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Genomic data in the All of Us Research 
Program

The All of Us Research Program Genomics Investigators*

Comprehensively mapping the genetic basis of human disease across diverse 
individuals is a long-standing goal for the field of human genetics1–4. The All of Us 
Research Program is a longitudinal cohort study aiming to enrol a diverse group of at 
least one million individuals across the USA to accelerate biomedical research and 
improve human health5,6. Here we describe the programme’s genomics data release of 
245,388 clinical-grade genome sequences. This resource is unique in its diversity as 
77% of participants are from communities that are historically under-represented in 
biomedical research and 46% are individuals from under-represented racial and 
ethnic minorities. All of Us identified more than 1 billion genetic variants, including 
more than 275 million previously unreported genetic variants, more than 3.9 million 
of which had coding consequences. Leveraging linkage between genomic data and 
the longitudinal electronic health record, we evaluated 3,724 genetic variants 
associated with 117 diseases and found high replication rates across both participants 
of European ancestry and participants of African ancestry. Summary-level data are 
publicly available, and individual-level data can be accessed by researchers through 
the All of Us Researcher Workbench using a unique data passport model with a median 
time from initial researcher registration to data access of 29 hours. We anticipate that 
this diverse dataset will advance the promise of genomic medicine for all.

Comprehensively identifying genetic variation and cataloguing its 
contribution to health and disease, in conjunction with environmental 
and lifestyle factors, is a central goal of human health research1,2. A 
key limitation in efforts to build this catalogue has been the historic 
under-representation of large subsets of individuals in biomedical 
research including individuals from diverse ancestries, individuals 
with disabilities and individuals from disadvantaged backgrounds3,4. 
The All of Us Research Program (All of Us) aims to address this gap 
by enrolling and collecting comprehensive health data on at least 
one million individuals who reflect the diversity across the USA5,6. An 
essential component of All of Us is the generation of whole-genome 
sequence (WGS) and genotyping data on one million participants. All 
of Us is committed to making this dataset broadly useful—not only by 
democratizing access to this dataset across the scientific community 
but also to return value to the participants themselves by returning 
individual DNA results, such as genetic ancestry, hereditary disease 
risk and pharmacogenetics according to clinical standards, to those 
who wish to receive these research results.

Here we describe the release of WGS data from 245,388 All of Us 
participants and demonstrate the impact of this high-quality data in 
genetic and health studies. We carried out a series of data harmoni-
zation and quality control (QC) procedures and conducted analyses 
characterizing the properties of the dataset including genetic ancestry 
and relatedness. We validated the data by replicating well-established 
genotype–phenotype associations including low-density lipoprotein 
cholesterol (LDL-C) and 117 additional diseases. These data are avail-
able through the All of Us Researcher Workbench, a cloud platform 

that embodies and enables programme priorities, facilitating equita-
ble data and compute access while ensuring responsible conduct of 
research and protecting participant privacy through a passport data 
access model.

The All of Us Research Program
To accelerate health research, All of Us is committed to curating and 
releasing research data early and often6. Less than five years after 
national enrolment began in 2018, this fifth data release includes data 
from more than 413,000 All of Us participants. Summary data are made 
available through a public Data Browser, and individual-level partici-
pant data are made available to researchers through the Researcher 
Workbench (Fig. 1a and Data availability).

Participant data include a rich combination of phenotypic and 
genomic data (Fig. 1b). Participants are asked to complete consent 
for research use of data, sharing of electronic health records (EHRs), 
donation of biospecimens (blood or saliva, and urine), in-person provi-
sion of physical measurements (height, weight and blood pressure) and 
surveys initially covering demographics, lifestyle and overall health7. 
Participants are also consented for recontact. EHR data, harmonized 
using the Observational Medical Outcomes Partnership Common 
Data Model8 (Methods), are available for more than 287,000 partici-
pants (69.42%) from more than 50 health care provider organizations. 
The EHR dataset is longitudinal, with a quarter of participants having 
10 years of EHR data (Extended Data Fig. 1). Data include 245,388 WGSs 
and genome-wide genotyping on 312,925 participants. Sequenced and 
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genotyped individuals in this data release were not prioritized on the 
basis of any clinical or phenotypic feature. Notably, 99% of participants 
with WGS data also have survey data and physical measurements, and 
84% also have EHR data. In this data release, 77% of individuals with 
genomic data identify with groups historically under-represented 
in biomedical research, including 46% who self-identify with a racial 
or ethnic minority group (Fig. 1c, Supplementary Table 1 and Supple-
mentary Note).

Scaling the All of Us infrastructure
The genomic dataset generated from All of Us participants is a resource 
for research and discovery and serves as the basis for return of indi-
vidual health-related DNA results to participants. Consequently, the 
US Food and Drug Administration determined that All of Us met the 
criteria for a significant risk device study. As such, the entire All of Us 
genomics effort from sample acquisition to sequencing meets clinical 
laboratory standards9.

All of Us participants were recruited through a national network of 
partners, starting in 2018, as previously described5. Participants may 
enrol through All of Us-funded health care provider organizations or 
direct volunteer pathways and all biospecimens, including blood and 
saliva, are sent to the central All of Us Biobank for processing and stor-
age. Genomics data for this release were generated from blood-derived 
DNA. The programme began return of actionable genomic results in 
December 2022. As of April 2023, approximately 51,000 individu-
als were sent notifications asking whether they wanted to view their 
results, and approximately half have accepted. Return continues on 
an ongoing basis.

The All of Us Data and Research Center maintains all participant 
information and biospecimen ID linkage to ensure that participant 
confidentiality and coded identifiers (participant and aliquot level) 
are used to track each sample through the All of Us genomics work-
flow. This workflow facilitates weekly automated aliquot and plating 
requests to the Biobank, supplies relevant metadata for the sample 
shipments to the Genome Centers, and contains a feedback loop to 
inform action on samples that fail QC at any stage. Further, the consent 
status of each participant is checked before sample shipment to con-
firm that they are still active. Although all participants with genomic 
data are consented for the same general research use category, the 
programme accommodates different preferences for the return of 
genomic data to participants and only data for those individuals who 

have consented for return of individual health-related DNA results are 
distributed to the All of Us Clinical Validation Labs for further evaluation 
and health-related clinical reporting. All participants in All of Us that 
choose to get health-related DNA results have the option to schedule 
a genetic counselling appointment to discuss their results. Individu-
als with positive findings who choose to obtain results are required to 
schedule an appointment with a genetic counsellor to receive those 
findings.

Genome sequencing
To satisfy the requirements for clinical accuracy, precision and con-
sistency across DNA sample extraction and sequencing, the All of 
Us Genome Centers and Biobank harmonized laboratory protocols, 
established standard QC methodologies and metrics, and conducted 
a series of validation experiments using previously characterized clini-
cal samples and commercially available reference standards9. Briefly, 
PCR-free barcoded WGS libraries were constructed with the Illumina 
Kapa HyperPrep kit. Libraries were pooled and sequenced on the Illu-
mina NovaSeq 6000 instrument. After demultiplexing, initial QC analy-
sis is performed with the Illumina DRAGEN pipeline (Supplementary 
Table 2) leveraging lane, library, flow cell, barcode and sample level 
metrics as well as assessing contamination, mapping quality and con-
cordance to genotyping array data independently processed from a 
different aliquot of DNA. The Genome Centers use these metrics to 
determine whether each sample meets programme specifications 
and then submits sequencing data to the Data and Research Center for 
further QC, joint calling and distribution to the research community 
(Methods).

This effort to harmonize sequencing methods, multi-level QC and 
use of identical data processing protocols mitigated the variabil-
ity in sequencing location and protocols that often leads to batch 
effects in large genomic datasets9. As a result, the data are not only 
of clinical-grade quality, but also consistent in coverage (≥30× mean) 
and uniformity across Genome Centers (Supplementary Figs. 1–5).

Joint calling and variant discovery
We carried out joint calling across the entire All of Us WGS dataset 
(Extended Data Fig. 2). Joint calling leverages information across 
samples to prune artefact variants, which increases sensitivity, and 
enables flagging samples with potential issues that were missed 
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during single-sample QC10 (Supplementary Table 3). Scaling con-
ventional approaches to whole-genome joint calling beyond 50,000 
individuals is a notable computational challenge11,12. To address this, 
we developed a new cloud variant storage solution, the Genomic Vari-
ant Store (GVS), which is based on a schema designed for querying 
and rendering variants in which the variants are stored in GVS and 
rendered to an analysable variant file, as opposed to the variant file 
being the primary storage mechanism (Code availability). We carried 
out QC on the joint call set on the basis of the approach developed 
for gnomAD 3.1 (ref. 13). This included flagging samples with outly-
ing values in eight metrics (Supplementary Table 4, Supplementary 
Fig. 2 and Methods).

To calculate the sensitivity and precision of the joint call dataset, we 
included four well-characterized samples. We sequenced the National 
Institute of Standards and Technology reference materials (DNA sam-
ples) from the Genome in a Bottle consortium13 and carried out variant 
calling as described above. We used the corresponding published set of 
variant calls for each sample as the ground truth in our sensitivity and 
precision calculations14. The overall sensitivity for single-nucleotide 
variants was over 98.7% and precision was more than 99.9%. For short 
insertions or deletions, the sensitivity was over 97% and precision was 
more than 99.6% (Supplementary Table 5 and Methods).

The joint call set included more than 1 billion genetic variants. We 
annotated the joint call dataset on the basis of functional annotation 
(for example, gene symbol and protein change) using Illumina Nirvana15. 
We defined coding variants as those inducing an amino acid change on 
a canonical ENSEMBL transcript and found 272,051,104 non-coding and 
3,913,722 coding variants that have not been described previously in 
dbSNP16 v153 (Extended Data Table 1). A total of 3,912,832 (99.98%) of 
the coding variants are rare (allelic frequency < 0.01) and the remain-
ing 883 (0.02%) are common (allelic frequency > 0.01). Of the coding 
variants, 454 (0.01%) are common in one or more of the non-European 
computed ancestries in All of Us, rare among participants of European 
ancestry, and have an allelic number greater than 1,000 (Extended Data 
Table 2 and Extended Data Fig. 3). The distributions of pathogenic, or 
likely pathogenic, ClinVar variant counts per participant, stratified 
by computed ancestry, filtered to only those variants that are found 
in individuals with an allele count of <40 are shown in Extended Data 
Fig. 4. The potential medical implications of these known and new vari-
ants with respect to variant pathogenicity by ancestry are highlighted 
in a companion paper17. In particular, we find that the European ances-
try subset has the highest rate of pathogenic variation (2.1%), which 
was twice the rate of pathogenic variation in individuals of East Asian 
ancestry17 .The lower frequency of variants in East Asian individuals 
may be partially explained by the fact the sample size in that group is 
small and there may be knowledge bias in the variant databases that is 
reducing the number of findings in some of the less-studied ancestry  
groups.

Genetic ancestry and relatedness
Genetic ancestry inference confirmed that 51.1% of the All of Us WGS 
dataset is derived from individuals of non-European ancestry. Briefly, 
the ancestry categories are based on the same labels used in gnomAD18. 
We trained a classifier on a 16-dimensional principal component anal-
ysis (PCA) space of a diverse reference based on 3,202 samples and 
151,159 autosomal single-nucleotide polymorphisms. We projected 
the All of Us samples into the PCA space of the training data, based on 
the same single-nucleotide polymorphisms from the WGS data, and 
generated categorical ancestry predictions from the trained classifier 
(Methods). Continuous genetic ancestry fractions for All of Us samples 
were inferred using the same PCA data, and participants’ patterns of 
ancestry and admixture were compared to their self-identified race 
and ethnicity (Fig. 2 and Methods). Continuous ancestry inference 
carried out using genome-wide genotypes yields highly concordant  
estimates.

Kinship estimation confirmed that All of Us WGS data consist largely 
of unrelated individuals with about 85% (215,107) having no first- or 
second-degree relatives in the dataset (Supplementary Fig. 6). As 
many genomic analyses leverage unrelated individuals, we identified 
the smallest set of samples that are required to be removed from the 
remaining individuals that had first- or second-degree relatives and 
retained one individual from each kindred. This procedure yielded 
a maximal independent set of 231,442 individuals (about 94%) with 
genome sequence data in the current release (Methods).

Genetic determinants of LDL-C
As a measure of data quality and utility, we carried out a single-variant 
genome-wide association study (GWAS) for LDL-C, a trait with well- 
established genomic architecture (Methods). Of the 245,388 WGS  
participants, 91,749 had one or more LDL-C measurements. The All of 
Us LDL-C GWAS identified 20 well-established genome-wide significant 
loci, with minimal genomic inflation (Fig. 3, Extended Data Table 3 and 
Supplementary Fig. 7). We compared the results to those of a recent 
multi-ethnic LDL-C GWAS in the National Heart, Lung, and Blood Insti-
tute (NHLBI) TOPMed study that included 66,329 ancestrally diverse 
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(56% non-European ancestry) individuals19. We found a strong correla-
tion between the effect estimates for NHLBI TOPMed genome-wide 
significant loci and those of All of Us (R2 = 0.98, P < 1.61 × 10−45; Fig. 3, 
inset). Notably, the per-locus effect sizes observed in All of Us are 
decreased compared to those in TOPMed, which is in part due to differ-
ences in the underlying statistical model, differences in the ancestral 
composition of these datasets and differences in laboratory value 
ascertainment between EHR-derived data and epidemiology studies. 
A companion manuscript extended this work to identify common 
and rare genetic associations for three diseases (atrial fibrillation, 
coronary artery disease and type 2 diabetes) and two quantitative 
traits (height and LDL-C) in the All of Us dataset and identified very 
high concordance with previous efforts across all of these diseases 
and traits20.

Genotype-by-phenotype associations
As another measure of data quality and utility, we tested replication 
rates of previously reported phenotype–genotype associations in the 
five predicted genetic ancestry populations present in the Phenotype/
Genotype Reference Map (PGRM): AFR, African ancestry; AMR, Latino/
admixed American ancestry; EAS, East Asian ancestry; EUR, European 
ancestry; SAS, South Asian ancestry. The PGRM contains published 
associations in the GWAS catalogue in these ancestry populations 
that map to International Classification of Diseases-based pheno-
type codes21. This replication study specifically looked across 4,947 
variants, calculating replication rates for powered associations in each 
ancestry population. The overall replication rates for associations 

powered at 80% were: 72.0% (18/25) in AFR, 100% (13/13) in AMR, 46.6% 
(7/15) in EAS, 74.9% (1,064/1,421) in EUR, and 100% (1/1) in SAS. With 
the exception of the EAS ancestry results, these powered replication 
rates are comparable to those of the published PGRM analysis where 
the replication rates of several single-site EHR-linked biobanks ranges 
from 76% to 85%. These results demonstrate the utility of the data 
and also highlight opportunities for further work understanding the  
specifics of the All of Us population and the potential contribution 
of gene–environment interactions to genotype–phenotype map-
ping and motivates the development of methods for multi-site EHR  
phenotype data extraction, harmonization and genetic association  
studies.

More broadly, the All of Us resource highlights the opportunities to 
identify genotype–phenotype associations that differ across diverse 
populations22. For example, the Duffy blood group locus (ACKR1) is  
more prevalent in individuals of AFR ancestry and individuals of  
AMR ancestry than in individuals of EUR ancestry. Although the 
phenome-wide association study of this locus highlights the well- 
established association of the Duffy blood group with lower white 
blood cell counts both in individuals of AFR and AMR ancestry23,24, 
it also revealed genetic-ancestry-specific phenotype patterns, with 
minimal phenotypic associations in individuals of EAS ancestry and 
individuals of EUR ancestry (Fig. 4 and Extended Data Table 4). Con-
versely, rs9273363 in the HLA-DQB1 locus is associated with increased 
risk of type 1 diabetes25,26 and diabetic complications across ancestries, 
but only associates with increased risk of coeliac disease in individuals 
of EUR ancestry (Extended Data Fig. 5). Similarly, the TCF7L2 locus27 
strongly associates with increased risk of type 2 diabetes and associated 
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complications across several ancestries (Extended Data Fig. 6). Associ-
ation testing results are available in Supplementary Dataset 1.

The cloud-based Researcher Workbench
All of Us genomic data are available in a secure, access-controlled 
cloud-based analysis environment: the All of Us Researcher Work-
bench. Unlike traditional data access models that require per-project 
approval, access in the Researcher Workbench is governed by a data 
passport model based on a researcher’s authenticated identity, insti-
tutional affiliation, and completion of self-service training and compli-
ance attestation28. After gaining access, a researcher may create a new 
workspace at any time to conduct a study, provided that they comply 
with all Data Use Policies and self-declare their research purpose. This 
information is regularly audited and made accessible publicly on the 
All of Us Research Projects Directory. This streamlined access model 
is guided by the principles that: participants are research partners and 
maintaining their privacy and data security is paramount; their data 
should be made as accessible as possible for authorized researchers; 

and we should continually seek to remove unnecessary barriers to 
accessing and using All of Us data.

For researchers at institutions with an existing institutional data use 
agreement, access can be gained as soon as they complete the required 
verification and compliance steps. As of August 2023, 556 institutions 
have agreements in place, allowing more than 5,000 approved research-
ers to actively work on more than 4,400 projects. The median time for a 
researcher from initial registration to completion of these requirements 
is 28.6 h (10th percentile: 48 min, 90th percentile: 14.9 days), a frac-
tion of the weeks to months it can take to assemble a project-specific 
application and have it reviewed by an access board with conventional 
access models.

Given that the size of the project’s phenotypic and genomic dataset 
is expected to reach 4.75 PB in 2023, the use of a central data store and 
cloud analysis tools will save funders an estimated US$16.5 million per 
year when compared to the typical approach of allowing research-
ers to download genomic data. Storing one copy per institution of 
this data at 556 registered institutions would cost about US$1.16 bil-
lion per year. By contrast, storing a central cloud copy costs about 
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US$1.14 million per year, a 99.9% saving. Importantly, cloud infrastruc-
ture also democratizes data access particularly for researchers who do 
not have high-performance local compute resources.

Discussion
Here we present the All of Us Research Program’s approach to generat-
ing diverse clinical-grade genomic data at an unprecedented scale. We 
present the data release of about 245,000 genome sequences as part 
of a scalable framework that will grow to include genetic information 
and health data for one million or more people living across the USA. 
Our observations permit several conclusions.

First, the All of Us programme is making a notable contribution to 
improving the study of human biology through purposeful inclusion 
of under-represented individuals at scale29,30. Of the participants with 
genomic data in All of Us, 45.92% self-identified as a non-European race 
or ethnicity. This diversity enabled identification of more than 275 mil-
lion new genetic variants across the dataset not previously captured by 
other large-scale genome aggregation efforts with diverse participants 
that have submitted variation to dbSNP v153, such as NHLBI TOPMed31 
freeze 8 (Extended Data Table 1). In contrast to gnomAD, All of Us per-
mits individual-level genotype access with detailed phenotype data 
for all participants. Furthermore, unlike many genomics resources, 
All of Us is uniformly consented for general research use and enables 
researchers to go from initial account creation to individual-level data 
access in as little as a few hours. The All of Us cohort is significantly 
more diverse than those of other large contemporary research stud-
ies generating WGS data32,33. This enables a more equitable future for 
precision medicine (for example, through constructing polygenic risk 
scores that are appropriately calibrated to diverse populations34,35 
as the eMERGE programme has done leveraging All of Us data36,37). 
Developing new tools and regulatory frameworks to enable analyses 
across multiple biobanks in the cloud to harness the unique strengths 
of each is an active area of investigation addressed in a companion 
paper to this work38.

Second, the All of Us Researcher Workbench embodies the pro-
gramme’s design philosophy of open science, reproducible research, 
equitable access and transparency to researchers and to research par-
ticipants26. Importantly, for research studies, no group of data users 
should have privileged access to All of Us resources based on anything 
other than data protection criteria. Although the All of Us Researcher 
Workbench initially targeted onboarding US academic, health care 
and non-profit organizations, it has recently expanded to interna-
tional researchers. We anticipate further genomic and phenotypic 
data releases at regular intervals with data available to all researcher 
communities. We also anticipate additional derived data and function-
ality to be made available, such as reference data, structural variants 
and a service for array imputation using the All of Us genomic data.

Third, All of Us enables studying human biology at an unprecedented 
scale. The programmatic goal of sequencing one million or more 
genomes has required harnessing the output of multiple sequencing 
centres. Previous work has focused on achieving functional equivalence 
in data processing and joint calling pipelines39. To achieve clinical-grade 
data equivalence, All of Us required protocol equivalence at both 
sequencing production level and data processing across the sequencing 
centres. Furthermore, previous work has demonstrated the value of 
joint calling at scale10,18. The new GVS framework developed by the All 
of Us programme enables joint calling at extreme scales (Code avail-
ability). Finally, the provision of data access through cloud-native tools 
enables scalable and secure access and analysis to researchers while 
simultaneously enabling the trust of research participants and trans-
parency underlying the All of Us data passport access model.

The clinical-grade sequencing carried out by All of Us enables not 
only research, but also the return of value to participants through clini-
cally relevant genetic results and health-related traits to those who 

opt-in to receiving this information. In the years ahead, we anticipate 
that this partnership with All of Us participants will enable researchers 
to move beyond large-scale genomic discovery to understanding the 
consequences of implementing genomic medicine at scale.
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Methods

The All of Us cohort
All of Us aims to engage a longitudinal cohort of one million or more US 
participants, with a focus on including populations that have histori-
cally been under-represented in biomedical research. Details of the 
All of Us cohort have been described previously5. Briefly, the primary 
objective is to build a robust research resource that can facilitate the 
exploration of biological, clinical, social and environmental determi-
nants of health and disease. The programme will collect and curate 
health-related data and biospecimens, and these data and biospeci-
mens will be made broadly available for research uses. Health data are 
obtained through the electronic medical record and through partici-
pant surveys. Survey templates can be found on our public website: 
https://www.researchallofus.org/data-tools/survey-explorer/. Adults 
18 years and older who have the capacity to consent and reside in the 
USA or a US territory at present are eligible. Informed consent for all 
participants is conducted in person or through an eConsent platform 
that includes primary consent, HIPAA Authorization for Research 
use of EHRs and other external health data, and Consent for Return 
of Genomic Results. The protocol was reviewed by the Institutional 
Review Board (IRB) of the All of Us Research Program. The All of Us 
IRB follows the regulations and guidance of the NIH Office for Human 
Research Protections for all studies, ensuring that the rights and wel-
fare of research participants are overseen and protected uniformly.

Data accessibility through a ‘data passport’
Authorization for access to participant-level data in All of Us is based 
on a ‘data passport’ model, through which authorized researchers do 
not need IRB review for each research project. The data passport is 
required for gaining data access to the Researcher Workbench and for 
creating workspaces to carry out research projects using All of Us data. 
At present, data passports are authorized through a six-step process 
that includes affiliation with an institution that has signed a Data Use 
and Registration Agreement, account creation, identity verification, 
completion of ethics training, and attestation to a data user code of 
conduct. Results reported follow the All of Us Data and Statistics Dis-
semination Policy disallowing disclosure of group counts under 20 to 
protect participant privacy without seeking prior approval40.

EHR data
At present, All of Us gathers EHR data from about 50 health care organ-
izations that are funded to recruit and enrol participants as well as 
transfer EHR data for those participants who have consented to pro-
vide them. Data stewards at each provider organization harmonize 
their local data to the Observational Medical Outcomes Partnership 
(OMOP) Common Data Model, and then submit it to the All of Us Data 
and Research Center (DRC) so that it can be linked with other participant 
data and further curated for research use. OMOP is a common data 
model standardizing health information from disparate EHRs to com-
mon vocabularies and organized into tables according to data domains. 
EHR data are updated from the recruitment sites and sent to the DRC 
quarterly. Updated data releases to the research community occur 
approximately once a year. Supplementary Table 6 outlines the OMOP 
concepts collected by the DRC quarterly from the recruitment sites.

Biospecimen collection and processing
Participants who consented to participate in All of Us donated fresh 
whole blood (4 ml EDTA and 10 ml EDTA) as a primary source of DNA. 
The All of Us Biobank managed by the Mayo Clinic extracted DNA from 
4 ml EDTA whole blood, and DNA was stored at −80 °C at an average 
concentration of 150 ng µl−1. The buffy coat isolated from 10 ml EDTA 
whole blood has been used for extracting DNA in the case of initial 
extraction failure or absence of 4 ml EDTA whole blood. The Biobank 
plated 2.4 µg DNA with a concentration of 60 ng µl−1 in duplicate for 

array and WGS samples. The samples are distributed to All of Us Genome 
Centers weekly, and a negative (empty well) control and National Insti-
tute of Standards and Technology controls are incorporated every two 
months for QC purposes.

Genome sequencing
Genome Center sample receipt, accession and QC. On receipt of 
DNA sample shipments, the All of Us Genome Centers carry out an  
inspection of the packaging and sample containers to ensure that sam-
ple integrity has not been compromised during transport and to verify 
that the sample containers correspond to the shipping manifest. QC of 
the submitted samples also includes DNA quantification, using routine 
procedures to confirm volume and concentration (Supplementary 
Table 7). Any issues or discrepancies are recorded, and affected samples 
are put on hold until resolved. Samples that meet quality thresholds 
are accessioned in the Laboratory Information Management System, 
and sample aliquots are prepared for library construction processing 
(for example, normalized with respect to concentration and volume).

WGS library construction, sequencing and primary data QC. The 
DNA sample is first sheared using a Covaris sonicator and is then 
size-selected using AMPure XP beads to restrict the range of library 
insert sizes. Using the PCR Free Kapa HyperPrep library construction 
kit, enzymatic steps are completed to repair the jagged ends of DNA 
fragments, add proper A-base segments, and ligate indexed adapter 
barcode sequences onto samples. Excess adaptors are removed using 
AMPure XP beads for a final clean-up. Libraries are quantified using 
quantitative PCR with the Illumina Kapa DNA Quantification Kit and 
then normalized and pooled for sequencing (Supplementary Table 7).

Pooled libraries are loaded on the Illumina NovaSeq 6000 instru-
ment. The data from the initial sequencing run are used to QC individual 
libraries and to remove non-conforming samples from the pipeline. The 
data are also used to calibrate the pooling volume of each individual 
library and re-pool the libraries for additional NovaSeq sequencing to 
reach an average coverage of 30×.

After demultiplexing, WGS analysis occurs on the Illumina DRA-
GEN platform. The DRAGEN pipeline consists of highly optimized  
algorithms for mapping, aligning, sorting, duplicate marking and 
haplotype variant calling and makes use of platform features such as  
compression and BCL conversion. Alignment uses the GRCh38dh 
reference genome. QC data are collected at every stage of the analy-
sis protocol, providing high-resolution metrics required to ensure 
data consistency for large-scale multiplexing. The DRAGEN pipeline 
produces a large number of metrics that cover lane, library, flow cell, 
barcode and sample-level metrics for all runs as well as assessing con-
tamination and mapping quality. The All of Us Genome Centers use 
these metrics to determine pass or fail for each sample before submit-
ting the CRAM files to the All of Us DRC. For mapping and variant calling, 
all Genome Centers have harmonized on a set of DRAGEN parameters, 
which ensures consistency in processing (Supplementary Table 2).

Every step through the WGS procedure is rigorously controlled by 
predefined QC measures. Various control mechanisms and acceptance 
criteria were established during WGS assay validation. Specific metrics 
for reviewing and releasing genome data are: mean coverage (threshold 
of ≥30×), genome coverage (threshold of ≥90% at 20×), coverage of 
hereditary disease risk genes (threshold of ≥95% at 20×), aligned Q30 
bases (threshold of ≥8 × 1010), contamination (threshold of ≤1%) and 
concordance to independently processed array data.

Array genotyping
Samples are processed for genotyping at three All of Us Genome Cent-
ers (Broad, Johns Hopkins University and University of Washington). 
DNA samples are received from the Biobank and the process is facili-
tated by the All of Us genomics workflow described above. All three 
centres used an identical array product, scanners, resource files and 
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genotype calling software for array processing to reduce batch effects. 
Each centre has its own Laboratory Information Management System 
that manages workflow control, sample and reagent tracking, and 
centre-specific liquid handling robotics.

Samples are processed using the Illumina Global Diversity Array 
(GDA) with Illumina Infinium LCG chemistry using the automated pro-
tocol and scanned on Illumina iSCANs with Automated Array Loaders. 
Illumina IAAP software converts raw data (IDAT files; 2 per sample) into 
a single GTC file per sample using the BPM file (defines strand, probe 
sequences and illumicode address) and the EGT file (defines the rela-
tionship between intensities and genotype calls). Files used for this data 
release are: GDA-8v1-0_A5.bpm, GDA-8v1-0_A1_ClusterFile.egt, gentrain 
v3, reference hg19 and gencall cutoff 0.15. The GDA array assays a total 
of 1,914,935 variant positions including 1,790,654 single-nucleotide 
variants, 44,172 indels, 9,935 intensity-only probes for CNV calling, and 
70,174 duplicates (same position, different probes). Picard GtcToVcf 
is used to convert the GTC files to VCF format. Resulting VCF and IDAT 
files are submitted to the DRC for ingestion and further processing. The 
VCF file contains assay name, chromosome, position, genotype calls, 
quality score, raw and normalized intensities, B allele frequency and 
log R ratio values. Each genome centre is running the GDA array under 
Clinical Laboratory Improvement Amendments-compliant protocols. 
The GTC files are parsed and metrics are uploaded to in-house Labora-
tory Information Management System systems for QC review.

At batch level (each set of 96-well plates run together in the laboratory 
at one time), each genome centre includes positive control samples that 
are required to have >98% call rate and >99% concordance to existing 
data to approve release of the batch of data. At the sample level, the 
call rate and sex are the key QC determinants41. Contamination is also 
measured using BAFRegress42 and reported out as metadata. Any sam-
ple with a call rate below 98% is repeated one time in the laboratory. 
Genotyped sex is determined by plotting normalized x versus normal-
ized y intensity values for a batch of samples. Any sample discordant 
with ‘sex at birth’ reported by the All of Us participant is flagged for fur-
ther detailed review and repeated one time in the laboratory. If several 
sex-discordant samples are clustered on an array or on a 96-well plate, 
the entire array or plate will have data production repeated. Samples 
identified with sex chromosome aneuploidies are also reported back 
as metadata (XXX, XXY, XYY and so on). A final processing status of 
‘pass’, ‘fail’ or ‘abandon’ is determined before release of data to the 
All of Us DRC. An array sample will pass if the call rate is >98% and the 
genotyped sex and sex at birth are concordant (or the sex at birth is not 
applicable). An array sample will fail if the genotyped sex and the sex at 
birth are discordant. An array sample will have the status of abandon if 
the call rate is <98% after at least two attempts at the genome centre.

Data from the arrays are used for participant return of genetic ances-
try and non-health-related traits for those who consent, and they are 
also used to facilitate additional QC of the matched WGS data. Con-
tamination is assessed in the array data to determine whether DNA 
re-extraction is required before WGS. Re-extraction is prompted by 
level of contamination combined with consent status for return of 
results. The arrays are also used to confirm sample identity between 
the WGS data and the matched array data by assessing concordance at 
100 unique sites. To establish concordance, a fingerprint file of these 
100 sites is provided to the Genome Centers to assess concordance 
with the same sites in the WGS data before CRAM submission.

Genomic data curation
As seen in Extended Data Fig. 2, we generate a joint call set for all WGS 
samples and make these data available in their entirety and by sample 
subsets to researchers. A breakdown of the frequencies, stratified by 
computed ancestries for which we had more than 10,000 participants 
can be found in Extended Data Fig. 3. The joint call set process allows 
us to leverage information across samples to improve QC and increase 
accuracy.

Single-sample QC. If a sample fails single-sample QC, it is excluded 
from the release and is not reported in this document. These tests detect 
sample swaps, cross-individual contamination and sample prepara-
tion errors. In some cases, we carry out these tests twice (at both the 
Genome Center and the DRC), for two reasons: to confirm internal 
consistency between sites; and to mark samples as passing (or failing) 
QC on the basis of the research pipeline criteria. The single-sample QC 
process accepts a higher contamination rate than the clinical pipeline 
(0.03 for the research pipeline versus 0.01 for the clinical pipeline), but 
otherwise uses identical thresholds. The list of specific QC processes, 
passing criteria, error modes addressed and an overview of the results 
can be found in Supplementary Table 3.

Joint call set QC. During joint calling, we carry out additional QC 
steps using information that is available across samples including 
hard thresholds, population outliers, allele-specific filters, and sen-
sitivity and precision evaluation. Supplementary Table 4 summarizes 
both the steps that we took and the results obtained for the WGS data. 
More detailed information about the methods and specific param-
eters can be found in the All of Us Genomic Research Data Quality  
Report36.

Batch effect analysis. We analysed cross-sequencing centre batch 
effects in the joint call set. To quantify the batch effect, we calcu-
lated Cohen’s d (ref. 43) for four metrics (insertion/deletion ratio, 
single-nucleotide polymorphism count, indel count and single- 
nucleotide polymorphism transition/transversion ratio) across the 
three genome sequencing centres (Baylor College of Medicine, Broad 
Institute and University of Washington), stratified by computed ances-
try and seven regions of the genome (whole genome, high-confidence 
calling, repetitive, GC content of >0.85, GC content of <0.15, low map-
pability, the ACMG59 genes and regions of large duplications (>1 kb)). 
Using random batches as a control set, all comparisons had a Cohen’s 
d of <0.35. Here we report any Cohen’s d results >0.5, which we chose 
before this analysis and is conventionally the threshold of a medium 
effect size44.

We found that there was an effect size in indel counts (Cohen’s d of 
0.53) in the entire genome, between Broad Institute and University of 
Washington, but this was being driven by repetitive and low-mappability 
regions. We found no batch effects with Cohen’s d of >0.5 in the ratio 
metrics or in any metrics in the high-confidence calling, low or high GC 
content, or ACMG59 regions. A complete list of the batch effects with 
Cohen’s d of >0.5 are found in Supplementary Table 8.

Sensitivity and precision evaluation
To determine sensitivity and precision, we included four well- 
characterized control samples (four National Institute of Standards 
and Technology Genome in a Bottle samples (HG-001, HG-003, HG-004 
and HG-005). The samples were sequenced with the same protocol as 
All of Us. Of note, these samples were not included in data released to 
researchers. We used the corresponding published set of variant calls 
for each sample as the ground truth in our sensitivity and precision 
calculations. We use the high-confidence calling region, defined by 
Genome in a Bottle v4.2.1, as the source of ground truth. To be called 
a true positive, a variant must match the chromosome, position, refer-
ence allele, alternate allele and zygosity. In cases of sites with multiple 
alternative alleles, each alternative allele is considered separately. 
Sensitivity and precision results are reported in Supplementary Table 5.

Genetic ancestry inference
We computed categorical ancestry for all WGS samples in All of Us and 
made these available to researchers. These predictions are also the basis 
for population allele frequency calculations in the Genomic Variants 
section of the public Data Browser. We used the high-quality set of sites 
to determine an ancestry label for each sample. The ancestry categories 



are based on the same labels used in gnomAD18, the Human Genome 
Diversity Project (HGDP)45 and 1000 Genomes1: African (AFR); Latino/
admixed American (AMR); East Asian (EAS); Middle Eastern (MID); 
European (EUR), composed of Finnish (FIN) and Non-Finnish European 
(NFE); Other (OTH), not belonging to one of the other ancestries or is 
an admixture; South Asian (SAS).

We trained a random forest classifier46 on a training set of the HGDP 
and 1000 Genomes samples variants on the autosome, obtained from 
gnomAD11. We generated the first 16 principal components (PCs) of 
the training sample genotypes (using the hwe_normalized_pca in Hail) 
at the high-quality variant sites for use as the feature vector for each 
training sample. We used the truth labels from the sample metadata, 
which can be found alongside the VCFs. Note that we do not train the 
classifier on the samples labelled as Other. We use the label probabilities 
(‘confidence’) of the classifier on the other ancestries to determine 
ancestry of Other.

To determine the ancestry of All of Us samples, we project the All 
of Us samples into the PCA space of the training data and apply the 
classifier. As a proxy for the accuracy of our All of Us predictions, we 
look at the concordance between the survey results and the predicted 
ancestry. The concordance between self-reported ethnicity and the 
ancestry predictions was 87.7%.

PC data from All of Us samples and the HGDP and 1000 Genomes 
samples were used to compute individual participant genetic ances-
try fractions for All of Us samples using the Rye program. Rye uses PC 
data to carry out rapid and accurate genetic ancestry inference on 
biobank-scale datasets47. HGDP and 1000 Genomes reference sam-
ples were used to define a set of six distinct and coherent ancestry 
groups—African, East Asian, European, Middle Eastern, Latino/admixed  
American and South Asian—corresponding to participant self-identified 
race and ethnicity groups. Rye was run on the first 16 PCs, using  
the defined reference ancestry groups to assign ancestry group frac-
tions to individual All of Us participant samples.

Relatedness
We calculated the kinship score using the Hail pc_relate function and 
reported any pairs with a kinship score above 0.1. The kinship score is 
half of the fraction of the genetic material shared (ranges from 0.0 to 
0.5). We determined the maximal independent set41 for related samples. 
We identified a maximally unrelated set of 231,442 samples (94%) for 
kinship scored greater than 0.1.

LDL-C common variant GWAS
The phenotypic data were extracted from the Curated Data Repository 
(CDR, Control Tier Dataset v7) in the All of Us Researcher Workbench. 
The All of Us Cohort Builder and Dataset Builder were used to extract 
all LDL cholesterol measurements from the Lab and Measurements 
criteria in EHR data for all participants who have WGS data. The most 
recent measurements were selected as the phenotype and adjusted for 
statin use19, age and sex. A rank-based inverse normal transformation 
was applied for this continuous trait to increase power and deflate type 
I error. Analysis was carried out on the Hail MatrixTable representation 
of the All of Us WGS joint-called data including removing monomorphic 
variants, variants with a call rate of <95% and variants with extreme 
Hardy–Weinberg equilibrium values (P < 10−15). A linear regression was 
carried out with REGENIE48 on variants with a minor allele frequency 
>5%, further adjusting for relatedness to the first five ancestry PCs. 
The final analysis included 34,924 participants and 8,589,520 variants.

Genotype-by-phenotype replication
We tested replication rates of known phenotype–genotype asso-
ciations in three of the four largest populations: EUR, AFR and EAS. 
The AMR population was not included because they have no regis-
tered GWAS. This method is a conceptual extension of the original 
GWAS × phenome-wide association study, which replicated 66% of 

powered associations in a single EHR-linked biobank49. The PGRM is 
an expansion of this work by Bastarache et al., based on associations 
in the GWAS catalogue50 in June 2020 (ref. 51). After directly matching 
the Experimental Factor Ontology terms to phecodes, the authors 
identified 8,085 unique loci and 170 unique phecodes that compose the 
PGRM. They showed replication rates in several EHR-linked biobanks 
ranging from 76% to 85%. For this analysis, we used the EUR-, and 
AFR-based maps, considering only catalogue associations that were 
P < 5 × 10−8 significant.

The main tools used were the Python package Hail for data extrac-
tion, plink for genomic associations, and the R packages PheWAS 
and pgrm for further analysis and visualization. The phenotypes, 
participant-reported sex at birth, and year of birth were extracted from 
the All of Us CDR (Controlled Tier Dataset v7). These phenotypes were 
then loaded into a plink-compatible format using the PheWAS package, 
and related samples were removed by sub-setting to the maximally 
unrelated dataset (n = 231,442). Only samples with EHR data were kept, 
filtered by selected loci, annotated with demographic and phenotypic 
information extracted from the CDR and ancestry prediction informa-
tion provided by All of Us, ultimately resulting in 181,345 participants for 
downstream analysis. The variants in the PGRM were filtered by a mini-
mum population-specific allele frequency of >1% or population-specific 
allele count of >100, leaving 4,986 variants. Results for which there were 
at least 20 cases in the ancestry group were included. Then, a series 
of Firth logistic regression tests with phecodes as the outcome and 
variants as the predictor were carried out, adjusting for age, sex (for 
non-sex-specific phenotypes) and the first three genomic PC features 
as covariates. The PGRM was annotated with power calculations based 
on the case counts and reported allele frequencies. Power of 80% or 
greater was considered powered for this analysis.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The All of Us Research Hub has a tiered data access data passport 
model with three data access tiers. The Public Tier dataset contains 
only aggregate data with identifiers removed. These data are available 
to the public through Data Snapshots (https://www.researchallofus.
org/data-tools/data-snapshots/) and the public Data Browser (https://
databrowser.researchallofus.org/). The Registered Tier curated dataset 
contains individual-level data, available only to approved research-
ers on the Researcher Workbench. At present, the Registered Tier 
includes data from EHRs, wearables and surveys, as well as physi-
cal measurements taken at the time of participant enrolment. The 
Controlled Tier dataset contains all data in the Registered Tier and 
additionally genomic data in the form of WGS and genotyping arrays, 
previously suppressed demographic data fields from EHRs and surveys, 
and unshifted dates of events. At present, Registered Tier and Con-
trolled Tier data are available to researchers at academic institutions, 
non-profit institutions, and both non-profit and for-profit health care 
institutions. Work is underway to begin extending access to additional 
audiences, including industry-affiliated researchers. Researchers have 
the option to register for Registered Tier and/or Controlled Tier access 
by completing the All of Us Researcher Workbench access process, 
which includes identity verification and All of Us-specific training in 
research involving human participants (https://www.researchallofus.
org/register/). Researchers may create a new workspace at any time 
to conduct any research study, provided that they comply with all 
Data Use Policies and self-declare their research purpose. This infor-
mation is made accessible publicly on the All of Us Research Projects 
Directory at https://allofus.nih.gov/protecting-data-and-privacy/
research-projects-all-us-data.

https://www.researchallofus.org/data-tools/data-snapshots/
https://www.researchallofus.org/data-tools/data-snapshots/
https://databrowser.researchallofus.org/
https://databrowser.researchallofus.org/
https://www.researchallofus.org/register/
https://www.researchallofus.org/register/
https://allofus.nih.gov/protecting-data-and-privacy/research-projects-all-us-data
https://allofus.nih.gov/protecting-data-and-privacy/research-projects-all-us-data
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Code availability
The GVS code is available at https://github.com/broadinstitute/gatk/
tree/ah_var_store/scripts/variantstore. The LDL GWAS pipeline is avail-
able as a demonstration project in the Featured Workspace Library on 
the Researcher Workbench (https://workbench.researchallofus.org/
workspaces/aou-rw-5981f9dc/aouldlgwasregeniedsubctv6duplicate/
notebooks).
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Extended Data Fig. 1 | Historic availability of EHR records in All of Us v7 Controlled Tier Curated Data Repository (N = 413,457). For better visibility, the plot 
shows growth starting in 2010.
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Extended Data Fig. 2 | Overview of the Genomic Data Curation Pipeline for 
WGS samples. The Data and Research Center (DRC) performs additional single 
sample quality control (QC) on the data as it arrives from the Genome Centers. 
The variants from samples that pass this QC are loaded into the Genomic 
Variant Store (GVS), where we jointly call the variants and apply additional QC. 
We apply a joint call set QC process, which is stored with the call set. The entire 
joint call set is rendered as a Hail Variant Dataset (VDS), which can be accessed 
from the analysis notebooks in the Researcher Workbench. Subsections of the 
genome are extracted from the VDS and rendered in different formats with all 

participants. Auxiliary data can also be accessed through the Researcher 
Workbench. This includes variant functional annotations, joint call set QC 
results, predicted ancestry, and relatedness. Auxiliary data are derived from 
GVS (arrow not shown) and the VDS. The Cohort Builder directly queries GVS 
when researchers request genomic data for subsets of samples. Aligned reads, 
as cram files, are available in the Researcher Workbench (not shown). The 
graphics of the dish, gene and computer and the All of Us logo are reproduced 
with permission of the National Institutes of Health’s All of Us Research 
Program.



Extended Data Fig. 3 | Proportion of allelic frequencies (AF), stratified by computed ancestry with over 10,000 participants. Bar counts are not cumulative 
(eg, “pop AF < 0.01” does not include “pop AF < 0.001”).
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Extended Data Fig. 4 | Distribution of pathogenic, and likely pathogenic ClinVar variants. Stratified by ancestry filtered to only those variants that are found 
in allele count (AC) < 40 individuals for 245,388 short read WGS samples.



Extended Data Fig. 5 | Ancestry specific HLA-DQB1 (rs9273363) locus associations in 231,442 unrelated individuals. Phenome-wide (PheWAS) associations 
highlight ancestry specific consequences across ancestries.

https://www.ncbi.nlm.nih.gov/snp/?term=rs9273363
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Extended Data Fig. 6 | Ancestry specific TCF7L2 (rs7903146) locus associations in 231,442 unrelated individuals. Phenome-wide (PheWAS) associations 
highlight diabetic consequences across ancestries.

https://www.ncbi.nlm.nih.gov/snp/?term=rs7903146


Extended Data Table 1 | Coding consequence breakdown of All of Us Variants not previously described in dbSNP v153 in 
245,388 short-read WGS samples

Percentages sum greater than zero, as variants can have multiple consequences depending on the transcript annotation.
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Extended Data Table 2 | Number of coding variants common in non-EUR ancestry participants (minor allele frequency >1%) 
and not found in dbSNP v153 in 245,388 short-read WGS samples



Extended Data Table 3 | Genome-wide significant All of Us LDL-C GWAS loci in 91,749 All of Us individuals with one or more 
LDL-C measurements
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Extended Data Table 4 | Allele Frequency by ancestral population of rs2814778, rs9273363 and rs7903146 in All of Us 
dataset

https://www.ncbi.nlm.nih.gov/snp/?term=rs2814778
https://www.ncbi.nlm.nih.gov/snp/?term=rs9273363
https://www.ncbi.nlm.nih.gov/snp/?term=rs7903146
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection N/A

Data analysis The genomic variant store code is available at:  
https://github.com/broadinstitute/gatk/tree/ah_var_store/scripts/variantstore  
The LDL GWAS pipeline is available as a demonstration project in the Featured Workspace Library on the Researcher Workbench: 
https://workbench.researchallofus.org/workspaces/aou-rw-5981f9dc/aouldlgwasregeniedsubctv6duplicate/notebooks

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The All of Us Research Hub has a tiered data access data passport model with three data access tiers. The Public Tier dataset contains only aggregate data with 
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identifiers removed. These data are available to the public through Data Snapshots (https://www.researchallofus.org/data-tools/data-snapshots/) and the public 
Data Browser (https://databrowser.researchallofus.org/). The Registered Tier curated dataset contains individual-level data, available only to approved researchers 
on the Researcher Workbench. The Registered Tier currently includes data from electronic health records (EHRs), wearables, and surveys, as well as physical 
measurements taken at the time of participant enrollment. The Controlled Tier dataset contains all data in the Registered Tier and additionally genomic data in the 
form of whole genome sequencing (WGS) and genotyping arrays, previously suppressed demographic data fields from EHRs and surveys, and unshifted dates of 
events. Registered Tier and Controlled Tier data are currently available to researchers at academic institutions, non-profit institutions, and both non-profit and for-
profit healthcare institutions. Work is underway to begin extending access to additional industry affiliated researchers. Researchers have the option to register for 
Registered Tier and/or Controlled Tier access by completing the All of Us Researcher Workbench access process which includes identity verification and All of Us-
specific human subjects training (https://www.researchallofus.org/register/). Researchers may create a new workspace at any time to conduct any research study, 
provided that they comply with all Data Use Policies and self-declare their research purpose. This information is made accessible publicly on the All of Us Research 
Projects Directory at https://allofus.nih.gov/protecting-data-and-privacy/research-projects-all-us-data

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Both sex assigned at birth and self reported gender of individuals was collected. Sex assigned at birth was used for all 
relevant analyses, including only individuals where the genetically inferred sex matched sex assigned at birth.

Population characteristics Adults 18 years and older who have the capacity to consent and currently reside in the U.S. or a U.S. territory were eligible. 

Recruitment Recruitment of the All of Us Research Program was described in detail in "The “All of Us” Research Program", NEJM 2019; 
briefly individuals were recruited through direct participant enrollment or recruitment at one of >340 locations at US 
healthcare provider organizations or  federally qualified community health centers.

Ethics oversight Informed consent for all participants is conducted in person or through an eConsent platform that includes primary consent, 
HIPAA Authorization for Research EHRs, and Consent for Return of Genomic Results. The protocol was reviewed by the 
Institutional Review Board (IRB) of the All of Us Research Program. The All of Us IRB follows the regulations and guidance of 
the NIH Office for Human Research Protections for all studies, ensuring that the rights and welfare of research participants 
are overseen and protected uniformly.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No pre-determined sample size was calculated for these analyses.

Data exclusions No data or individuals with successful generation of genome sequencing data were excluded from these analyses. 

Replication Replication of the LDL cholesterol GWAS study was performed with the NHLBI TOPMed study

Randomization There was no randomization.

Blinding There was no blinding.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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