Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use

Abstract

Recently, there has been an increasing interest in stoichiometric analysis of metabolic flux distributions. Flux balance methods only require information about metabolic reaction stoichiometry, metabolic requirements for growth, and the measurement of a few strain–specific parameters. This information determines the domain of stoichiometrically allowable flux distributions that may be taken to define a strain's “metabolic genotype”. Within this domain a single flux distribution is sought based on assumed behavior, such as maximal growth rates. The optimal flux distributions are calculated using linear optimization and may be taken to represent the strain's “metabolic phenotype” under the particular conditions. This flux balance methodology allows the quantitative interpretation of metabolic physiology, gives an interpretation of experimental data, provides a guide to metabolic engineering, enables optimal medium formulation, and provides a method for bioprocess optimization. This spectrum of applications, and its ease of use, makes the metabolic flux balance model a potentially valuable approach for the design and optimization of bioprocesses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Garfinkel, D., Garfinkel, L., Pring, M., Green, S.B. and Chance, B. 1970. Computer applications to biochemical kinetics. Ann. Rev. Biochem. 39: 473–498.

    Article  CAS  Google Scholar 

  2. Heinrich, R., Rapoport, S.M. and Rapoport, T.A. 1977. Metabolic regulation and mathematical models. Prog. Biophys. Mol. Biol. 32: 1–82.

    Article  CAS  Google Scholar 

  3. Joshi, A. and Palsson, B.O. 1989. Metabolic dynamics in the human red cell. Part I. A comprehensive model. J. Theor. Biol. 141: 515–528.

    Article  CAS  Google Scholar 

  4. Kacser, H. and Burns, J.A. 1973. The control of flux. Symp. Soc. Exp. Biol. 27: 65–104.

    CAS  PubMed  Google Scholar 

  5. Reich, J.G. and Sel'kov, E.E. 1981. Energy Metabolism of the Cell. Academic Press, New York.

  6. Savageau, M.A. 1969. Biochemical systems analysis. II. The steady state solutions for an n-pool system using a power-law approximation. J. Theor. Biol. 25: 370–379.

    Article  CAS  Google Scholar 

  7. Athel Cornish-Bowden and Maria Luz Cardenas (Eds.). 1990. Control of Metabolic Processes. NATO ASI Series A: Lifesciences Vol. 190. Plenum Press, New York.

    Google Scholar 

  8. Srere, P.A., Jones, M.E. and Matthews, C.K. (Eds.). 1990. Structural and Organizational Aspects of Metabolic Regulation. UCLA Symposia on Molecular and Cellular Biology, New Series, Vol. 133. WileyLiss, New York.

    Google Scholar 

  9. In Neidhardt, F.C. (Ed.). 1987. Escherichia coli and Salmonella typhimurium. Cellular and molecular biology. American Society for Microbiology, Wash., DC.

    Google Scholar 

  10. Varma, A. and Palsson, B.O. 1993. Metabolic capabilities of Escherichia oli: I. Synthesis of biosynthetic precursors and cofactors. J. Theor. Biol. 165: 477–502.

    Article  CAS  Google Scholar 

  11. Varma, A., Boesch, B.W. and Palsson, B.O. 1993. Biochemical production capabilities of Escherichia coli. Biotech. Bioeng. 42: 59–73.

    Article  CAS  Google Scholar 

  12. Fell, D.A. and Small, J.A. 1986. Fat synthesis in adipose tissue. An examination of stoichiometric constraints. Biochem. J. 238: 781–786.

    Article  CAS  Google Scholar 

  13. Savinell, J.M. and Palsson, B.O. 1992. Network analysis of intermediary metabolism using linear optimization: I. Development of mathematical formalism. J. Theor. Biol. 154: 421–454.

    Article  CAS  Google Scholar 

  14. Ingraham, J.L., Maaloe, O. and Neidhardt, F.C. 1983. Growth of the Bacterial Cell. Sinauer Associates Inc., Sunderland, Massachusetts.

  15. Neidhardt, F.C. 1987. Chemical composition of Escherichia coli, p. 3–6. In: Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology. Neidhardt, F.C. (Ed.). American Society for Microbiology, Wash., D.C.

    Google Scholar 

  16. Neidhardt, F.C., Ingraham, J.L. and Schaechter, M. 1990. Physiology of the Bacterial Cell. A Molecular Approach. Sinauer Associates, Sunderland, Massachusetts.

  17. Varma, A. and Palsson, B.O. 1994. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild type Escherichia coli W3110. Appl. and Environ. Microbiol. In press

  18. Varma, A. and Palsson, B.O. 1993. Metabolic capabilities of Escherichia coli: II. Optimal growth patterns. J. Theor. Biol. 165: 503–522.

    Article  CAS  Google Scholar 

  19. Murty, K.G. 1983. Linear Programming. John Wiley & Sons, New York.

    Google Scholar 

  20. Varma, A., Boesch, B.W. and Palsson, B.O. 1993. Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl. and Environ. Microbiol. 59: 2465–2473.

    CAS  Google Scholar 

  21. Watson, M.R. 1984. Metabolic maps for the Apple II. Biochem. Soc. Trans. 12: 1093–1094.

    Article  CAS  Google Scholar 

  22. Watson, M.R. 1986. A discrete model of bacterial metabolism. Computer Applications in the Biosciences. 2: 23–27.

    CAS  PubMed  Google Scholar 

  23. Sonnleitner, B. and Kappeli, O. 1986. Growth of Saccharomyces cerevisae is controlled by its limited respiratory capacity: Formulation and verification of a hypothesis. Biotech. Bioeng. 28: 927–937.

    Article  CAS  Google Scholar 

  24. Ko, Y., Bentley, W.E. and Weigand, W.A. 1993. An integrated metabolic modeling approach to desccribe the energy efficiency of Escherichia coli fermentations under oxygen-limited conditions: Cellular energetics, carbon flux, and acetate production. Biotech. Bioeng. 42: 843–853.

    Article  CAS  Google Scholar 

  25. Majewski, R.A. and Domach, M.M. 1990. Simple constrained-optimization view of acetate overflow in E. coli. Biotech, and Bioeng. 35: 732–738.

    Article  CAS  Google Scholar 

  26. Bajpai, R. 1987. Control of bacterial fermentations. Ann. N. Y. Acad. Sci. 506: 446–458.

    Article  CAS  Google Scholar 

  27. Cooney, C.L., Wang, H.Y. and Wang, D.I.C. 1977. Computer-aided material balancing for prediction of fermentation parameters. Biotech. Bioeng. 19: 55–67.

    Article  CAS  Google Scholar 

  28. Humphrey, A.E. 1974. Current developments in fermentation. Chemical Engineering 81: 98–112.

    CAS  Google Scholar 

  29. Vallino, J.J. and Stephanopoulos, G.N. 1987. Intelligent sensors in biotechnology, applications for the monitoring of fermentations and cellular metabolism. Ann. N. Y. Acad. Sci. 506: 415–430.

    Article  CAS  Google Scholar 

  30. Papoutsakis, E.T. 1984. Equations and calculations for fermentations of butyric acid bacteria. Biotech. Bioeng. 26: 174–187.

    Article  CAS  Google Scholar 

  31. Papoutsakis, E.T. and Meyer, C.L. 1985. Equations and calculations of product yields and preferred pathways for butanediol and mixed-acid fermentations. Biotech, and Bioeng. 27: 50–66.

    Article  CAS  Google Scholar 

  32. Papoutsakis, E.T. and Meyer, C.L. 1985. Fermentation equations for propionic-acid bacteria and production of assorted oxychemicals from various sugars. Biotech, and Bioeng. 27: 67–80.

    Article  CAS  Google Scholar 

  33. Tsai, S.P. and Lee, Y.H. Application of metabolic pathway stoichiometry to statistical analysis of bioreactor measurement data. Biotech. Bioeng. 32: 713–715.

    Article  CAS  Google Scholar 

  34. Vallino, J.J. and Stephanopoulos, G. 1990. Flux determination in cellular bioreaction networks: Applications to lysine fermentations, p. 205–219. In: Frontiers in Bioprocessing. Bier, M. and Todd, P. (Eds.). CRC Press, Boca Raton, Florida.

    Google Scholar 

  35. Bailey, J.E. 1991. Toward a science of metabolic engineering. Science 252: 1668–1675.

    Article  CAS  Google Scholar 

  36. Stephanopoulos, G. and Sinskey, A.J. 1993. Metabolic engineering_methodologies and future prospects. Trends in Biotechnol. 11: 392–396.

    Article  CAS  Google Scholar 

  37. Stephanopoulos, G. and Vallino, J.J. 1991. Network rigidity and metabolic engineering in metabolite overproduction. Science 252: 1675–1681.

    Article  CAS  Google Scholar 

  38. Vallino, J.J. and Stephanopoulos, G. 1993. Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotech. Bioeng. 41: 633–646.

    Article  CAS  Google Scholar 

  39. Xie, L. and Wang, D.I.C. 1994. Fed-batch cultivation of animal cells using different medium design concepts and feeding strategies. Biotech. Bioeng. 43: 1175–1189.

    Article  CAS  Google Scholar 

  40. Xie, L. and Wang, D.I.C. 1994. Stoichiometric analysis of animal cell growth and its application in medium design. Biotech. Bioeng. 43: 1164–1174.

    Article  CAS  Google Scholar 

  41. Goel, A., Ferrance, J., Jeong, J. and Ataai, M.M. 1993. Analysis of metabolic fluxes in batch and continuous cultures of Bacillus subtilis. Biotech. Bioeng. 42: 686–696.

    Article  CAS  Google Scholar 

  42. Ferrance, J.P., Goel, A. and Ataai, M.M. 1993. Utilization of glucose and amino acids in insect cell cultures: Quantifying the metabolic flows within the primary pathways and medium development. Biotech. Bioeng. 42: 697–707.

    Article  CAS  Google Scholar 

  43. Savinell, J.M. and Palsson, B.O. 1992. Network analysis of intermediary metabolism using linear optimization: II. Interpretation of hybridoma cell metabolism. J. Theor. Biol. 154: 455–473.

    Article  CAS  Google Scholar 

  44. Varma, A. and Palsson, B.O. 1994. Predictions for oxygen supply control to enhance population stability of engineered production strains. Biotech. Bioeng. 43: 275–285.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard O. Palsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varma, A., Palsson, B. Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use. Nat Biotechnol 12, 994–998 (1994). https://doi.org/10.1038/nbt1094-994

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1094-994

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing