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            Abstract
Survival requires the selection of appropriate behaviour in response to threats, and dysregulated defensive reactions are associated with psychiatric illnesses such as post-traumatic stress and panic disorder1. Threat-induced behaviours, including freezing and flight, are controlled by neuronal circuits in the central amygdala (CeA)2; however, the source of neuronal excitation of the CeA that contributes to high-intensity defensive responses is unknown. Here we used a combination of neuroanatomical mapping, in vivo calcium imaging, functional manipulations and electrophysiology to characterize a previously unknown projection from the dorsal peduncular (DP) prefrontal cortex to the CeA. DP-to-CeA neurons are glutamatergic and specifically target the medial CeA, the main amygdalar output nucleus mediating conditioned responses to threat. Using a behavioural paradigm that elicits both conditioned freezing and flight, we found that CeA-projecting DP neurons are activated by high-intensity threats in a context-dependent manner. Functional manipulations revealed that the DP-to-CeA pathway is necessary and sufficient for both avoidance behaviour and flight. Furthermore, we found that DP neurons synapse onto neurons within the medial CeA that project to midbrain flight centres. These results elucidate a non-canonical top-down pathway regulating defensive responses.
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                    Fig. 1: Neuroanatomical characterization of the DP-to-CeA pathway.


Fig. 2: DP-to-CeA projection cells are activated by high-fear states.


Fig. 3: Chemogenetic inhibition of the DP-to-CeA pathway reduces avoidance.


Fig. 4: Optogenetic modulation of the DP-to-CeA pathway regulates flight.


Fig. 5: DP-to-CeA neurons exert excitatory control over CeM projections.
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Extended data figures and tables

Extended Data Fig. 1 (Data related to Fig. 1): Neuroanatomy of the DP-CeA pathway.
a, Top, Number of CeA-projecting mPFC cells across the antero-posterior axis. Bottom, Schematic of coronal sections showing the density of beads in DP on anterio-posterior scale. The coronal sections were adapted from the Allen Brain Atlas (Allen Institute for Brain Science). b, The layer-wise distribution of bead+ cells in the DP that project to CeA and/or DMH (Nâ€‰=â€‰6 mice; two-way ANOVA, layer x group, F(4, 45)â€‰=â€‰10.15, pâ€‰<â€‰0.0001; Bonferroniâ€™s post-hoc test, *pâ€‰<â€‰0.05, *** pâ€‰<â€‰0.001 (DMH vs CeA), ##pâ€‰<â€‰0.01, ###pâ€‰<â€‰0.001 (vs overlay). c, Total number of bead+ cells across groups (Nâ€‰=â€‰6 mice per group; 3-4 slices per group; one-way ANOVA, F(3, 22)â€‰=â€‰2.819, pâ€‰=â€‰0.0626). d, Freezing of cFos groups on FC2 (Nâ€‰=â€‰6 mice per group; one-way ANOVA for tone (F(2, 15)â€‰=â€‰9.367, pâ€‰=â€‰0.0023) and white noise (WN; F(2, 15)â€‰=â€‰22.68, pâ€‰<â€‰0.0001); Bonferroniâ€™s post-hoc test). e, Flight scores of cFos groups on FC2 (Nâ€‰=â€‰6 mice per group; one-way ANOVA for tone (F(2, 15)â€‰=â€‰3.60, pâ€‰=â€‰0.052) and WN (F(2, 15)â€‰=â€‰18.52, pâ€‰<â€‰0.0001); Bonferroniâ€™s post-hoc test). Data in b-e represented as means Â± s.e.m. Two-sided statistical tests were used. ***Pâ€‰<â€‰0.001, **Pâ€‰<â€‰0.01.
Source Data


Extended Data Fig. 2 (Data related to Fig. 2): Calcium imaging during pre-conditioning.
a-b, Trial-wise and average freezing of mice from calcium imaging experiments during preconditioning session (Nâ€‰=â€‰6 mice; paired t-test, tâ€‰=â€‰0.3051, df = 5, pâ€‰=â€‰0.77). c-d, Trial-wise and average flight score of mice from calcium imaging experiments during preconditioning session (Nâ€‰=â€‰6 mice; paired t-test, tâ€‰=â€‰0.6565, df = 5, pâ€‰=â€‰0.54). e, Speed and neuronal activity during the last trial of preconditioning session (nâ€‰=â€‰221 cells from 6 mice). f, Average speed and neuronal activity during each trial of preSCS, tone, WN and post-cue periods (nâ€‰=â€‰221 cells from 6 mice). g, Spearman correlation of speed and neuronal activity from all trials (10â€‰s each epoch of preSCS, tone, WN and post cue, each point represents one sec; nâ€‰=â€‰221 cells from 6 mice; râ€‰=â€‰âˆ’0.1232, 95% CI: âˆ’0.2774 to 0.03724, pâ€‰=â€‰0.12). h, Average Z-score of the DP-to-CeA population during the preSCS, tone, WN and post-cue periods (nâ€‰=â€‰221 cells from 6 mice; ordinary one-way ANOVA, F(3, 20)â€‰=â€‰1.965, pâ€‰=â€‰0.15). i, Average Z-scores of individual mice during preSCS, tone, WN and post-cue periods (Nâ€‰=â€‰6 mice). j, Z-scores of individual neurons during the last trial of preconditioning (nâ€‰=â€‰221 cells from 6 mice, one-way ANOVA, F(3, 880)â€‰=â€‰21.43, Pâ€‰<â€‰0.0001; Bonferroniâ€™s multiple comparisons test). Data in a-f and j represented as means Â± s.e.m. Violin plots in h indicate median, interquartile range, and the distribution of individual data points. Two-sided statistical tests were used. ****pâ€‰<â€‰0.0001.
Source Data


Extended Data Fig. 3 (Data related to Fig. 2): Calcium imaging in the high-threat and low-threat contexts.
a, Freezing behaviour in the high-threat context (Nâ€‰=â€‰6 mice; paired t-test, tâ€‰=â€‰4.744, df=5). b, Flight scores in the high-threat context. (Nâ€‰=â€‰6 mice; paired t-test, tâ€‰=â€‰3.650, df=5). c, left, Average speed and neuronal activity during each trial of the preSCS, tone, WN and post-cue periods in the high-threat context (nâ€‰=â€‰273 cells from 6 mice). right, Spearman correlation of speed and neuronal activity from the last 3 trials (preSCS, tone, WN and post-cue epochs, each point represents data from 1â€‰s; nâ€‰=â€‰273 cells from 6 mice; râ€‰=â€‰0.5187, 95% CI: 0.3696 to 0.6417, pâ€‰<â€‰0.0001). d, Speed and neuronal activity aligned to the onset of flight bouts during WN in the high-threat context (nâ€‰=â€‰273 cells from 6 mice). e, Speed and neuronal activity aligned to the onset of freezing bouts during WN in the high-threat context (nâ€‰=â€‰273 cells from 6 mice). f, Spearman correlation plot for speed and Z-score from the identified freezing bouts (each dot represents values at each sec of the bouts, râ€‰=â€‰0.657, 95% CIâ€‰=â€‰âˆ’0.02019 to 0.1662, pâ€‰=â€‰0.175). g, left Z-scores of individual mice during preSCS, tone, WN and post-cue periods, across all trials (Nâ€‰=â€‰6 mice; one-way ANOVA, F(3, 20)â€‰=â€‰9.331, Pâ€‰=â€‰0.0005; Bonferroniâ€™s multiple comparisons test). right, Z-scores of individual mice during first versus last 2 footshock periods (paired t-test, tâ€‰=â€‰0.2289, df = 11, each dot represents an individual mouse during a single trial). h, The Z-scores of individual neurons during preSCS, tone, WN and post-cue periods, from the last trial in the high-threat context (nâ€‰=â€‰273 cells from 6 mice, one-way ANOVA, F(3, 1112)â€‰=â€‰59.01, Pâ€‰<â€‰0.0001; Bonferroniâ€™s multiple comparisons test). i, Freezing in the low-threat context (Nâ€‰=â€‰6 mice; paired t-test, tâ€‰=â€‰3.424, df = 5). j, Flight scores in the low-threat context. (Nâ€‰=â€‰6 mice; paired t-test, tâ€‰=â€‰2.889, df = 5). k, left, Change in average speed and neuronal activity during preSCS, tone, WN and post-cue periods in the low-threat context over 4 trials (nâ€‰=â€‰273 cells from 6 mice). right, Spearman correlation of speed and neuronal activity from all recall trials in the low-threat context (preSCS, tone, WN and post cue epochs, each point represents 1â€‰s of data; nâ€‰=â€‰273 cells from 6 mice; râ€‰=â€‰âˆ’0.07152, 95% CI: âˆ’0.2526 to 0.1144, pâ€‰=â€‰0.43). l, Speed and neuronal activity aligned to the onset of flight bouts during WN in the low-threat context (nâ€‰=â€‰273 cells from 6 mice). m, Speed and neuronal activity aligned to the onset of freezing bouts during WN in the low-threat context (nâ€‰=â€‰273 cells from 6 mice). n, Spearman correlation of speed and neuronal activity from freezing bouts (nâ€‰=â€‰273 cells from 6 mice; each point represents one sec of data, râ€‰=â€‰0.82, 95% CIâ€‰=â€‰0.02337 to 0.1669, Pâ€‰=â€‰0.058). o, Population activity from individual mice during preSCS, tone, WN and post-cue periods, across all trials (Nâ€‰=â€‰6 mice; one-way ANOVA, F(3,20)â€‰=â€‰0.3923, Pâ€‰=â€‰0.75). p, Neuronal activity of individual neurons during preSCS, tone, WN and post-cue periods, from the last trial in the low-threat context (nâ€‰=â€‰273 cells from 6 mice; one-way ANOVA, F(3,1008)â€‰=â€‰5.566, Pâ€‰=â€‰0.0009; Bonferroniâ€™s multiple comparisons test). q, Z-scores of individual mice during context exposure (first 3â€‰min baseline period) in high threat versus low-threat context (Nâ€‰=â€‰6 mice; paired t-test, tâ€‰=â€‰2.705, df=5). Data in a-c, d-e, h-k, l-m, and p represented as means Â± s.e.m. Violin plots in g indicate median, interquartile range, and the distribution of individual data points. Two-sided statistical tests were used. ****Pâ€‰<â€‰0.0001, ***Pâ€‰<â€‰0.001, **Pâ€‰<â€‰0.01, *Pâ€‰<â€‰0.05.
Source Data


Extended Data Fig. 4 (Data related Fig. 4): Optogenetic inhibition of the DP-CEA pathway.
a, Intersectional approach used for optogenetic terminal inhibition of the DP-to-CeA neuronal projections. The image was adapted from the Allen Brain Atlas (Allen Institute for Brain Science). b, Experimental timeline. c-e, Effect of optogenetic inhibition on centre time (c), centre entries (d), and distance travelled (e) in the OFT (EYFP Nâ€‰=â€‰9 mice, eNpHR Nâ€‰=â€‰9 mice; unpaired t-test, tâ€‰=â€‰2.357, df = 16; tâ€‰=â€‰2.813, df = 16; and tâ€‰=â€‰0.7250, df = 16, respectively). f-h, Effect of optogenetic inhibition on EYFP (Nâ€‰=â€‰9) and eNpHR (Nâ€‰=â€‰9) mice in the high-threat context on f, freezing (LED-on vs LED-off, Mann-Whitney), g, flight (LED-on vs LED-off, Mann-Whitney), and h, speed during WN (Paired t-test tâ€‰=â€‰3.497, df=8, pâ€‰=â€‰0.0081). i-k, Effect of optogenetic inhibition in EYFP (Nâ€‰=â€‰9) and eNpHR (Nâ€‰=â€‰9) groups in the low-threat context on i, freezing (LED-on vs LED-off, Mann-Whitney, n.s.), j, flight (LED-on vs LED-off, Mann-Whitney) and k, speed during WN in the eNpHR group (Paired t-test, tâ€‰=â€‰2.619, df=8, pâ€‰=â€‰0.307). Data in c-e represented as mean Â± s.e.m. Data in f-k represented as mean with individual data points. Two-sided statistical tests were used. **Pâ€‰<â€‰0.01, *Pâ€‰<â€‰0.05.
Source Data


Extended Data Fig. 5 (Data related Fig. 4): Non-cell type specific stimulation of the DP-CEA pathway.
a, Intersectional approach used to target optogenetic stimulation to DP-to-CeA terminals. The image was adapted from the Allen Brain Atlas (Allen Institute for Brain Science). b-c, Effect of optogenetic stimulation on OFT centre time (b) and centre entries (c) in EYFP (Nâ€‰=â€‰10) and ChR2 (Nâ€‰=â€‰9) groups (Unpaired t-test, n.s., tâ€‰=â€‰0.3950, df = 17, and tâ€‰=â€‰1.001, df = 17, respectively). d, Effects of optogenetic stimulation on real-time place avoidance in EYFP (10â€‰Hz, Nâ€‰=â€‰5) and ChR2 (10â€‰Hz, Nâ€‰=â€‰5; 20â€‰Hz, Nâ€‰=â€‰4) groups (One-way ANOVA F(2, 11)â€‰=â€‰0.73, pâ€‰=â€‰0.502). e-f, Effect of optogenetic excitation in EYFP (Nâ€‰=â€‰10) and ChR2 (Nâ€‰=â€‰9) groups in the high-threat context on e, freezing (LED-on vs LED-off, Mann-Whitney, n.s.) and f, flight (LED-on vs LED-off, Mann-Whitney, n.s.). g-h, Effect of optogenetic excitation in EYFP (Nâ€‰=â€‰10) and ChR2 (Nâ€‰=â€‰9) groups in the low-threat context on g, freezing (LED-on vs LED-off, Mann-Whitney, n.s.) and h, flight (LED-on vs LED-off, Mann-Whitney, n.s.). i-j, Freezing (i) and flight scores (j) during optogenetic stimulation during day 3 at different stimulation frequencies and shock intensities (at 0.6â€‰mA â€“ 10â€‰Hz, Nâ€‰=â€‰9; 15â€‰Hz, Nâ€‰=â€‰3; at 0.9â€‰mA â€“ 20â€‰Hz, Nâ€‰=â€‰5; two-way ANOVA (for % freezing, Stimulation frequency x Shock intensity, F(6, 56)â€‰=â€‰0.76, pâ€‰=â€‰0.601, Stimulation frequency, F(2, 56)â€‰=â€‰1.10, pâ€‰=â€‰0.339, Shock intensity, F(3, 56)â€‰=â€‰8.37, pâ€‰=â€‰0.0001; for flight, Stimulation frequency x Shock intensity, F(6, 56)â€‰=â€‰4.42, pâ€‰=â€‰0.001, Shock intensity, F(3, 56)â€‰=â€‰6.66, pâ€‰=â€‰0.001; Bonferroniâ€™s post hoc test (tone/WN ON vs OFF non-significant). Data represented as mean (â€‰Â±â€‰s.e.m. in b-d and with individual data points in i-j). Two-sided statistical tests were used.
Source Data


Extended Data Fig. 6 (Data related Fig. 4): Stimulation of the DP-CEA pathway using a CaMKII promotor.
a, Viral injection strategy for optogenetic terminal stimulation of DP-to-CeA neuronal projections. The image was adapted from the Allen Brain Atlas (Allen Institute for Brain Science). b-c, Schematic (b) and results (c) of real-time place aversion (RTPA) in EYFP (20â€‰Hz, Nâ€‰=â€‰5) and ChR2 (20â€‰Hz, Nâ€‰=â€‰5) groups (Unpaired t-test, tâ€‰=â€‰3.191, df = 8). The image in b was created with BioRender.com. d-e, Effect of optogenetic excitation in EYFP (Nâ€‰=â€‰5) and ChR2 (Nâ€‰=â€‰5) groups in the high-threat context on d, freezing (LED-on vs LED-off, paired t-test, n.s.) and e, flight scores (LED-on vs LED-off, paired t-test, n.s.). f-g, Effect of optogenetic excitation in EYFP (Nâ€‰=â€‰5) and ChR2 (Nâ€‰=â€‰5) groups in the low-threat context on f, freezing (LED-on vs LED-off, paired t-test, n.s.) and g, flight scores (LED-on vs LED-off, paired t-test, n.s.). Data represented as mean Â± s.e.m. in c and with individual data points in d-g. Two-sided statistical tests were used. *Pâ€‰<â€‰0.05.
Source Data


Extended Data Fig. 7 (Data related Fig. 4): Optogenetic stimulation of the Vglut1â€‰+â€‰DP-CEA pathway.
a, Viral injection strategy for optogenetic terminal stimulation of DP-to-CeA neuronal projections. b-c, Schematic (b) and real-time place aversion (RTPA) performance (c) from EYFP (Nâ€‰=â€‰6) and ChR2 (Nâ€‰=â€‰8) groups (unpaired t-test, EYFP (tâ€‰=â€‰1.974, df = 5, Pâ€‰=â€‰0.10), ChR2 (tâ€‰=â€‰7.339, df = 7). The image in b was created with BioRender.com. d-e, Effect of optogenetic excitation in EYFP (Nâ€‰=â€‰6) and ChR2 (Nâ€‰=â€‰8) groups in the high-threat context on d, freezing during WN (LED-on vs LED-off, paired t-test, ChR2, tâ€‰=â€‰3.650, df = 7) and e, flight during WN (LED-on vs LED-off, paired t-test, ChR2, tâ€‰=â€‰1.077, df = 7, Pâ€‰=â€‰0.31). f-g, Effect of optogenetic excitation in EYFP (Nâ€‰=â€‰6) and ChR2 (Nâ€‰=â€‰8) groups in the low-threat context on f, freezing during WN (LED-on vs LED-off, paired t-test, ChR2, tâ€‰=â€‰3.748, df = 7) and g, flight score during WN (LED-on vs LED-off, paired t-test, ChR2, tâ€‰=â€‰2.211, df=7, Pâ€‰=â€‰0.06). h, Example fibre placements over the CeA for the eNpHR groups (Nâ€‰=â€‰9). i, Example fibre placements over the CeA for the ChR2 groups (Nâ€‰=â€‰9). Box and whisker plots in c indicate median, interquartile range, and min. to max. of the distribution, crosses indicate means. Data in d-g represented as mean with individual data points. Two-sided statistical tests were used. ***Pâ€‰<â€‰0.001, **Pâ€‰<â€‰0.01. The images in a,h,i were adapted from the Allen Brain Atlas (Allen Institute for Brain Science).
Source Data


Extended Data Fig. 8 (Data related Fig. 4): Optogenetic stimulation of the Vglut2â€‰+â€‰DP-CEA pathway.
a, Viral injection strategy for optogenetic terminal stimulation of DP-to-CeA neuronal projections). The image was adapted from the Allen Brain Atlas (Allen Institute for Brain Science). b, Experimental timeline. c, Real-time place aversion (RTPA) performance of EYFP (Nâ€‰=â€‰13) and ChR2 (Nâ€‰=â€‰17) groups (paired t-test, EYFP (tâ€‰=â€‰0.2167, df = 12, Pâ€‰=â€‰0.83), ChR2 (tâ€‰=â€‰4.713, df = 17). d-e, Effect of optogenetic excitation on OFT centre time (d) and number of entries into the centre zoneI) in EYFP (Nâ€‰=â€‰11) and ChR2 (Nâ€‰=â€‰10) groups (unpaired t-test, tâ€‰=â€‰3.288, df=19). f-g, Effect of optogenetic excitation in EYFP (Nâ€‰=â€‰13) and ChR2 (Nâ€‰=â€‰17) groups in the high-threat context on f, freezing during WN (LED-on vs LED-off, Wilcoxon matched-pairs signed rank test, ChR2) and g, flight during WN (LED-on vs LED-off, Wilcoxon -test, ChR2, Pâ€‰=â€‰0.07). h, Comparison of flight scores in the LED-on condition between EYFP control and ChR2 groups (Mann Whitney test, Pâ€‰=â€‰0. 0.0349). i-j, Effect of optogenetic excitation in EYFP (Nâ€‰=â€‰6) and ChR2 (Nâ€‰=â€‰10) groups in the low-threat context on i, freezing during WN (LED-on vs LED-off, paired t-test, ChR2, tâ€‰=â€‰7.135, df = 9) and j, flight scores during WN (LED-on vs LED-off, paired t-test, ChR2, tâ€‰=â€‰tâ€‰=â€‰2.717, df = 9). Box and whisker plots in c indicate median, interquartile range, and min. to max. of the distribution, crosses indicate means. Data in d-e and h represented as mean Â± s.e.m, and as mean with individual data points in f,g,i,j. Two-sided statistical tests were used. ***Pâ€‰<â€‰0.001, **Pâ€‰<â€‰0.01, *Pâ€‰<â€‰0.05.
Source Data


Extended Data Fig. 9 (Data related to Fig. 5): Optogenetically evoked responses in central amygdala neurons.
a, Schematic of targeting strategy. b, DP terminals in CeM near SOM+ (left) and CRH+ (right) cells at 20x and 40x magnification. c, Strategy for recording light-evoked synaptic input from DP to SOM+ or CRH+ neurons from CeM (top) and CeL (bottom) regions. d, Representative evoked synaptic responses in CeM SOM+ and CRH+ cells by photostimulation of DP axonal fibres in voltage-clamp. e, Photostimulation of axonal fibres did not evoke responses in CeL neurons. f, Average amplitude of evoked EPSCs in CRH+ neurons (Nâ€‰=â€‰10 cells from 3 mice) and SOM+ (Nâ€‰=â€‰13 cells from 3 mice) at âˆ’70 mV (unpaired Studentâ€™s t-test, tâ€‰=â€‰0.4879, df = 21, pâ€‰=â€‰0.63). g, Amplitudes of evoked EPSCs in CRH+ (Nâ€‰=â€‰4 cells from 3 mice) and SOM+ (Nâ€‰=â€‰3 cells from 2 mice) neurons at âˆ’70 mV, before and after application of DNQX. h, Average amplitude of evoked EPSCs in CeM (Nâ€‰=â€‰23 cells from 6 mice) and CeL neurons (Nâ€‰=â€‰5 cells from 2 mice). i, The amplitude of disynaptic IPSCs evoked by ChR2 stimulation of DP terminals in CRH+ (Nâ€‰=â€‰7 cells from 3 mice) and SOM+ (Nâ€‰=â€‰11 cells from 2 mice; unpaired Studentâ€™s t-test, t(16)â€‰=â€‰0.055; pâ€‰=â€‰0.96) neurons at â€“50â€‰mV. j, The firing properties of DP-targeted CeM neurons. Data in f,h,i represented as mean Â± s.e.m. Two-sided statistical tests were used. ***Pâ€‰<â€‰0.001, **Pâ€‰<â€‰0.01, *Pâ€‰<â€‰0.05.
Source Data


Extended Data Fig. 10 (Data related to Fig. 5): Brain regions targeted by CeM neurons receiving DP innervation.
a, Representative image showing ChR2 injection targeting in the DP. b-c, Representative images showing targeting of red beads to the b, dorsal (dl/l PAG) and c, ventrolateral (vlPAG) periaqueductal gray regions for electrophysiological recordings of PAG-projecting CeM neurons. d, Representative expression of EYFP in the DP of a C57BL/6â€‰J mouse injected with AAV1-cre-EYFP. e, Cre-dependent mCherry expression in the CeM of the same mouse. f-l, mCherry+ terminals of CeM neurons innervated by the DP project to insular cortex (f), nucleus accumbens (Acb, g), substantia innominata (SI, h), periventricular thalamus (PVT, i), lateral hypothalamus (LH, j), ventral tegmental area (VTA, k), and retrorubral field (RRF, l).
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