cloning and expression of the variable regions of mouse myeloma protein MOPC 315 in E. coli.: Recovery of active Fv fragments. Molec. Immunol. 29: 21–30.

    Article  CAS  Google Scholar 

  41. Hochman, J., Gavish, M., Inbar, D. and Givol, D. 1976. Folding and interaction of subunits at the antibody combining site. Biochem. 15: 2706–2710.

    Article  CAS  Google Scholar 

  42. Fuchs, P., Breitling F., Dübel, S., Seehaus, T. and Little, M. 1991. Targeting recombinant antibodies to the surface of Escherichia coli: Fusion to a pepti-doglycan associated lipoprotein. Bio/Technology 9: 1369–1372.

    Article  CAS  Google Scholar 

  43. Urlaub, G. and Chasin, L.A. 1980. Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc. Natl. Acad. Sci. USA 77: 4216–4220, 1980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Corbet, S., Milili, M., Fougereau, M. and Schiff, C. 1987. Two Vκ germ-line genes related to the GAT idiotypic network (Ab1 and Ab3/Ab1′) account for the major subfamilies of the mouse Vκ-1 variability subgroup. J. Immunol. 138: 932–939.

    CAS  PubMed  Google Scholar 

  45. Studier, F. and Moffat, B. 1990. Use of T7 RNA polymerase to direct the expression of cloned genes. Methods Enzymol. 185: 10–89.

    Google Scholar 

  46. Hudziak, R.M., Lewis, G.D., Shelby, M., Eesalu, T.A., Aggarwal, B.B., Ulrich, A. and Shepard, H.M. 1988. Increased expression of the putative growth factor receptor HER2 causes transformation and tumorigenesis of NIH-3T3 cells. Proc. Nat. Acad. Sci. USA 85: 5102–5106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hudziak, R.M. and Ulrich, A. 1991. Cell transformation potential of HER2 transmembrane domain deletion mutant retained in the endoplasmic reticulum. J. Biol. Chem. 266: 24109–24115.

    CAS  PubMed  Google Scholar 

  48. Gawrouski, T. and Wold, F. 1972. A study of peptide-peptide interactions on an insoluble matrix. Biochemistry 11: 442–448.

    Article  Google Scholar 

  49. Skerra, A., Pfitzinger, I. and Plückthun, A. 1991. The functional expression of antibody Fv fragments in E. coli: improved vectors and a generally applicable purification technique. Bio/Technology 9: 273–278.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorai, H., McCartney, J., Hudziak, R. et al. Mammalian Cell Expression of Single–Chain Fv (sFv) Antibody Proteins and Their C–terminal Fusions with Interleukin–2 and Other Effector Domains. Nat Biotechnol 12, 890–897 (1994). https://doi.org/10.1038/nbt0994-890

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0994-890

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing