Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Construction of Metabolic Operons Catalyzing the De Novo Biosynthesis of Indigo in Escherichia coli

Abstract

The efficient production of the textile dye indigo by fermentation has been a goal since the early 1980's when the first bacterial strains capable of this synthesis were constructed. We report here the development of a recombinant microorganism that directly synthesizes indigo from glucose. This construction involved the cloning and genetic manipulation of at least 9 genes and modifications of the fermentation medium to help stabilize the biosynthetic activity. Directed genetic changes in two operons caused significant increases in reaction rates and in the stability of the catalytic enzymes. This example of whole cell catalysis by a recombinant Escherichia coli represents a novel and environmentally sound approach to the synthesis of a high value specialty chemical.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nagahari, K., Tanaka, P., Hishimura, F., Kuroda, M. and Sakaguchi, K. 1977. Control of tryptophan synthetase amplified by varying the number of composite plasmids in Escherichia coli Cells. Gene 1: 141–148.

    Article  CAS  PubMed  Google Scholar 

  2. Mascarenhas, D. 1987. Tryptophan-producing microorganism. International patent WO87/01130.

    Google Scholar 

  3. Rood, I., Sneddon, M. and Morrison, J. 1980. Instability in tyrR strains of plasmids carrying the tyrosine operon: isolation and characterization of plasmid derivatives with insertions or deletions. J. Bacteriol. 14: 552–557.

    Google Scholar 

  4. Anderson, S., Marks, C.B., Lazarus, R., Miller, J., Stafford, K., Seymour, J., Light, D., Rastetter, W. and Estell, D. 1985. Production of 2-keto-L-gulonate: an intermediate in L-ascorbate synthesis by a genetically modified Erwinia herbicola. Science 230: 144–149.

    Article  CAS  PubMed  Google Scholar 

  5. Grindley, J.F., Peyton, M.A., VanDepol, H. and Hardy, K.G. 1988. Conversion of glucose to 2-keto-L-gulonate: an intermediate in L-ascorbate synthesis by a recombinant strain of Erwinia citrius. Appl. and Environ. Microbiol. 54: 1770–1775.

    CAS  Google Scholar 

  6. Fisher, E.F. 1985. System for biotin synthesis. International patent WO87/01391.

    Google Scholar 

  7. Isogai, T., Fukagawa, M., Aramuri, I., Iwami, M., Kojo, H., Ono, T., Ueda, Y., Kohsaka, M. and Imanaka, H. 1991. Construction of a 7-aminocephalosporanic acid (7ACA) biosynthetic operon and direct production of 7ACA in Acremonium chrysogenum. Bio/Technology 9: 188–191.

    CAS  Google Scholar 

  8. Ensley, B.D., Ratzkin, B.J., Osslund, T.D., Simon, M.J., Wackett, L.P. and Gibson, D.T. 1983. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 222: 167–169.

    Article  CAS  PubMed  Google Scholar 

  9. Ensley, B.D., Osslund, T.P., Joyce, M. and Simon, M.J. 1988. Expression and complementation of naphthalene dioxygenase activity in Escherichia coli, p. 437–455. In: Microbial Metabolism and the Carbon Cycle. Hagedorn, S. R., Hanson, R. S. and Kunz D. A. (Eds. ). Harwood Academic Publishers, NY.

    Google Scholar 

  10. Serdar, C., Murdock, D. and Rhode, M.F. 1989. Parathion hydrolase gene from Pseudomonas diminuta MG. Bio/Technology 7: 1151–1155.

    CAS  Google Scholar 

  11. Fieschko, J. and Ritch, T. 1985. Production of human alpha consensus interferon in recombinant Escherichia coli. Chem. Eng. Commun. 45: 229–240.

    Article  Google Scholar 

  12. Haigler, B.E. and Gibson, D.T. 1990. Purification and properties of ferredoxinNAP, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J. Bacteriol. 172: 465–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ensley, B.D., Gibson, D.T. and Laborde, A.L. 1982. Oxidation of naphthalene by a multicomponent enzyme system from Pseudomonas sp. strain NCIB 9816. J. Bacteriol. 149: 948–954.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Haigler, B.E. and Gibson, D.T. 1990. Purification and properties of NADH-ferredoxinNAP reductase, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J. Bacteriol. 172: 457–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ensley, B.D. and Gibson, D.T. 1983. Naphthalene dioxygenase: purification and properties of a terminal oxygenase component. J. Bacteriol. 155: 505–511.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Vieira, J. and Messing, J. 1982. The PUC plasmids and M13 mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19: 259–268.

    Article  CAS  PubMed  Google Scholar 

  17. Morrice, N., Geary, P., Cammack, R., Harris, A., Beg, F. and Aitken, A. 1988. Primary structure of protein B from Pseudomonas putida, member of a new class of 2Fe-2S ferredoxins. Fed. Europ. Biochem. Soc. 231: 336–340.

    Article  CAS  Google Scholar 

  18. Zylstra, G.J. and Gibson, D.T. 1989. Toluene degradation by Pseudomonas putida F1. J. Biol. Chem. 264: 14940–14945.

    CAS  PubMed  Google Scholar 

  19. Kurkela, S., Lehvaslaiho, H., Palva, E.T. and Teeri, T.H. 1988. Cloning, nucleotide sequence and characterization of genes encoding naphthalene dioxygenase of Pseudomonas putida strain NCIB 9816. Gene 73: 355–362.

    Article  CAS  PubMed  Google Scholar 

  20. Pukuyama, K., Nakamura, M., Katsube, Y., Tanaka, N., Kakudo, M., Wada, K., Hase, T. and Matsubara, H. 1981. X-ray analysis of a [2fe-2s] ferredoxin from Spirulina platensis: main chain fold and location of side chains at 2.5å resolution. J. Biochem. 90: 1763–1773.

    Article  Google Scholar 

  21. Howard, J.B., Lorsbach, T.W., Eliosh, D., Melis, K. and Stout, C.D. 1983. Structure of Azotobacter vinelandii 7fe ferredoxin: amino acid sequence and electron density maps of residues. J. Biol. Chem. 256: 508–522.

    Google Scholar 

  22. Elliott, J.I., Yang, S.S., Ljungdahl, L.G., Trans, J. and Reilly, C.F. 1982. Complete amino acid sequence of the 4fe-4s thermostable ferredoxin from Clostridium thermoaceticum. Biochemistry 21: 3294–3298.

    Article  CAS  PubMed  Google Scholar 

  23. Housinger, R.P., Moura, I., Jemoura, J., Xavier, A.V., Heiena Santos, M., Legall, J. and Howard, J.B. 1982. Amino acid sequence of a 3fe:3s ferredoxin from the “Archaebacterium” Methanosarcina barkeri (DSM 800). J. Biol. Chem. 257: 14192–14197.

    Google Scholar 

  24. Reith, M.E., Laudenbach, D.E. and Straus, N.A. 1986. Isolation and nucleotide sequence analysis of the ferredoxin I gene from the cyanobacterium Anacystis nidulans R2. J. Bacteriol. 168: 1319–1324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chan, T.M., Hermodson, M.A., Ulrich, E.L. and Markley, J.L. 1983. Nuclear magnetic resonance studies of 2fe-2s ferredoxins: determination of the sequence of Anabaena variabilis ferredoxin II, assignment of aromatic resonances in proron spectra and effects of chemical modifications. Biochem, 22: 5988–5995.

    Article  CAS  Google Scholar 

  26. Minami, Y., Wakabayashi, S., Imoto, S., Ohta, Y. and Matsubara, H. 1985. Ferredoxin from a liverwort, Marchantia polymorpha: purification and amino acid sequence. J. Biochem. 98: 649–655.

    Article  CAS  PubMed  Google Scholar 

  27. Minami, Y., Wakabayshi, S., Yamada, F., Wada, K., Gzumet, W. and Matsubara, H. 1984. Ferredoxins from the photosynthetic purple non-sulfur bacterium Rhodopseudomonas palustris: Isolation and amino acid sequence of ferredoxin I. J. Biochem. 96: 585–592.

    Article  CAS  PubMed  Google Scholar 

  28. Gurbiel, R.J., Batie, C.J., Sivaraja, M., True, A.E., Fee, J.A., Hoffman, B.M. and Ballou, D.P. 1989. Electron-nuclear double resonance spectroscopy of 15N-enriched phthalate dioxygenase from Pseudomonas cepacia proves that two histidines are coordinated to the [2Fe-2S] rieske-lype clusters. Biochem. 28: 4861–4871.

    Article  CAS  Google Scholar 

  29. Cline, J.F., Hoffman, B.M., Mims, W.B., Lahaie, E., Ballou, D.P. and Fee, J.A. 1986. Evidence for N coordination to Fe [2Fe-2S] clusters of Thermus rieske protein and phthalate dioxygenase from Pseudomonas. J. Biol. Chem. 260: 3251–3254.

    Google Scholar 

  30. Yanofsky, C. 1987. Tryptophan synthetase: its charmed history. Bioessays 6: 133–137.

    Article  CAS  PubMed  Google Scholar 

  31. Ensley, B.D. 1984. Construction of synthetic operons for the microbial biosyn thesis of indigo. The World Biotechnology Report 2: 441–450.

    CAS  Google Scholar 

  32. Yanofsky, C. and Crawford, I.P. 1972. Tryptophan synthetase, p. 1–31. In: The Enzymes. 3rd Ed. Boyer, P. D. (Ed). Academic Press, New York.

    Google Scholar 

  33. Miles, E.W., Kawasaki, H., Ahmed, S.A., Morita, H. and Nagata, S. 1989. The beta subunit of tryplophan synthetase. Clarification of the roles of histidine 86, lysine 87, arginine 148, cystine 170, and cysteine 230. J. Biol. Chem. 264: 6280–6287.

    CAS  PubMed  Google Scholar 

  34. Cotton, R. and Crawford, G.H. and I.P. 1972. Tryptophan synthetase β2 subunit applications of genetic analysis to the study of primary structure. J. Biol. Chem. 247: 1853–1891.

    Google Scholar 

  35. Hyde, C.C., Ahmed, S.A., Padlan, E.A., Miles, E.W. and Davies, D.R. 1988. Three-dimensional structure of the tryptophan synthetase α2β2 multienzyme complex from Salmonella typhimurium. J. Biol. Chem. 263: 17857–17871.

    CAS  PubMed  Google Scholar 

  36. Hyde, C.C. and Miles, E.W. 1990. The tryptophan synthetase multienzyme complex: exploring the structure function relationships with X-ray crystallography and mutagenesis. Bio/Technology 8 27–32.

    CAS  Google Scholar 

  37. Starr, M.P., Blau, W. and Kossens, G. 1960. The blue pigment of Pseudomonas lemonnieri. Biochem. Zeits. 333: 328–334.

    CAS  Google Scholar 

  38. Oshiman, T., Kawai, S. and Egami, F. 1965. Oxidation of indole to indigotin by Pseudomonas indoloxidans. J. Biochem. 58: 259–263.

    Article  Google Scholar 

  39. Caruthers, M.H. 1982. Chemical synthesis of DNA, p. 71–79. In: Chemical and Enzymatic Synthesis of Gene Fragments. Gassen, H. G. and Langs, A. (Eds. ). Verlag Chemie, Weinheim, FRG.

    Google Scholar 

  40. Maniatis, T., Fritsch, E.F. and Sambrook, J. 1989. Molecular Cloning, A Laboratory Manual. Cold Spring Harbor Laboratory Press, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murdock, D., Ensley, B., Serdar, C. et al. Construction of Metabolic Operons Catalyzing the De Novo Biosynthesis of Indigo in Escherichia coli. Nat Biotechnol 11, 381–386 (1993). https://doi.org/10.1038/nbt0393-381

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0393-381

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing