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Deciphering cell states and genealogies of 
human haematopoiesis
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Vijay G. Sankaran1,3,4,16 ✉

The human blood system is maintained through the differentiation and massive 
amplification of a limited number of long-lived haematopoietic stem cells (HSCs)1. 
Perturbations to this process underlie diverse diseases, but the clonal contributions 
to human haematopoiesis and how this changes with age remain incompletely 
understood. Although recent insights have emerged from barcoding studies in model 
systems2–5, simultaneous detection of cell states and phylogenies from natural 
barcodes in humans remains challenging. Here we introduce an improved, single-cell 
lineage-tracing system based on deep detection of naturally occurring mitochondrial 
DNA mutations with simultaneous readout of transcriptional states and chromatin 
accessibility. We use this system to define the clonal architecture of HSCs and map the 
physiological state and output of clones. We uncover functional heterogeneity in HSC 
clones, which is stable over months and manifests as both differences in total HSC 
output and biases towards the production of different mature cell types. We also find 
that the diversity of HSC clones decreases markedly with age, leading to an oligoclonal 
structure with multiple distinct clonal expansions. Our study thus provides a clonally 
resolved and cell-state-aware atlas of human haematopoiesis at single-cell resolution, 
showing an unappreciated functional diversity of human HSC clones and, more 
broadly, paving the way for refined studies of clonal dynamics across a range of tissues 
in human health and disease.

Haematopoietic stem cells (HSCs), which sustain the lifelong produc-
tion of blood and immune cells, have broad therapeutic applications 
and serve as a paradigm for understanding stem cell biology1. Recent 
studies suggest that HSCs are functionally heterogeneous with diverse 
clonal behaviours2,3,6,7. For a deeper understanding of the functional 
diversity of HSCs it is critical to track clonal and subclonal relationships 
in haematopoiesis to uncover HSC contributions and behaviours in 
health, as well as in blood diseases, cancers and the setting of ageing 
in which HSC functions are frequently perturbed8,9.

Transplantation assays have demonstrated clonal heterogeneity 
in HSCs but the relevance to homeostatic haematopoiesis remains 
unclear10,11. In model organisms, genetic labelling of HSCs can be used to 

investigate steady-state HSC behaviours12–17 but variability in labelling 
efficiencies and experimental methods has given rise to contrasting 
views of how HSC clones contribute to haematopoiesis3–5,17–19. Although 
genetic labelling of human HSCs is possible in rare settings of trans-
plantation during gene therapy trials, such exogenous labels cannot 
be routinely used in humans20.

Somatically acquired mutations serve as naturally accumulating 
barcodes that can be used for retrospective lineage tracing in human 
samples21–24. Recent studies using whole-genome sequencing of colo-
nies comprising differentiated cells derived from single haematopoietic 
progenitors have advanced our understanding of the clonal dynamics 
underlying human haematopoiesis21,25,26. However, the original cell state 
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is not preserved with these approaches and such measurements are 
critical to showing how cell states impact the behaviour and contribu-
tions of HSCs and other cell types to haematopoiesis. Technologies that 
can simultaneously provide rich cell-state readouts in single cells and 
yield detailed genealogical information from natural cellular barcodes 
would, in principle, overcome this limitation. We and others previously 
demonstrated the potential for mitochondrial DNA mutations to serve 
as natural cellular barcodes in humans27–31. However, existing methods 
can detect only a limited subset of mtDNA mutations, hampering the 
ability to resolve fine-scale subclonal relationships and hierarchies.

Here we introduce a new approach, single-cell Regulatory Multiomics 
(transcriptomics and chromatin accessibility) with Deep Mitochondrial 
Mutation Profiling (ReDeeM), with approximately tenfold increase in 
mutation detection rate. We applied ReDeeM to generate a clonally 
resolved, single-cell transcriptomic and accessible chromatin atlas for 
around 150,000 human haematopoietic cells from 12 donors, these 
having being enriched to ensure appropriate coverage of rare haema-
topoietic stem and progenitor cell (HSPC) populations. Through this 
approach we define the clonal architecture of human haematopoiesis 
and also show the contributions of individual HSC clones to overall 
and lineage-specific output. Finally we assess how these patterns vary 
with human ageing.

Single-cell deep mtDNA mutation recovery
A number of features make mtDNA uniquely well suited as a natural 
evolving barcode, including the compact nature of its genome (roughly 
16.7 kb), high copy number (hundreds to thousands per cell) and 
high rate of spontaneous mutations (estimated to be ten- to 100-fold 
greater than nuclear DNA)27,32,33. Accordingly there have been a num-
ber of efforts to utilize mtDNA mutations as endogenous, evolving 
cellular barcodes for lineage tracing and clonal inference that have 
provided insights into processes such as studies of blood cancers28,30,34. 
However, the resolution of the resulting phylogenetic analyses has 
had limitations. The ability to detect rare mtDNA mutations found 
in specific subclones is hampered by challenges in discrimination 
of sequencing artefacts from true variants. To improve our ability to 
call a fuller set of mtDNA mutations we sought to use single-molecule 
consensus correction, which can minimize the impact of sequencing 
and PCR errors (Methods). We developed ReDeeM by modification 
of the droplet-based, single-cell multiome of the 10X Genomics plat-
form using whole cells and further optimized protocols that maximize 
mtDNA coverage while also preserving single-cell RNA sequencing 
(scRNA-seq) and single-cell assay for transposase-accessible chromatin 
using sequencing (scATAC-seq) library quality (Fig. 1a, Supplementary 
Fig. 1 and Methods). We designed tiling mtDNA-specific probes for 
hybridization-based capture (Supplementary Data 1 and Methods). 
Three separate libraries (mtDNA, ATAC and RNA) were generated for 
sequencing with matched cell barcodes for downstream integration 
(Fig. 1a). The cell barcode, plus starting and ending positions of the 
mtDNA fragments, serve as endogenous unique molecular identifiers 
(eUMIs) without the need for artificial barcodes (eUMI collision rate of 
approximately 3%; Methods and Extended Data Fig. 1a). eUMI enables 
single-molecule consensus error correction, resulting in markedly 
improved sensitivity and accuracy in variant calling, in turn facilitat-
ing the detection of rare mtDNA mutations with low heteroplasmy 
(Extended Data Fig. 2 and Supplementary Methods). We have devel-
oped an open-source computational pipeline (redeemV and redeemR 
packages) based on eUMIs for consensus mtDNA mutation calling with 
single-cell multiomic profiling.

As an initial benchmark of ReDeeM we profiled 7,104 human CD34+ 
HSPCs from a healthy young donor (age 31 years). Deep sequencing 
of the targeted mtDNA library yielded substantially increased mtDNA 
fragment coverage (on average. 51.7 mitochondrial genome copies per 
cell versus 14.3 without enrichment) and an ideal eUMI group size for 

consensus correction (on average, 4.8 raw reads for each eUMI copy 
versus 1.6 without enrichment; Fig. 1b). Following stringent multistep 
filtering we identified 4,831 high-confidence mtDNA mutations across 
7,104 cells, which is more than tenfold higher than achieved by previ-
ously reported methods28,29,31 (Fig. 1c, Extended Data Fig. 3, Methods 
and Supplementary Notes). We further examined these 4,831 mtDNA 
mutations and validated that they were generally well supported by 
multiple reads in each eUMI group, having both high consensus scores 
and consistent overlap between paired-end strands (Extended Data 
Fig. 1c,e–g). Notably, the mutational signatures of these 4,831 mtDNA 
mutations closely matched previously reported mtDNA mutational 
spectra35 (Fig. 1d). Consequently, each cell presented a far higher 
number of mtDNA mutations (a median of nine versus one without 
enrichment) shared by other cells, which increased cell–cell connect-
edness by one order of magnitude (Fig. 1e,f). This enhanced cell–cell 
connectedness provides an unprecedented opportunity for fine-scale 
subclonal and phylogenetic analyses. We benchmarked the data qual-
ity of the other two modalities, scRNA-seq and scATAC-seq, from the 
same cells. Both modalities showed excellent capture efficiency, with a 
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Fig. 1 | Single-cell deep mtDNA mutation detection with joint multiomics. 
a, Schematic of ReDeeM workflow. GDN, 1% glyco-diosgenin (Methods).  
b, Comparison of mtDNA copy number and UMI group size per cell before and 
after mtDNA enrichment. UMI group size is the number of raw reads in each 
UMI group. Q30, sequencing quality score of 30 or above (accuracy ≥99.9%).  
c, Comparison of the total number of confident mtDNA mutations in 7,104 cells 
before mtDNA enrichment (via the mgatk package28) and after (via UMI 
consensus calling). d, Mutational signatures in each class of mononucleotide 
and trinucleotide change by heavy (H) and light (L) strands under the optimized 
protocol. Mutational signatures are compared across unfiltered (top), 
4,831 mtDNA mutations via UMI consensus calling (middle) and a previously 
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e, Distribution of the number of confident mtDNA mutations per cell before 
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f, Network connectedness analysis before (via mgatk, left) and after mtDNA 
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each line connects cells with shared mutations. Connectedness is defined as 
the number of ‘neighbour’ cells sharing at least one mtDNA mutation with any 
given cell. Lib., library.
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median of 5,084 transcripts and 15,590 ATAC fragments per cell. ATAC 
insertions showed the expected size distributions and were highly 
enriched at transcription start sites (Supplementary Fig. 1c,e,f). Moreo-
ver, no significant signatures of selection were identified for most 
mtDNA mutations, suggesting overall neutrality and enabling these 
mutations to serve as an innocuous tracer (Extended Data Fig. 4 and 
Supplementary Notes).

To test the accuracy of phylogenetic reconstructions gener-
ated by ReDeeM, we used a Kras;Trp53-drive lung adenocarcinoma 
lineage-tracer mouse model36 for detection of both engineered 
CRISPR-based evolving barcodes in the nuclear genome and naturally 
occurring mitochondrial somatic mutations by ReDeeM in the same sin-
gle cells. Across two experimental batches a total of ten tumours were 
sampled (six in batch 1 and four in batch 2). The measure of cell–cell 
relatedness and clonal groupings as determined by ReDeeM was sig-
nificantly supported by CRISPR-based methods at both the single-cell 
level (median positive agreement of closeness, or agreement of close-
ness ratio, is 0.78) and clonal cluster level (adjusted Rand index 0.2–0.7 
across different clustering resolutions and samples; Extended Data 
Fig. 5, Supplementary Figs. 2 and 3 and Methods). Furthermore, rea-
nalysis of mitochondrial mutations from single-colony, whole-genome 
sequencing-based lineage-tracing data37 showed both clonal and sub-
clonal agreement, albeit with limited sensitivity, compared with that 
achievable with enhanced mutation detectability by ReDeeM (Extended 
Data Fig. 6 and Supplementary Notes). These findings are in agreement 
with a recent report showing agreement in regard to high-frequency 
mtDNA mutations with whole-genome sequencing of colonies, but with 
more noise in lower-frequency mtDNA mutations38 (Supplementary 
Notes). Taken together, these independent validations support the 
ability of ReDeeM to robustly detect mtDNA mutations and enable 
phylogenetic inferences.

Haematopoietic phylogenies and cell states
We next used ReDeeM to investigate human haematopoiesis. We col-
lected bone marrow aspirates from two healthy young donors aged 31 
and 26 years (young-1 and young-2, respectively) and isolated mononu-
clear cells (predominantly differentiated blood cells and precursors) 
and CD34+ HSPCs to ensure robust representation of both undifferenti-
ated and more differentiated cells. We profiled 11,009 haematopoietic 
cells (5,415 bone marrow mononuclear cells (BMMCs) and 5,594 HSPCs) 
and 15,101 haematopoietic cells (7,147 BMMCs and 7,954 HSPCs) in 
young-1 and young-2, respectively, for all three modalities (Fig. 2a). We 
confidently identified 3,896 and 4,803 mtDNA mutations in young-1 
BMMCs and HSPCs, and 4,087 and 5,137 mtDNA mutations in young-2 
BMMCs and HSPCs, respectively. Based on shared deep mtDNA muta-
tion profiles we reconstructed the phylogenetic trees of each donor’s 
haematopoietic compartment using the neighbour-joining algorithm 
(Fig. 2b, Supplementary Fig. 5a and Methods). The resulting trees, which 
were well supported by multiple mtDNA mutations (Supplementary 
Fig. 4a), were highly polyclonal, consistent with recent phylogenetic 
analysis based on nuclear genome sequencing of haematopoietic colo-
nies from healthy donors21,25.

Next we assessed cell state using the transcriptomic and epigenomic 
information available for each leaf (single cell) in our phylogenetic 
trees. We used weighted nearest-neighbour (WNN) metrics to integrate 
both modalities and identified 17 major haematopoietic cell types/
clusters (Fig. 2c and Supplementary Data 2). Pairing of scRNA-seq and 
scATAC-seq profiles from individual cells also enabled us to explore the 
regulatory circuits in haematopoietic cell fate decisions. For instance, 
on bifurcation paths between other myeloid lineages and the mega-
karyocyte/erythroid lineage we observed how master transcriptional 
regulators SPI1 and GATA1 were turned on with specific regulatory 
elements and subsequent promotion of differentiation trajectories, 
characterized by increased accessibility of the transcription factor 

motif of one or the other (Fig. 2d). We found that the GATA1 motif begins 
to be activated earlier during HSC differentiation, even at low GATA1 
expression, compared with SPI1, which is consistent with previous stud-
ies39,40. Interestingly, HSCs show significantly lower mtDNA mutation 
burden than more committed progenitors and differentiated cells, 
suggesting that there is acquisition of additional subclonal mtDNA 
mutations occurring as cells rapidly divide during differentiation from 
relatively quiescent HSCs41 which, as discussed below, provides an 
opportunity to explore phylogenetic relationships between different 
cell types (Fig. 2e and Supplementary Fig. 5c). Taken together, our data 
provide a clonally resolved, cell-state-aware atlas of human haemat-
opoiesis at single-cell resolution, allowing previously unachievable 
inferences on the regulatory mechanisms underlying this complex 
differentiation process.

Haematopoietic cell-type origins
The cell-state-aware phylogenetic trees of human haematopoiesis allow 
us to explore the developmental origins and relationships among differ-
ent blood and immune cell types, some of which are still incompletely 
understood. Mapping of multiomic, data-derived cell-type annotations 
onto the phylogenetic tree showed that different haematopoietic cell 
populations were widespread across the tree due to the polyclonal 
origins. Interestingly, however, we also identified many fine-scale sub-
clonal structures, or clades (that is, the full set of cells that descend from 
a common ancestor and thus encompass a branch of a phylogenetic 
tree), in which 1,650 and 2,079 clades are significantly enriched for 
specific cell types (false discovery rate (FDR) < 0.2, fold change > 2) in 
the two donors, respectively (Fig. 2f, Supplementary Figs. 4b and 5d 
and Supplementary Data 3). Next we quantitatively assessed cell-type 
origins using mtDNA mutation-based nearest-neighbour analysis. As 
expected, the nearest clonal neighbours of most cell types (11 of 13) 
are identical cell types. Notably, this analysis largely reconstructed 
the hierarchical organization of blood cell-type origins previously 
described and characterized extensively in conventional studies of 
haematopoiesis1 (Fig. 2g and Supplementary Fig. 5e). However, some 
unexpected insights emerged from our analysis. For example, it has 
been challenging to define clearly the progenitor populations that give 
rise to conventional and plasmacytoid dendritic cells (cDCs and pDCs, 
respectively)42,43. In our data, cDCs and pDCs show less restricted clonal 
origins and both appear to have a more myeloid-derived origin, which 
echoes recent lineage-tracing studies in mice44. Together, our method 
resolves clonal and subclonal relationships for native steady-state 
human haematopoiesis, also linking these relationships with rich read-
outs of cell state.

HSC cell-state heterogeneity
Coupling between more closely related clones in the phylogenetic tree 
and haematopoietic cell states can arise from one of two factors: (1) 
mtDNA mutations emerging in HSC clones that show lineage bias and 
(2) mtDNA mutations acquired later during differentiation. The former 
possibility—or the extent to which HSCs have clonal and functional 
heterogeneity—is of major clinical importance but remains unclear 
in regard to native human haematopoiesis. The technical advances 
we made provide a unique opportunity to address these distinct pos-
sibilities, specifically to dissect HSC heterogeneity. To enhance HSC 
recovery we first enriched for HSCs by deep profiling of the phenotypic 
CD34+CD45RA−CD90+ population. We then filtered for cells that spe-
cifically express HSC marker genes HLF and CRHBP (Methods, Fig. 3a 
and Extended Data Fig. 7a–e). We identified 5,393 and 3,292 HSCs in 
young-1 and young-2, respectively, which were independently vali-
dated by examination of the expression of other markers known to be 
specifically enriched in HSCs, including MECOM, MLLT3 and RBPMS 
(Fig. 3b and Methods). Importantly, to examine the stability of HSC 
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molecular and behavioural heterogeneity—and thus establish a defini-
tive link between our phylogenetic trees and HSC clonal behaviours—we 
sampled HSCs twice over the course of 4 months from the same donor 
(young-1) (Fig. 3a). We further performed unsupervised clustering of 
HSCs based on WNN space using combined transcriptomic and acces-
sible chromatin states and identified 14 subpopulations in this donor 
(Fig. 3c). Notably, all subpopulations were consistently identified in 
both ATAC and RNA space and were reproducibly detected at both 

time points (Fig. 3c and Extended Data Fig. 7f). Across HSC subpopu-
lations we identified differentially expressed genes and differential 
transcription factor accessibility (Extended Data Fig. 7g and Supple-
mentary Fig. 6a). For instance, although overall highly expressed in 
all HSCs, some key HSC genes, including MECOM, FLT3, CDK6, JUN and 
FOS, are differentially expressed across subpopulations (Fig. 3d and 
Supplementary Fig. 6b). These genes are known to be important in 
regard to HSC functions, including HSC maintenance, self-renewal, 
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differentiation and inflammatory responses, and dysregulation of these 
factors can contribute to leukaemogenesis45–49. We also found several 
differential pathways across subpopulations, with evidence at both 
the level of gene expression and transcription factor activity changes, 
such as BMP–SMAD signalling alterations and changes in AP1 signal-
ling (Extended Data Fig. 7g and Supplementary Fig. 6a), reminiscent 
of previous studies in mice suggesting key roles for these pathways 
in HSC heterogeneity50,51. Notably, we found that the major HSC sub-
populations are reproducible in young-2 but we also identified rarer 
subpopulations found specifically in each individual (Extended Data 
Fig. 7h–n and Supplementary Fig. 6c). Overall our data provide a mul-
tiomic resource that allows us to decipher human HSC heterogeneity.

HSC clonal structure
Next, based on shared mtDNA mutations across 5,393 molecularly 
defined HSCs, we reconstructed a phylogenetic tree showing clonal 
relationships across HSCs. To study HSC clonal features, we defined 
HSC clonal groups by dividing the tree structure into small clades, 
which are groups of the most closely related HSC clones (Fig. 3e and 

Methods). For clarity the terms ‘HSC clones’ and ‘clonal groups’ used 
hereafter refer to a group of HSCs that share origins during develop-
ment, rather than referring to individual HSCs. The resulting tree shows 
a balanced polyclonal architecture of HSCs. In total we defined 78 HSC 
clonal groups out of 5,393 profiled single HSCs. Notably, the majority 
of HSC clonal groups can be reobserved in the sequential sampling of 
the same donor, suggesting that they are representative of HSCs that 
contribute to haematopoiesis over at least several months in vivo, a 
timescale over which the majority of non-HSC cell types are believed 
to have turned over at least once.

It is unclear whether different HSCs have heritable cell states or 
whether the variation in HSC states represents stochastic, short-lived 
fluctuations. Our data link clonal identity and cell states from the same 
cells, and thus we could directly measure the distributions of the 78 HSC 
clonal groups across the 14 multiomic, cell-state-based HSC subpopu-
lations. We found that 48 (around two-thirds) of HSC clonal groups 
are stochastically distributed across different HSC states whereas 
30 (around one-third) show significant enrichment in one or a small 
number of specific state subpopulations (Fig. 3f). Interestingly, we 
found that HSC clone-to-subpopulation enrichment was significantly 
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correlated in the same donor across the two time points, which span 
4 months (Fig. 3g), suggesting that HSC biases can be sustained over 
a period of at least months in humans. We also examined the clonal 
structure for HSCs in young-2. Consistent with the analysis of young-1, 
we also observed a polyclonal structure with both stochastic HSC vari-
ation and other clones, demonstrating cell-state preference at propor-
tions similar to those observed in young-1 (Extended Data Fig. 7o,p). 
In sum, we surveyed HSC clones with their molecular states, which 
suggests a partially heritable and relatively stable state preference for 
approximately one-third of HSC clones.

HSC clonal output and cell-type biases
Traditionally, the functional output of HSCs could be measured only in 
transplantation settings or by barcoding in model systems. Given our 
advances in detection of deep mtDNA mutations as natural cellular 
barcodes, we reasoned that tracking of human HSC output in native 

haematopoiesis was now possible. To avoid confounding from drop-
out or detection failure of specific mtDNA mutations, we developed 
Single-Cell Analysis of Variant Enrichment through Network Propaga-
tion of Genomics for Lineage-tracing data (SCAVENGE–L), a computa-
tional method based on a network propagation strategy that maximally 
utilizes informative mtDNA mutations to identify the progeny of dis-
tinct HSC clones (Fig. 4a and Methods). With SCAVENGE–L analysis 
we found that most cells can be mapped to one distinct HSC clonal 
group with an exclusively high probability of assignment (Supplemen-
tary Fig. 7a). To further benchmark the accuracy of this approach we 
compared network propagation-based assignment with the originally 
identified HSC clonal groups (ground truth). As expected, the accuracy 
of the assignment increases for those cells with higher maximum assign-
ment probability. We then filtered cells with a maximum probability 
of 0.7, by which more than 80% of HSCs could be assigned to the cor-
rect HSC clonal group (Supplementary Fig. 7b and Methods). Collec-
tively, the benchmarking analyses at both time points across the two 
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donors demonstrate the robustness and consistency of SCAVENGE–L  
(Supplementary Fig. 7b–e).

The extent to which HSC output variation and lineage biases exist 
is controversial, and most previous studies have relied on labelling in 
mouse models and/or transplantation assays3–5,17–19. In donor young-1, 
22,349 (or 59%) committed and differentiated cells were confidently 
assigned to HSC clonal groups with the highest assignment probability 
greater than 0.7 (via SCAVENGE–L). The output of a specific clone to 
differentiated blood and immune cells can then be directly measured 
and compared across different HSC clonal groups following normaliza-
tion for clone size (Fig. 4b and Methods). We found that all HSC clonal 
groups are actively producing progeny but there is some variation 
in the extent of output between clones, with a 4.9-fold difference in 
output between the top and bottom clonal deciles (Fig. 4b). Inter-
estingly, this variable output activity shows high consistency at the 
clonal level between the two time points spanning 4 months (Pearson’s 
r = 0.69) (Fig. 4b,c). As expected, in young-2 the HSC clonal output 
activity also shows variability with a similar pattern (4.5-fold change 
between top and bottom clonal deciles; Supplementary Fig. 7f). We 
further quantified overall HSC clonal contributions in haematopoiesis 
and found that the top 50% of HSC clones based on output gave rise 
to approximately 60% of mature haematopoietic cells at both time 
points and across both donors (Fig. 4d). These results suggest that most 
HSC clones actively contribute to human steady-state haematopoiesis 
but that some sustained variability over many months is observed  
between HSCs.

The degree to which HSCs show lineage bias in native human haema-
topoiesis is unclear. Our data allow us to investigate the cell states of 
progeny assigned to different HSC clonal groups. For clarity, the terms 
‘lineage’ or ‘lineage biases’ used in this context refer to the differentia-
tion trajectory based on cell states. We defined four main lineages by 
grouping cell states based on the multiomic data: myeloid (monocytes, 
GMP, MDP, cDC), lymphoid (CD4, CD8, natural killer (NK), B, ProB, 
CLP), erythroid (MEP, EryP) and megakaryocyte (MK) (Fig. 2c). We 
then computed the lineage contribution for each HSC clonal group. 
Compared with the expected lineage distribution using all cells, we 
identified 47 (60%) HSC clonal groups with consistent lineage prefer-
ence across the two time points, with 31 (40%) HSC clones showing no 
detectable lineage bias (Fig. 4e, Supplementary Data 4 and Methods). 
Notably, the lineage preference of biased clones shows only a moderate 
effect size (with a median 1.55-fold change) but is highly reproducible 
across the two time points spanning several months (Pearson’s r = 0.59). 
Consistently we also observed 69% of lineage-biased HSC clones in 
young-2 (Supplementary Fig. 7g). When we explored the relationships 
between clonal output and lineage preference we found the lymphoid 
lineage bias negatively correlated with HSC clonal output; erythroid 
and myeloid lineages were positively correlated with HSC clonal out-
put, and MK lineages showed no significant difference (Fig. 4f). This 
is consistent across both donors and with findings using orthogonal 
approaches from previous reports (Supplementary Fig. 7h)17. Finally 
we developed a method for ‘clonal behavioural trajectory analysis’ 
to survey the potential molecular drivers of distinct clonal functions 
in terms of output activity and differentiation biases (Extended Data 
Fig. 8a). We identified multiple accessible regions, but not gene expres-
sion changes, that are significantly associated with one or more behav-
ioural trajectories (2,931 differential peaks, FDR < 0.01; Extended Data 
Fig. 8b and Supplementary Data 5). We investigated nearby genes for 
peak groups associated with different biases by gene set enrichment 
and motif analyses (Extended Data Fig. 8c–e). Interestingly, the func-
tions of these nearby genes are reminiscent of the respective output 
and lineage biases examined, which suggests that chromatin acces-
sibility variation might foreshadow fate decisions in HSCs, echoing 
previous reports12,52. Taken together, these results suggest that HSCs 
have moderate, but relatively stable, lineage biases across time in native 
human haematopoiesis.

Oligoclonal expansions in ageing
Recent studies have suggested that there is both attrition of HSCs with 
age and expansion of specific clones that harbour disease driver muta-
tions, which can increase the risk for acquiring leukaemia and other 
morbidities, a phenomenon termed clonal haematopoiesis8. However, 
the detection of such clonal expansions has mostly relied on monitoring 
of specific driver mutations with bulk-sequencing methods and so the 
extent of clonal complexity that would be observed at single-cell resolu-
tion remains unstudied. To explore this question we used ReDeeM to 
profile 9,519 and 14,715 haematopoietic cells from two older donors, 
aged 76 and 78 years, which we termed aged-1 and aged-2, respectively. 
We detected a significantly increased mtDNA mutation burden in these 
aged donors across all identified cell types, consistent with reports on 
somatic mutations in nuclear genomes25,53 (Fig. 5a and Methods). Based 
on shared mtDNA mutations, we reconstructed the phylogenetic tree 
for each aged donor. Remarkably, the resulting trees exhibit markedly 
more oligoclonal structure compared with that of the young donors 
(Fig. 5b,c). We identified 48 and 84 clonal groups for aged-1 and aged-
2, respectively, by reducing the phylogenetic tree structure using the 
same methods (Methods). The aged donors had several large clones 
that dominated the haematopoietic architecture, with lower clonal 
diversity (Shannon diversity index) compared with the young donors, 
which was further confirmed by analysis of five additional young and 
three additional aged donors in a hashed and pooled manner (Fig. 5d,e, 
Extended Data Figs. 9c and 10d–g and Methods). For examination of 
subclonal dynamics we adapted a statistical test to quantify clade 
size relative to that expected if HSCs were evolving under a neutral 
evolution model (Methods). We identified multiple expanded clades 
in the aged donors (those of a size greater than 500 cells under posi-
tive selection with P < 0.01), which were almost completely absent in 
the young donors (Extended Data Fig. 9a,b). The proportions of cells 
in the expanded clades were 34.4% in aged-1 and 46.3% in aged-2 but 
only 3.4% in young-1 and 8.7% in young-2. Next we inferred the ‘fitness 
score’, which is defined as the growth advantage compared with the 
remainder of the population, for every single cell in the aged donors 
(Methods). These analyses show variation in single-cell fitness within 
the same donor. As expected, cells in expanded clades showed high 
fitness scores (Fig. 5f and Extended Data Fig. 9d).

Haematopoietic mosaic loss of the Y chromosome (mLOY) is fre-
quently observed with ageing in men and is associated with a number 
of morbidities. However, the causes and consequences of mLOY are 
unclear54. Here, based on single-cell ATAC fragments on chromosome Y, 
we developed quantitative metrics for estimation of LOY in single cells 
(Methods). We identified 119 and 11 cells with LOY in aged-1 and aged-2, 
respectively, but none in young male donors (Extended Data Fig. 9i,j). 
For aged-1 we mapped the identity of cells with or without LOY on the 
phylogenetic tree, finding that LOY cells appear in multiple branches 
but are most significantly enriched in expanded clade A, which shows 
the highest fitness scores. Interestingly we also identified other expan-
sions, such as expanded clade B without LOY enrichment but which is 
probably caused by a different driver (Fig. 5f). These results suggest 
that, in aged-1, LOY events occur with low frequency but may occur 
independently multiple times and are enriched in cells with higher 
fitness scores, consistent with previous reports25. An important caveat 
to this analysis is that the detection of LOY using single-cell ATAC frag-
ments is limited by the scarcity of accessible reads on chromosome Y.

Finally we investigated cell-type composition within each expanded 
clade, which is enabled by the joint multiomic readouts available 
through our method. We found that different expanded clades showed 
skewed cell-type distribution in both aged donors. This finding is fur-
ther supported by analysis of the additional, aged, donors (Fig. 5g and 
Extended Data Figs. 9e and 10h–j). Interestingly, the expanded clade A 
in aged-1 that showed enrichment for LOY is biased towards the lym-
phoid lineage, which echoes our recent analysis using bulk population 
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data showing a strong correlation between LOY and individual lym-
phocyte counts45. In addition, in one of the additional aged donors 
(aged-5) with a known clonal haematopoiesis mutation detected in bulk 
(ASXL1-Q373X), the identified expansions were depleted for erythroid 
cells, which is reminiscent of the phenotype observed in Asxl1 mutant 
mouse models (Extended Data Fig. 10j)55,56. Further incorporation of 
single-cell genotyping with ReDeeM in the future will be valuable in 
regard to definitive determination of clones with driver mutations  
and definition of the underlying molecular mechanisms for the 
observed expansions57,58. Collectively these results reshape our view 
of aged haematopoiesis and, rather than detecting a single clonal 
expansion as is typically thought to occur with age-related clonal hae-
matopoiesis, we detected a more complex and pervasive oligoclonal 
architecture.

Discussion
The study of human haematopoiesis has served as a paradigm for 
our understanding of stem cell biology. Despite decades of effort, 
central questions on human haematopoiesis remain unresolved. For 
example, the extent to which the models ‘clonal succession’ (only a 
few stem cells contribute) versus ‘clonal stability’ (many stem cells 

contribute simultaneously)59,60 best describe native haematopoiesis 
is unclear, as is the extent to which unperturbed populations of HSCs 
have restricted differentiation potency or lineage biases6,61. Various 
transplantation-based assays, as well as cell labelling-based methods, 
have provided important insights but with respective limitations, 
especially for the exploration of these problems in a native human 
context3,14,62,63.

Here we present a high-resolution, engineering-free, massively par-
allel, single-cell lineage-tracing approach with direct application to 
human samples. Using this approach we provide a clonally resolved 
and cell-state-aware single-cell atlas for native human haematopoiesis 
and use this atlas to explore the clonal architecture and heterogene-
ous behaviour of human HSCs at steady state in vivo. We show, that in 
young individuals, the majority of HSC clones are actively contributing 
to haematopoiesis at steady state but with some differences (around 
fivefold) in clone-specific output activity, and that these differences 
are stably maintained over a timescale of at least several months. We 
also demonstrate that there are inherent clone-specific lineage biases 
that, like the clonal differences in output, are confined in magnitude but 
sustained across time. Finally we identify HSC subpopulations using 
joint transcriptomic and epigenomic states and find that a notable 
subset of HSC clonal groups are enriched in certain HSC subpopulations 
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as defined by gene expression and epigenomic states. Interestingly, we 
found that the HSC clone-specific cell-state preference in the human 
native context is also an inherent feature that is relatively stable, which 
echoes some findings using labelling-based methods in mice3,64. Of 
note, we describe behavioural and cell-state biases for HSC clonal 
groups, which share common ancestors, rather than for individual 
HSCs. Due to the limited sampling of cells in bone marrow aspirates, 
the HSCs in a clonal group may not be the most immediate siblings. 
Therefore, further improved sampling by increasing cell numbers, loca-
tions and time points will provide an improved view of the phylogenetic 
relationships and is crucial to identifying mechanisms underlying the 
observed cell-state and behavioural biases for more recently derived 
clonal groups, and even single human HSCs.

Thus, together with previous studies, a picture of normal haemat-
opoiesis emerges from our work in which, in young individuals, there 
is a rich and balanced polyclonal architecture for HSC contributions 
to haematopoiesis, with each subclone having distinct but confined 
preferences in cell-state, output and lineage biases. By contrast, in 
aged individuals there is a marked breakdown in this clonal diversity. 
Clonal expansion, or the alteration of clonal diversity, is involved in 
various cancers and premalignant conditions. However, the causes and 
consequences of diminished clonal diversity are largely unknown and 
difficult to study in humans. Our results suggest that clonal expansions 
may arise with multiple origins and different lineage biases. Our ability 
to capture and characterize clonal expansions at single-cell resolution 
in ageing should enable the in-depth exploration of the molecular 
nature of these expanding clones.

More broadly, somatic mutations have increasingly been found to 
contribute to a variety of disease processes beyond haematopoiesis 
and cancer65. Compared with single-colony or single-cell whole-genome 
sequencing, ReDeeM markedly enhances mtDNA mutation detectabil-
ity through consensus error correction and also provides comprehen-
sive cell-state information. It offers high scalability and significantly 
reduces the cost per cell, facilitating extensive exploration of sub-
clonal changes in human health and disease. Future advances aiming to 
improve phylogenetic inference with ReDeeM that consider the unique 
dynamics of mitochondrial genomes and other biological features 
will enable improved lineage tree reconstruction, paving the way for a 
deeper understanding of how clonal mosaicism can contribute to a 
diverse range of human diseases.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-024-07066-z.

1. Liggett, L. A. & Sankaran, V. G. Unraveling hematopoiesis through the lens of genomics. 
Cell 182, 1384–1400 (2020).

2. Lu, R., Czechowicz, A., Seita, J., Jiang, D. & Weissman, I. L. Clonal-level lineage commitment 
pathways of hematopoietic stem cells in vivo. Proc. Natl Acad. Sci. USA 116, 1447–1456 
(2019).

3. Yu, V. W. C. et al. Epigenetic memory underlies cell-autonomous heterogeneous behavior 
of hematopoietic stem cells. Cell 168, 944–945 (2017).

4. Sun, J. et al. Clonal dynamics of native haematopoiesis. Nature 514, 322–327 (2014).
5. Busch, K. et al. Fundamental properties of unperturbed haematopoiesis from stem cells 

in vivo. Nature 518, 542–546 (2015).
6. Haas, S., Trumpp, A. & Milsom, M. D. Causes and consequences of hematopoietic stem 

cell heterogeneity. Cell Stem Cell 22, 627–638 (2018).
7. Muller-Sieburg, C. E., Sieburg, H. B., Bernitz, J. M. & Cattarossi, G. Stem cell heterogeneity: 

implications for aging and regenerative medicine. Blood 119, 3900–3907 (2012).
8. Jaiswal, S. & Ebert, B. L. Clonal hematopoiesis in human aging and disease. Science 366, 

eaan4673 (2019).
9. Mead, A. J. & Mullally, A. Myeloproliferative neoplasm stem cells. Blood 129, 1607–1616 

(2017).
10. Yamamoto, R. et al. Clonal analysis unveils self-renewing lineage-restricted progenitors 

generated directly from hematopoietic stem cells. Cell 154, 1112–1126 (2013).

11. Sanjuan-Pla, A. et al. Platelet-biased stem cells reside at the apex of the haematopoietic 
stem-cell hierarchy. Nature 502, 232–236 (2013).

12. Weinreb, C., Rodriguez-Fraticelli, A., Camargo, F. D. & Klein, A. M. Lineage tracing on 
transcriptional landscapes links state to fate during differentiation. Science 367, 
eaaw3381 (2020).

13. Patel, S. H. et al. Lifelong multilineage contribution by embryonic-born blood progenitors. 
Nature 606, 747–753 (2022).

14. Rodriguez-Fraticelli, A. E. et al. Single-cell lineage tracing unveils a role for TCF15 in 
haematopoiesis. Nature 583, 585–589 (2020).

15. Bowling, S. et al. An engineered CRISPR-Cas9 mouse line for simultaneous readout of 
lineage histories and gene expression profiles in single cells. Cell 181, 1410–1422 (2020).

16. Sharma, R. et al. The TRACE-Seq method tracks recombination alleles and identifies 
clonal reconstitution dynamics of gene targeted human hematopoietic stem cells. Nat. 
Commun. 12, 472 (2021).

17. Chapple, R. H. et al. Lineage tracing of murine adult hematopoietic stem cells reveals 
active contribution to steady-state hematopoiesis. Blood Adv. 2, 1220–1228 (2018).

18. Pei, W. et al. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. 
Nature 548, 456–460 (2017).

19. Sawai, C. M. et al. Hematopoietic stem cells are the major source of multilineage 
hematopoiesis in adult animals. Immunity 45, 597–609 (2016).

20. Biasco, L. et al. In vivo tracking of human hematopoiesis reveals patterns of clonal 
dynamics during early and steady-state reconstitution phases. Cell Stem Cell 19, 107–119 
(2016).

21. Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic 
mutations. Nature 561, 473–478 (2018).

22. Coorens, T. H. H. et al. Extensive phylogenies of human development inferred from 
somatic mutations. Nature 597, 387–392 (2021).

23. Park, S. et al. Clonal dynamics in early human embryogenesis inferred from somatic 
mutation. Nature 597, 393–397 (2021).

24. Spencer Chapman, M. et al. Lineage tracing of human development through somatic 
mutations. Nature 595, 85–90 (2021).

25. Mitchell, E. et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature 
606, 343–350 (2022).

26. Williams, N. et al. Life histories of myeloproliferative neoplasms inferred from phylogenies. 
Nature 602, 162–168 (2022).

27. Ludwig, L. S. et al. Lineage tracing in humans enabled by mitochondrial mutations and 
single-cell genomics. Cell 176, 1325–1339 (2019).

28. Lareau, C. A. et al. Massively parallel single-cell mitochondrial DNA genotyping and 
chromatin profiling. Nat. Biotechnol. 39, 451–461 (2021).

29. Mimitou, E. P. et al. Scalable, multimodal profiling of chromatin accessibility, gene 
expression and protein levels in single cells. Nat. Biotechnol. 39, 1246–1258 (2021).

30. Xu, J. et al. Single-cell lineage tracing by endogenous mutations enriched in transposase 
accessible mitochondrial DNA. eLife 8, e45105 (2019).

31. Miller, T. E. et al. Mitochondrial variant enrichment from high-throughput single-cell RNA 
sequencing resolves clonal populations. Nat. Biotechnol. 40, 1030–1034 (2022).

32. Kang, E. et al. Age-related accumulation of somatic mitochondrial DNA mutations in 
adult-derived human iPSCs. Cell Stem Cell 18, 625–636 (2016).

33. Wallace, D. C. Mitochondrial DNA sequence variation in human evolution and disease. 
Proc. Natl Acad. Sci. USA 91, 8739–8746 (1994).

34. Kwok, A. W. C. et al. MQuad enables clonal substructure discovery using single cell 
mitochondrial variants. Nat. Commun. 13, 1205 (2022).

35. Ju, Y. S. et al. Origins and functional consequences of somatic mitochondrial DNA 
mutations in human cancer. eLife 3, e02935 (2014).

36. Yang, D. et al. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor 
evolution. Cell 185, 1905–1923 (2022).

37. Van Egeren, D. et al. Reconstructing the lineage histories and differentiation trajectories 
of individual cancer cells in myeloproliferative neoplasms. Cell Stem Cell 28, 514–523 
(2021).

38. Campbell, P. et al. Mitochondrial mutation, drift and selection during human development 
and ageing. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-3083262/v1 
(2023).

39. Nerlov, C., Querfurth, E., Kulessa, H. & Graf, T. GATA-1 interacts with the myeloid PU.1 
transcription factor and represses PU.1-dependent transcription. Blood 95, 2543–2551 
(2000).

40. Qiu, X. et al. Mapping transcriptomic vector fields of single cells. Cell 185, 690–711 
(2022).

41. Catlin, S. N., Busque, L., Gale, R. E., Guttorp, P. & Abkowitz, J. L. The replication rate of 
human hematopoietic stem cells in vivo. Blood 117, 4460–4466 (2011).

42. Ziegler-Heitbrock, L., Ohteki, T., Ginhoux, F., Shortman, K. & Spits, H. Reclassifying 
plasmacytoid dendritic cells as innate lymphocytes. Nat. Rev. Immunol. https://doi.
org/10.1038/s41577-022-00806-0 (2022).

43. Musumeci, A., Lutz, K., Winheim, E. & Krug, A. B. What makes a pDC: recent advances in 
understanding plasmacytoid DC development and heterogeneity. Front. Immunol. 10, 
1222 (2019).

44. Feng, J. et al. Clonal lineage tracing reveals shared origin of conventional and 
plasmacytoid dendritic cells. Immunity 55, 405–422 (2022).

45. Voit, R. A. et al. A genetic disorder reveals a hematopoietic stem cell regulatory network 
co-opted in leukemia. Nat. Immunol. 24, 69–83 (2023).

46. Scheicher, R. et al. CDK6 as a key regulator of hematopoietic and leukemic stem cell 
activation. Blood 125, 90–101 (2015).

47. Kennedy, V. E. & Smith, C. C. FLT3 mutations in acute myeloid leukemia: key concepts and 
emerging controversies. Front. Oncol. 10, 612880 (2020).

48. Laurenti, E. et al. CDK6 levels regulate quiescence exit in human hematopoietic stem 
cells. Cell Stem Cell 16, 302–313 (2015).

49. Zeng, A. G. X. et al. Identification of a human hematopoietic stem cell subset that retains 
memory of inflammatory stress. Preprint at bioRxiv https://doi.org/10.1101/2023.09.11.557271 
(2023).

https://doi.org/10.1038/s41586-024-07066-z
https://doi.org/10.21203/rs.3.rs-3083262/v1
https://doi.org/10.1038/s41577-022-00806-0
https://doi.org/10.1038/s41577-022-00806-0
https://doi.org/10.1101/2023.09.11.557271


398 | Nature | Vol 627 | 14 March 2024

Article
50. Crisan, M. et al. BMP signalling differentially regulates distinct haematopoietic stem cell 

types. Nat. Commun. 6, 8040 (2015).
51. Fast, E. M. et al. External signals regulate continuous transcriptional states in hematopoietic 

stem cells. eLife 10, e66512 (2021).
52. Lara-Astiaso, D. et al. Immunogenetics. Chromatin state dynamics during blood formation. 

Science 345, 943–949 (2014).
53. Machado, H. E. et al. Diverse mutational landscapes in human lymphocytes. Nature 608, 

724–732 (2022).
54. Thompson, D. J. et al. Genetic predisposition to mosaic Y chromosome loss in blood. 

Nature 575, 652–657 (2019).
55. Nagase, R. et al. Expression of mutant Asxl1 perturbs hematopoiesis and promotes 

susceptibility to leukemic transformation. J. Exp. Med. 215, 1729–1747 (2018).
56. Fujino, T. et al. Mutant ASXL1 induces age-related expansion of phenotypic hematopoietic 

stem cells through activation of Akt/mTOR pathway. Nat. Commun. 12, 1826 (2021).
57. van Galen, P. et al. Single-cell RNA-seq reveals AML hierarchies relevant to disease 

progression and immunity. Cell 176, 1265–1281 (2019).
58. Nam, A. S. et al. Somatic mutations and cell identity linked by genotyping of transcriptomes. 

Nature 571, 355–360 (2019).
59. Bystrykh, L. V., Verovskaya, E., Zwart, E., Broekhuis, M. & de Haan, G. Counting stem cells: 

methodological constraints. Nat. Methods 9, 567–574 (2012).
60. McKenzie, J. L., Gan, O. I., Doedens, M., Wang, J. C. Y. & Dick, J. E. Individual stem cells 

with highly variable proliferation and self-renewal properties comprise the human 
hematopoietic stem cell compartment. Nat. Immunol. 7, 1225–1233 (2006).

61. Jurecic, R. Hematopoietic stem cell heterogeneity. Adv. Exp. Med. Biol. 1169, 195–211 (2019).

62. Pei, W. et al. Resolving fates and single-cell transcriptomes of hematopoietic stem cell 
clones by PolyloxExpress barcoding. Cell Stem Cell 27, 383–395 (2020).

63. Carrelha, J. et al. Hierarchically related lineage-restricted fates of multipotent 
haematopoietic stem cells. Nature 554, 106–111 (2018).

64. Bernitz, J. M., Kim, H. S., MacArthur, B., Sieburg, H. & Moore, K. Hematopoietic stem cells 
count and remember self-renewal divisions. Cell 167, 1296–1309 (2016).

65. Sankaran, V. G., Weissman, J. S. & Zon, L. I. Cellular barcoding to decipher clonal 
dynamics in disease. Science 378, eabm5874 (2022).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 
4.0 International License, which permits use, sharing, adaptation, distribution 
and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons licence, 
and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, 
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

http://creativecommons.org/licenses/by/4.0/


Methods

Bone marrow donors
Fresh bone marrow samples from healthy young donors were aspirated, 
with informed consent, under a sample-banking protocol approved by 
the Institutional Review Board of Boston Children’s Hospital. Sternal 
bone marrow from aged donors was collected following sternotomy 
for cardiac surgery, with informed consent, under a sample-banking 
protocol approved by the Institutional Review Board of Mass General 
Brigham. Individual donor information is shown in Supplementary 
Table 1.

Primary BMMC extraction
Bone marrow was collected from healthy young and aged donors. 
Bone marrow aspirates were diluted with an equal volume of wash 
buffer (PBS, 2% fetal bovine serum (FBS), 1 mM EDTA). Ficoll medium 
was added to SepMate tubes (STEMCELL Technologies, catalogue no. 
85460) and the diluted bone marrow sample was then layered on top 
followed by centrifugation at 1,200g for 20 min at room temperature. 
The top layer, containing the mononuclear cells, was transferred to a 
new tube which was then filled up by wash buffer. Mononuclear cells 
were centrifuged at 300g for 8 min. The supernatant was discarded and 
cells washed twice and resuspended in either wash buffer for further 
enrichment or freezing buffer (10% DMSO in FBS).

Enrichment for HSPCs
Starting with BMMCs isolated from the previous step, we enriched 
CD34+ cells with the EasySep Human Cord Blood CD34 Positive Selec-
tion Kit II (STEMCELL Technologies, catalogue no. 17896). Briefly, 
EasySep Human CD34 Positive Selection Cocktail (STEMCELL Tech-
nologies, catalogue no. 18096 C) was added to the BMMC suspension 
up to 100 µl ml−1 with incubation at room temperature for 10 min. 
EasySep Dextran RapidSpheres (STEMCELL Technologies, catalogue 
no. 50100) was vortexed and added to each sample up to 50 µl ml−1 and 
the mix incubated for 3 min at room temperature. Next, wash buffer 
(7 ml) was added to the tube and cells were washed four times in The Big 
Easy EasySep Magnet (STEMCELL Technologies, catalogue no. 18001). 
Finally, cells were resuspended in wash buffer and centrifuged at 300g 
for 10 min. The CD34+ cell pellet was then resuspended in freezing 
buffer (10% DMSO in FBS).

For further enrichment of HSCs, an aliquot of enriched CD34+ cells was 
stained by one of the following antibody panels: (1) CD34 PerCP-Cy5.5 
(BD Biosciences catalogue no. 347222), CD45RA Alexa Fluor 488 (BioLe-
gend catalogue no. 304114) and CD90 PE-Cy7 (BD Biosciences catalogue 
no. 561558) with DAPI (Thermo Fisher Scientific catalogue no. D1306) as 
viability dye; or (2) CD34 BV421 (BD Biosciences catalogue no. 562577), 
CD45RA-APC-H7 (BD Biosciences catalogue no. 560674) and CD90 
PE-Cy7 (BD Biosciences catalogue no. 561558) with 7-AAD as viability 
dye (BD Biosciences catalogue no. 559925). This was followed by 3 µl of 
each antibody being used for staining of the cell resuspension in 100 µl. 
Cells were further sorted with BD FACSAria for CD34+CD45RA−CD90+ 
to enrich HSCs. The gating strategy is shown in Supplementary  
Information.

BMMCs, as well as enriched CD34+ and CD34+CD45RA−CD90+ cells, 
were cryopreserved in freezing buffer (10% DMSO in FBS). Following 
thawing, cells were immediately processed for experimental use as 
soon as possible with no culturing.

Principle of ReDeeM
Here we developed ReDeeM, which is a modified, massive parallel 
single-cell protocol that simultaneously profiles multiomics with 
deep mtDNA sequencing based on the 10X Genomics platform. The 
key features of this system are the following: (1) an optimized proto-
col for maximization of mtDNA yield; (2) specific enrichment of the 
mtDNA library that can be subject to very high sequencing coverage; 

(3) unique molecular identifiers that label individual mtDNA molecules, 
allowing for the use of error correction to enable high-precision calling 
of mtDNA mutations66–70; (4) a robust inference algorithm that uses 
deeper and improved mtDNA mutation detection for phylogenetic 
reconstructions; and (5) concomitant scRNA-seq and scATAC-seq 
that link phylogenetic relationships with cell-state readout. With 
ReDeeM three separate libraries are generated, including an enriched 
mtDNA library for deep sequencing and mutation profiling, a RNA 
library for gene expression and an ATAC library for chromatin acces-
sibility profiling, all of which are linked via matchable single-cell  
barcodes,

Following the principle of our previous work28,29, we first modified 
the droplet-based 10X Genomics multiomics protocol (catalogue no. 
100283) by processing the whole cell, rather than nuclei, with fixation 
and mild permeabilization for maximal retention of mtDNA. Next we 
designed mtDNA-specific probe sets to enrich mitochondrial fragments 
using DNA hybridization. RNA and ATAC library preparation followed 
the standard 10X Genomics protocol, with some modifications.

Further method details are described in Supplementary Methods 
and the ReDeeM protocol. ReDeeM is further computationally sup-
ported by the consensus variant-calling pipeline redeemV, as well as 
the R package redeemR for downstream mutation quality control and 
single-cell phylogenetic and integrative analysis.

ReDeeM protocol
The detailed protocol is available as a Supplementary Protocol.

CRISPR lineage-tracing experiment with ReDeeM
Mouse experiments were approved by the Massachusetts Institute of 
Technology Institutional Animal Care and Use Committee (Institu-
tional Animal Welfare Assurance, no. A-3125-01). A male mouse ESC 
line harbouring the conditional alleles KrasLSL-G12D/+ and Trp53fl/fl 
was engineered with lineage-tracer cassettes. The detailed engineering 
process, including vector information, tumour harvest and single-cell 
suspension, was prepared as described in ref. 36. Two independent 
mouse ESC lines were used for batch 1 and batch 2 experiments.

The single cells of batch 1 (six tumours) and batch 2 (four tumours) 
were labelled with Cell Hash and profiled using ReDeeM except 
for the following modification: additional target site libraries 
were needed. Amplified cDNA libraries were further amplified 
with target site-specific primers containing Illumina-compatible 
adaptors and sample indices (oDYT023-oDYT038, forward: 5′CAA-
GCAGAAGACGGCATACGAGATNNNNNNNNGTCTCGTGGGCTCGGAG 
ATGTGTATAAGAGACAGAATCCAGCTAGCTGTGCAGC; reverse: 5′-AAT 
GATACGGCGACCACCGAGATCTACACNNNNNNNNTCTTTCCCTACAC 
GACGCTCTTCCGATCT; N denotes sample indices) using Kapa HiFi 
ReadyMix (Roche), as previously described36.

For sequencing of scRNA, scATAC and mtDNA libraries the strategy 
described for ReDeeM was used except that four sets of mouse-specific 
probes were designed to enrich mitochondrial fragments (Supple-
mentary Methods and Supplementary Data 1). For sequencing of  
target site libraries, 15,000 total reads per cell were expected and the 
following read lengths were used: Read1, 26 cycles; i7, eight cycles; 
Read2, 290 cycles).

The integration analysis of CRISPR- and ReDeeM-based lineage  
tracing is detailed in Supplementary Methods.

mtDNA mutation burden
We estimated mtDNA mutation burden using a quantitative method. 
The number of detected mutations per cell is a function of both biologi-
cal mutation burden and technical detectability, which is influenced by 
mtDNA capture rate. We computed mtDNA mutation burden by both 
normalization against mtDNA coverage (number of mtDNA copies 
per position per cell) and eUMI filtering rate, which was used to cor-
rect technical batch effects across different experiments arising from 
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variation in sequencing depth, sequencing quality and so on. Given a 
single cell i in sample j, the mutation burden is computed as

i
j i

Mutation burden

=
no.of mtDNA mutations cell

(eUMI filtering rate sample ) × (mtDNA coverage cell )
.

∣
∣ ∣

Inferring lineage distance and phylogenetic tree using mtDNA 
mutations
Following all the filtering steps with R package ReDeeM-R (https://
github.com/sankaranlab/redeemR), including variant and cell filtering 
(Extended Data Fig. 1i; all parameters included can be adjusted to con-
trol stringency), we generated sparse matrix C to contain all the variant 
allele count (cell versus mtDNA mutation). The allele count matrix was 
further divided by the matrix of mtDNA copy number per position per 
cell, which generated heteroplasmy matrix H for visualization. Because 
mutation count data were sparse, the quantitative heteroplasmy level 
was susceptible to variation in mtDNA coverage. To minimize biases 
of coverage and heteroplasmy dynamics in the downstream analysis 
we performed binarization of matrix C into matrix Cbin. We found that 
binarization is more reliable and provides sufficient resolution, given 
the number of variants identified per single cell. Nonetheless, both 
quantitative matrix C and binarized matrix Cbin are provided for down-
stream analysis in ReDeeM-R.

Based on matrix Cbin,we computed the cell-to-cell weighted Jaccard 
distance. The prior of the mtDNA mutation frequency across multiple 
donors was used to weight Jaccard distance to account for potential 
homoplasy. Intuitively, weighted Jaccard distance measures the level 
to which any two cells share mutations—that is, following proper 
normalization, the more mtDNA mutations are shared the closer 
the relationship of the two cells. We first defined a prior probability 
for each mutation, which prioritizes mutations with lower mutation 
rate across donors (that is, less likely to be the same mutation occur-
ring independently). For cells x and y the weighted Jaccard distance  
(Dw_Jaccard) is defined as

Prior = (1 − average mutation rate across donors)i

D = 1 −
∑ prior

∑ prior
.

i x y i

i i
w_ Jaccard

ϵ[ =1& =1]i i

Next, the weighted Jaccard distance was fed into the neighbour-joining 
algorithm for phylogenetic tree reconstruction and visualization using 
the packages ape and ggtree (cladograms are used for visualization 
throughout this manuscript, to focus on the topology of the tree  
structure).

Lineage origins of haematopoietic cell types
Initially we selected ‘lineage-informative’ mtDNA mutations by mod-
elling mutation distributions across all cell types. We removed muta-
tions randomly distributed, which probably arose in certain unbiased 
stem cell clones and thus were less informative in regard to studying 
cell-type subclonal origins. Specifically we first grouped all cell types 
into four major differentiation trajectories: myeloid (GMP, MDP, mono-
cyte), lymphoid (CLP, ProB, CD4, CD8, B, NK), MKs (MK progenitor) 
and erythroid (MEP, erythroid progenitor). The frequency of each 
mtDNA mutation was tested between any two differentiation trajecto-
ries using a binomial test. When P values of all comparisons were greater 
than 0.05, mtDNA mutation was defined as randomly distributed. We 
filtered out all randomly distributed mutations and generated a list 
of lineage-informative mtDNA mutations (631 lineage-informative 
mutations are used in Fig. 2g). Using these mutations we generated 
matrix Cbin and computed weighted Jaccard distance. We then generated 
KNN graph G that describes cell-to-cell lineage relationships based on 

shared mutations. We then integrated cell-type annotations from the 
multiomics analysis with graph G. For any given cell (query cell), the 
proportion of each cell type (target cell types) within KNN on graph G 
was computed. Target cell-type proportions for each query cell type 
were then aggregated and scaled, as shown in Fig. 2g and Supplemen-
tary Fig. 5. Finally, query cell types were grouped by hierarchical clus-
tering based on target cell-type proportions within neighbourhoods.

HSC subpopulations and clone-to-state preferences
For specific study of HSCs we experimentally enriched the 
CD34+CD45RA−CD90+ population as described previously. We further 
refined HSC populations using a semi-unsupervised method. First we 
performed community detection-based clustering for all cells on WNN 
using Seurat71. Second, we averaged HLF gene expression level for each 
cluster and defined HLFhi and HLFlow clusters. Third, we simultaneously 
examined HLF and CRHBP gene expression levels for every single cell45,72. 
We required that any HSC cell highly expresses both HLF and CRHBP 
and is also grouped within HLFhi clusters. The defined HSCs were fur-
ther examined using additional HSC signatures, including MECOM, 
HOPX, AVP, MLLT3, RBPMS and other45,73,74. To improve the robustness 
of weakly expressed genes, expression data were enhanced using the 
Rmagic package for visualization75.

For the refined HSCs above we performed secondary clustering on 
WNN to define subpopulations. These were identified using Seurat at 
a resolution of 0.6. Subpopulations were visualized on RNA-, ATAC- 
and WNN-based UMAP. Differentially expressed genes and accessi-
ble chromatins were identified using FindMarker function by Seurat. 
The DNA-binding motifs of differential peaks were analysed by ‘find 
individual motif occurrences’ scanning with the HOCOMOCOv11_full_
HUMAN_mono human transfection factor motif database, followed by a 
binomial test across HSC subpopulation-specific open chromatin peaks 
(related to Supplementary Fig. 6). Visualization of differential motifs 
at the single-cell level was performed using chromVar76,77.

To best capture the principal HSC clonal structures we performed 
normalization and dimension reduction using term frequency–inverse 
document frequency and singular value decomposition on a bina-
rized mtDNA variant-by-cell matrix. Top 30 latent semantic indexing 
was used to measure Euclidean distance, which was further passed 
on to the neighbour-joining algorithm to build the phylogenetic 
tree. Next, mtDNA mutations were assigned to tree branches using 
a maximum-likelihood method as described previously, which has 
been incorporated in redeemR (Add_AssignVariant function)26. We 
defined HSC clonal group as the minimum clade unit containing at 
least 50 single cells, with based edges having at least one confidently 
assigned mutation (‘edge’ refers to a line connecting two nodes in the 
phylogenetic tree; the Add_tree_cut function from ReDeeM-R was used).

Next we examined the distribution of each HSC clonal group across 
all HSC subpopulations as defined by RNA- and ATAC-based cell state. 
Compared with the background, the fold enrichment of a given clonal 
group in each cell-state subpopulation was computed and the P value 
estimated by hypergeometric test. Fold enrichment and P values 
were compared across HSCs from two sampling time points. P values 
from two time points were combined using Fisher’s method, and FDR 
was computed using the qvalue R package. The cutoff used to define 
HSC clone-to-cell-state preference is as follows: combined P < 0.01 
and FDR < 0.05 and log2fold change(time point 1) > 0.25 and log2fold 
change(time point 2) > 0.25. Full statistics are shown in Supplementary 
Data 4.

HSC progeny clonal assignment using network propagation
Combining the sampling of HSCs with committed and differentiated 
progenies in the same donor, we aimed to use the similarity of mtDNA 
mutation profiles to assign progenies into one of the HSC clonal groups. 
Briefly we first built an inclusive clonal network using shared mtDNA 
mutations for all cells from the same donor. Next, HSC cells from each 

https://github.com/sankaranlab/redeemR
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HSC clonal group served as seeds to propagate clonal information 
through the clonal network until a stationary state was reached. Each 
clonal group was used for network propagation iteratively. Following 
network propagation, the information carried by each cell represents 
the probability of the assignment for the given HSC clonal group, and 
normalized probabilities are compared across all clonal groups to 
determine the final assignment.

Because the mtDNA variant-by-cell matrix is highly sparse, the task 
of confident single-cell assignment is challenging. Our previous study 
showed that the phenotypic relevance of individual cells can be faith-
fully modelled in a cell-to-cell similarity graph and effectively identified 
by a network propagation algorithm78, despite the inherent high dimen-
sionality and extensive sparsity nature of single-cell genomics data. 
Here, using a similar principle, we developed SCAVENGE–L, which uses 
the network propagation strategy that utilizes clonal neighbourhood 
information and efficiently assigns cells with probabilistic metrics. We 
reasoned that the clonal structure of individual cells can be faithfully 
distilled into a network in which each node represents a cell and each 
edge represents mtDNA mutation profile similarity among cells. By 
defining cells of interest (that is, HSC clonal group) we could exploit 
this network to search highly relevant cells (that is, progeny) using both 
network topology structure and cell-to-cell distance.

We first generated a fully binarized mtDNA variants-by-cell matrix 
that included all stem, progenitor and differentiated cells from a 
given donor. We performed term frequency–inverse document fre-
quency followed by singular value decomposition for normalization 
and dimension reduction. The top 30 latent semantic indexings were 
used for construction of a mutual KNN graph (mKNN). Next, we high-
lighted each HSC clonal group on the mKNN graph then used a random 
walk-with-restart method to discover the progeny for cells of each 
HSC clonal group, which we termed seed cells. The information on 
this mKNN graph can spread across, and the information retained in 
the network at stationary state can be used to measure, the probability 
of any given cell belonging to a HSC clonal group (seed cells). We per-
formed network propagation analysis with a damping factor of 0.05 
from each HSC clonal group (seed) iteratively. Finally this generated a 
cell-by-clonal group probability matrix that measured the confidence 
of assignment. We took the maximum probability of above 0.7 as cutoff 
to filter out ambiguous progenies (Supplementary Fig. 7a–e).

Because HSCs were also included in the mKNN network and pro-
cessed with network propagation, they could be assigned to a clonal 
group using the algorithm via network propagation; meanwhile, the 
actual HSC clonal group was used as ground truth. By comparison of 
predicted HSC clonal group with ground truth we managed to bench-
mark the robustness of SCAVANGE–L before applying it to assigning 
progenies to HSC clonal groups (Supplementary Fig. 7).

HSC clonal output and lineage biases
For the study of HSC clonal output activity we collected both HSCs and 
all differentiated progenies from the same donor across two sampling 
time points. Based on mtDNA mutations we applied SCAVENGE–L to 
assign differentiated progenies to each HSC clone. Next we measured 
clonal output level by counting the number of progenies for each HSC 
clonal group, followed by normalization with HSC clone size (the num-
ber of HSCs per clonal group). We compared clonal output level across 
the two sampling time points and computed Pearson’s correlation. 
For evaluation of the contribution of haematopoiesis across different 
HSC clones we ranked them from highest to lowest and computed the 
cumulative proportion of the differentiated progenies contributed 
by these clones.

Next, for each HSC clone we computed the proportion of the four 
main lineages as defined by cell state: myeloid (monocytes, GMP, MDP, 
cDC), erythroid (MEP, EryP), Meg (MKP) and lymphoid (CD4, CD8, NK, 
B, ProB, CLP). Lineage biases were modelled by binomial distribution 
against the background by all cells at two sampling time points. HSC 

clones with consistent enrichment fold change at both time points were 
categorized as biased clones. Enrichment P values at both time points 
were combined using Fisher’s method, and combined P values were 
adjusted using the R package qvalue as FDR. Enrichment fold change 
was calculated for each sampling time point independently. Finally, 
HSC clonal output levels and lineage biases were scaled, and Pearson’s 
correlations were computed to assess the relationship between output 
activity and lineage biases.

Clonal expansion analysis in ageing
First we collected both BMMCs and CD34+ HSPCs from two young 
donors (31-year-old female and 26-year-old male, young-1 and 
young-2, respectively) and two aged donors (76-year-old male and 
78-year-old male, aged-1 and aged-2, respectively). Using the same 
consensus variant-calling pipeline and neighbour-joining algorithm 
described previously, we reconstructed the phylogenetic tree for all 
four donors. Clonal expansions were estimated by two methods: clone- 
and clade-based. For the former we first identified clonal groups as 
described above. Briefly, variants were assigned to branches proba-
bilistically and then we cut the tree down on branches having at least n 
confident variants and with clone group size at least m. The parameters 
involved were m (minimum number of cells in a clone, with default 50), n 
(minimum number of cumulative variants on the branch to be cut, with 
default 1), P (probability of the variant being assigned, with default 0.6) 
and D (dump small clones with fewer than D cells). We compared the 
distribution of clone sizes between young and aged donors by cumu-
lative proportions. To rule out the potential bias of parameters that 
define clonal groups, we adjusted the parameter combinations (m, n, 
P, D) and compared clonal size distribution between young and aged 
donors (Extended Data Fig. 9c). Next, Shannon diversity index, S, was 
also computed for each donor to measure clonal diversity between 
young and aged donors. Given clone group i, sizei is the cell number 
of that clone. Shannon diversity index is calculated as
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n n
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For the clade-based method we identified expansion clades as previ-
ously described and implemented them using the function cassiopeia.tl. 
compute_expansion_pvalues from the Cassiopeia package (available 
at https://github.com/YosefLab/Cassiopeia)79. Briefly, we compared 
the number of cells included in the subclone with its direct ‘sisters’ 
and computed the probability of this observation under neutral selec-
tion with a coalescent model. Clades with P < 0.01 and at least 5% cells 
were annotated as expanded clades (Extended Data Fig. 9a). Finally, 
the proportions of cells contributed by the expanded clades were  
summarized for each donor (Extended Data Fig. 9b).

Inferring single-cell fitness
The phylogenetic structure can be used to infer cell fitness36,80,81. We 
applied the function infer_fitness function from the jungle package 
(available at https://github.com/felixhorns/jungle), which implements 
a previously described probabilistic method for inferring relative  
fitness coefficients between samples in a clonal population.

Analysis of loss of chromosome Y
The loss of chromosome Y was inferred at the single-cell level using 
the scATAC reads. From uniquely mapped reads using CellRanger-arc 
(bam file) we first removed PCR duplicates and counted the number of 
unique fragments per chromosome per cell. The number of chromo-
some Y fragments per cell was modelled using binomial distribution 

https://github.com/YosefLab/Cassiopeia
https://github.com/felixhorns/jungle
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out of total fragment numbers. We defined cells of LOY as those with 
chromosome Y fragment count tenfold lower than expected (P < 0.001). 
Local LOY density was computed as number of cells of LOY/clade size. 
Enrichment score was computed as the z-score of LOY density nor-
malized by total density. Enrichment was further analysed using a 
one-tailed binomial test.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data generated in the manuscript have been deposited in GEO 
(GSE219015). Processed Seurat objects are available on figshare:  
https://doi.org/10.6084/m9.figshare.23290004. Processed mutation- 
calling files are available on figshare: https://doi.org/10.6084/
m9.figshare.24418966.v1. Single-colony, whole-genome sequencing 
data are derived from dbGaP (phs002308.v1.p1). Transcription fac-
tor motif database JASPAR2020 (https://jaspar2020.genereg.net/) 
was used with ChromVar analysis. The HOCOMOCOv.11 (https://hoco-
moco11.autosome.org/downloads_v11) human transcription factor 
database was used for ‘find individual motif occurrences’ analysis.

Code availability
ReDeeM datasets can be processed by the consensus variant-calling 
command tool REDEEM-V (https://github.com/sankaranlab/redeemV) 
and by the inhouse R package REDEEM-R (https://github.com/sankaran-
lab/redeemR) for downstream phylogenetic and integrative analysis. 
The reproducibility codes of the analyses included in this work are also 
provided (https://github.com/sankaranlab/redeem_reproducibility).
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Extended Data Fig. 1 | Improved mtDNA coverage and mutation detection 
with ReDeeM pipeline. a, Justification of the use of endogenous UMI (eUMI) 
based on cell barcode plus starting and ending sites through simulation. The 
starting and ending sites were simulated based on empirical distribution of Tn5 
cutting sites. The number of mtDNA copies per cell was simulated (x-axis) and 
the collision rate was calculated accordingly. n = 10 simulations in each box. 
Boxplot displays data from the 25th to 75th percentile, and whiskers extending 
to the minimum and maximum within 1.5 IQR. b-h, Quality controls for ReDeeM 
variant calling, related to main Fig. 1. b, Removing strand-biased mtDNA 
variants using a binomial distribution model. White zone includes mutations 
for which the null hypothesis (no strand biases) holds true, whereas red zone 
indicates rejection of this null hypothesis (both p < 0.01 and fold change > +/− 2) 
in favour of strand biases. P-values are derived from two-sided binomial test.  
c, Percentage of bases that were overlapped by both reads in a paired-end 
sequencing. n = 7,404 cells. Boxplot displays data from the 25th to 75th 

percentile, and whiskers extending to the minimum and maximum within  
1.5 IQR. d, Summary of the mutations regarding the number of cells carrying 
the mutation (x-axis) and the maximum number of mutant alleles per cell 
(y-axis). Heteroplasmic mutations in black dots and homoplasmic mutations  
in grey dots. e-h, Detailed mutation quality control metrics (random examples 
are shown). e, The number of supporting reads for each mtDNA molecule  
(UMI group) containing the mutation. Boxplot displays data from the 25th to 
75th percentile, and whiskers extending to the minimum and maximum within 
1.5 IQR. f, Consensus score: the percentage of mutant reads in a UMI group. 
Mutations with consensus scores of less than 75% were discarded. g, For a given 
mutation, the proportion of molecules that were covered by both reads in a 
paired-end sequencing. h, Strand bias ratio (a ratio of 1 indicating no strand 
bias). i, Workflow of the ReDeeM variant calling pipeline. NUMT: Nuclear 
mitochondrial DNA segments.
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Extended Data Fig. 2 | eUMI-based error correction via ReDeeM versus 
conventional mutation detection. a, The challenge of mtDNA mutation calling 
using conventional WGS in single colony. b-e, Simulation analysis of mtDNA 
mutation calling using WGS vs ReDeeM. b, The design of the mtDNA mutations 
with low heteroplasmy (0.1% ~ 0.5%) for simulation analysis. 10 mutations  
are randomly picked for each variant allele frequency (VAF). c, Illustration of 
the simulation analysis process. One single cell with 1000 mtDNA copies is 

simulated, with the designed mutations from panel a. Next, in silico Tn5 
fragmentation followed by artificial sequencing is simulated. The resulting 
simulated data is analyzed by ReDeeM or conventional mutation calling 
pipeline. The highlight-1 (Real mutation M) and highligh- 2 (Error) have  
the same total frequency which can only be distinguished by ReDeeM.  
d-e, Mutation calling results using conventional WGS in d and the eUMI-based 
ReDeeM pipeline in e. Also see Supplementary Notes.



Extended Data Fig. 3 | Comparative analysis of ReDeeM, mtscATAC, and 
MAESTER. a, Comparison of the design and features of ReDeeM, mtscATAC 
and MAESTER to highlight their similarities and differences. b-d, Comparative 
analysis of before (as mtscATAC or DOGMA-seq) and after mtDNA enrichment 
(as ReDeeM), which is exemplified by young-1 HSPC dataset. b, Percentage of 
total reads mapped to mitochondrial genome per cell, before and after mtDNA 
enrichment. n = 14,808 cells. Boxplot displays data from the 25th to 75th 
percentile, and whiskers extending to the minimum and maximum within  
1.5 IQR. c, Averaged mitochondrial genome coverage per cell at each position 

before and after mtDNA enrichment. d, Variant calling before enrichment 
using mgatk. 311 confident variants are identified. VMR: per mutation variance 
mean ratio. e-h, Comparative analysis of ReDeeM and MAESTER, which is 
exemplified by young-2 BMMC dataset. e, Mitochondrial genome coverage by 
MAESTER. f, mitochondrial genome coverage by ReDeeM. g, Mutational 
signatures of 307 top mutations by MAESTER, and 4087 variants by ReDeeM. 
n10 > 10: variants present in at least 10 cells with a VAF of >10%. h, Consistency 
between ReDeeM and MAESTER. n5 > 2: variants present in at least 5 cells with a 
VAF of >2%. See Supplementary Notes.
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Extended Data Fig. 4 | Potential functional impacts of mitochondrial 
mutations. a, mtDNA mutation distribution on mitochondrial genome.  
Top panel: histogram that summarizes the mtDNA mutation numbers  
across mitochondrial genome. Bottom panel: individual mtDNA mutation 
coordinates and single-cell heteroplasmy level are shown simultaneously, with  
4 categories of mutations: missense, nonsense, synonymous and non-coding. 
b-c, Mitochondrial genome-wide dN/dS ratio for missense and nonsense 
mutations in different mutation groups, based on single-cell heteroplasmy 

levels (as fraction) in b and based on the percentage of cells that carry the 
mutations in c. The bars indicate the 95% confidence interval. n = 4,837 mtDNA 
mutations. Asterisks indicates dN/dS ratios where the confidence intervals 
from dndscv were infinitive. d, Summarise of the number cell-type restricted 
mtDNA mutations on each of mitochondrial coding genes. e, dN/dS analysis  
for cell-type restricted mutations. Also see Supplementary Notes. The bars 
indicate the 95% confidence interval. n = 933 mtDNA mutations.



Extended Data Fig. 5 | Validation of ReDeeM lineage tracing via dual-tracer 
experiment. a, The design of the dual lineage-tracer experiment with a 
Kras;Trp53(KP)-drive lung adenocarcinoma lineage-tracing mouse model. 
CRISPR-based and ReDeeM-based lineage information were analyzed for  
the same cells. 6 Independent tumours were profiled in batch1 (T1-T6), and  
4 tumours were profiled in batch2 (T7-T10). b, CRISPR indel-based lineage 
relationships were computed with weighted hamming distance and visualized 
by multidimensional scaling (MDS). Tumour 1 (T1) is shown as an example with 
214 single cells. c, Example mtDNA somatic mutations that agree with the 
CRISPR indel-based MDS map are highlighted. d, Schematic of the Agreement 
of Closeness (AOC). e, The phylogenetic trees based on mtDNA mutations are 
illustrated. The “clonal groups” are indicated as the colored bars. The positive 
AOC ratio for each clonal group is shown within each colored bar. The individual 

AOC scores (middle) and mutation numbers (bottom) are shown for every 
single cell (each leaf). The p values are computed by 1000 times permutations 
(one-sided, Supplementary Methods). The whole tree-level metrics of positive 
AOC ratios are shown for each tumor below the colored bar. f, Adjusted Rand 
Index (ARI) for clonal cluster consistency between CRISPR and ReDeeM across 
10 tumors (T1-T10). Various clonal cluster resolutions are tested (presented as 
each dot). n = 16 resolution pairs for each tumor. Boxplot displays data from the 
25th to 75th percentile, and whiskers extending to the minimum and maximum 
within 1.5 IQR. g-h, Illustration of the clonal cluster consistency for T1 (214 single 
cells) and T9 (410 single cells) on CRISPR-based embedding map using one 
example cluster resolution. Colors indicate either ReDeeM-based or CRISPR- 
based cluster identification. Also see Supplementary Methods, Supplementary 
Figs. 2–3.
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Extended Data Fig. 6 | Mitochondrial mutation analysis in single colony 
WGS data. a, Schematic of the experimental design and reanalysis strategy. 
b-c, Single colony WGS data quality control. Sequencing coverage on nuclear 
genome in b, and on mitochondrial genomes in c are shown. Each dot represents 
one colony. n = 42 colonies. Boxplots display data from the 25th to 75th 
percentile, and whiskers extending to the minimum and maximum within  
1.5 IQR. d, Mitochondrial mutation calling and quality control pipeline for WGS 
data. e, Mutational signatures in each class of mononucleotide and trinucleotide 
change by the heavy (H) and light (L) strands. The mtDNA mutations are after 
step 2 from d and stratified by global VAF (gVAF). n = 2,263 all mutation 

candidates. f, Categories of the top 5% confident mtDNA mutations. The pie 
chart shows the proportions of homoplasmic mutations (or appear in all 
colonies), singular heteroplasmic mutations (or appear only in one colony) as 
well as heteroplasmic mutations (or appear in a subset of colonies). g, Direct 
mapping for confident heteroplasmic mtDNA mutations onto the nuclear 
genome inferred tree. h, mtDNA Mutation similarity (# of shared mutations) 
within JAK2 mutant clones; within WT clones; or between JAK2 mutant clones 
and WT clones. I, Mutational signatures for mtDNA mutations identified by 
ReDeeM in Young-1 HSPC dataset, stratified by gVAF. j, Expected true mtDNA 
mutational signature. Also see Supplementary Notes.



Extended Data Fig. 7 | Single-cell multiomics analyses of HSC 
subpopulations. Panel a-g displays data for donor young-1, while h-p for 
donor young-2. a-e, Identify hematopoietic stem cells (HSC) based on 
molecular markers for young-1 a, Unsupervised clustering of hematopoietic 
stem and progenitor cells (CD34+ cells, and CD34+CD45RA−CD90+ cells) based 
on joint ATAC and RNA modalities. b, Expression of HLF mRNA level, a molecular 
marker of HSCs, in each cluster. n = 14,661 cells. Boxplot displays data from the 
25th to 75th percentile, and whiskers extending to the minimum and maximum 
within 1.5 IQR. c, Distribution of HLF expressing levels on wnnUMAP d, Define 
HSCs for CD34+CD45RA−CD90+ cells with HLFhi, CRHBPhi, and CD34hi expression 

levels, and in HLF high clusters from b. e, Highlighting the defined HSCs on 
wnnUMAP. f, HSCs distributions on UMAP from two different time points.  
g, Top examples of HSC subpopulation-specific gene expression profiles, 
based on RNA modality. h-l, same analyses as a-e for donor young-2. n = 23,114 
cells. Boxplot displays data from the 25th to 75th percentile, and whiskers 
extending to the minimum and maximum within 1.5 IQR. m, same analysis as  
in main Fig. 3c for donor young-2. n, Same analysis as g, for donor young-2.  
o-p, same analysis as in main Fig. 3e, f for donor young-2. P-values are derived 
from hypergeometric test.
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Extended Data Fig. 8 | Analysis of HSC clonal behavioral trajectories.  
a, Schematic of the clonal behavioral trajectory analysis. All 78 HSC clonal 
groups, comprising 5,393 HSCs, are ranked based on one of the 5 behavioral 
measurements (see main Fig. 4) to construct the behavioral trajectories. 
Differential genes/peaks are identified along each of the trajectories based  
on Poisson regression modeling. b, Volcano plots representing the statistical 

analysis for identifying differential genes/peaks. c, 2,931 differential peaks are 
clustered based on the peak signal changes (slopes) across the 5 behavioral 
metrics, resulting in 5 different peak categories. d, Gene Set Enrichment 
Analysis for nearby genes of each peak category. e, Transcription factor DNA 
binding motif enrichment analysis for each peak category.



Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Quantification and validation of clonal structure 
alteration in aging hematopoiesis. a, Identification of “expanded clades” in 
young and aged donors, which are defined as the clades with more than 0.5%  
of total cell numbers and with expansion significance lower than 0.01. b, The 
percentage of cells that are contributed from expanded clades are summarised 
for each donor. c, Related to Fig. 5d, Measuring the clonal contribution by 
changing the parameters that affect the definition of “clones”. The parameters 
involved are m (minimum number of cells as a clone, default is 50), n(minimum 
number of cumulative variants on the branch to cut, default is 1), p (The 
probability of the variant to be assigned, default is 0.6), and D (Dump small 

clones with less than D cells). d, Related to Fig. 5f. Single-cell fitness analysis in 
donor aged-2. e, Related to Fig. 5g. Cell type contributions for each expanded 
clade for donor aged-2. f-h, Cell-cycle gene expression analysis for expanded 
versus non-expanded cells. n = 9,519 and 14,715 cells for Aged-1 and Aged-2. 
Boxplot displays data from the 25th to 75th percentile, and whiskers extending 
to the minimum and maximum within 1.5 IQR. i-j, Identification of cells with 
loss of chromosome Y. i, The normalized number of reads on chromosome  
Y per cell across different donors. j, Binomial test to identify cells that 
significantly lose chromosome Y with fold-change <0.1 and q-value < 0.001.



Extended Data Fig. 10 | ReDeeM phylogenetic analysis for extended young 
and aged donors. a, Schematic of the experimental design for the extended 
donors (cohort-2). Bone marrow samples from 5 additional young and  
3 additional aged donors were collected. Isolated bone marrow mononuclear 
cells and the enriched CD34+ cells were hashed and pooled for ReDeeM 
profiling and lineage tracing. b, The extended donor information. c, mtDNA 
mutation burden between extended young and aged donors across different 
cell types. n = 9,709 cells from extended young donors, n = 3,802 cells from 
extended aged donors. Boxplot displays data from the 25th to 75th percentile, 

and whiskers extending to the minimum and maximum within 1.5 IQR. 
***indicates p-value < 2.2*10-16, derived from one-sided Wilcoxon rank sum 
test (d-e) Phylogenetic trees of the extended donors from d, young, and e, aged 
donors. Clonal groups are indicated by different colors on the outer rings.  
f, Shannon diversity index of the clonal composition, between extended young 
and aged donors. n = 5 and 3 donors g, Contribution of each clone to the total 
population in extended young and aged donors. (h-j) Cell type contributions in 
each expanded clone, corresponding to the highlighted clones in panel e. The 
grey area indicates the expected balanced cell type distribution.
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