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The head direction (HD) system functions as the brain’s internal compass*?,
classically formalized as a one-dimensional ring attractor network>*. In contrast

to aglobally consistent magnetic compass, the HD system does not have a universal
reference frame. Instead, it anchors to local cues, maintaining a stable offset when
cues rotate>® and drifting in the absence of referents>®'°. However, questions about
the mechanisms that underlie anchoring and drift remain unresolved and are

best addressed at the population level. For example, the extent to which the
one-dimensional description of population activity holds under conditions of
reorientation and driftis unclear. Here we performed population recordings of
thalamic HD cells using calcium imaging during controlled rotations of a visual
landmark. Across experiments, population activity varied along a second dimension,
which we refer to as network gain, especially under circumstances of cue conflictand
ambiguity. Activity along this dimension predicted realignment and drift dynamics,

including the speed of network realignment. In the dark, network gain maintained a
‘memory trace’ of the previously displayed landmark. Further experiments
demonstrated that the HD network returned toits baseline orientation after brief,
but not longer, exposures to arotated cue. This experience dependence suggests
that memory of previous associations between HD neurons and allocentric cues is
maintained and influences the internal HD representation. Building on these results,
we show that continuous rotation of a visual landmark induced rotation of the HD
representation that persisted in darkness, demonstrating experience-dependent
recalibration of the HD system. Finally, we propose a computational model to
formalize how the neural compass flexibly adapts to changing environmental cues
to maintain areliable representation of HD. These results challenge classical
one-dimensionalinterpretations of the HD system and provide insights into the
interactions between this system and the cues to which it anchors.

The HD system, commonly referred to as the neural compass, under-
lies a navigator’s sense of direction"™, In contrast to a traditional
compass, the orientation of the HD systemis anchored to local environ-
mental cues®>'®, Our understanding of the mechanisms that support
the ability of the HD network to align with specific cues and maintain
a consistent sense of direction remains limited. Recent research has
shown that substantial variability in HD cell activity during sleep can-
notbe explained by asingular angular dimension'*®, This observation
challenges the classical view of the internal HD representation as a
unidimensional (that s, angular) construct and motivates further inves-
tigation of its complexity, from a population perspective, to under-
stand whether extra dimensions are needed to fully capture how the
system adapts to unstable conditions (that s, changing, missing and/
or conflicting sensory information) in wakefulness. While updating

the internal HD representation requires integration of information
frommultiple sensory modalities, manipulations of visual cues alone
are sufficient to reorient this representation®”2, The visual input
exerts a dominant influence on the HD network alignment, probably
through afeedback correctionthat calibrates theintegration of angular
movements?. Computational models of the HD network suggest that
plasticity mediates the integration of visual information within the
network®, confirmed recently in fruit flies®®* but not yet in mam-
mals. Here we characterize the thalamic HD network response to visual
manipulations, yielding new insights into the mechanisms that underlie
anchoring and calibration of this representation. Furthermore, we
provide anetwork model to assess the plausibility of synaptic plastic-
ity as amechanism to explain the observed variability in the system’s
response to externally controlled changes in visual information.
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Fig.1|Populationrecordingsinthe mouse ADN. a, Schematic of therecording
environmentwithina360° LED screen. Scale bar,20 cm. b, GCaMP6fexpression
inthe ADN.Intotal, 12 mice were injected and implanted for this study, and only
3 (Extended DataFig.la-c) provided enough simultaneously recorded HD cells
for continued experimentation. Scale bar,2 mm. ¢, Example tuning curves of
ADN cells with high directional tuningin polar coordinates. The red lines and
numbers show the meanresultantvectors and PFD, respectively. R, correlation
coefficient.d, Field of view (FOV) of the ADN showing the PFD of each cell. Scale
bar,0.125 mm. e, The distribution of ADN cellsrecorded across mice (n=3)

and sessions (n=99). Thered lineindicates the median (minimum, maximum,
median, 25th percentile and 75th percentile, respectively, are as follows:
mouse1(all): 38,188,105,70 and 131; mouse 1 (HD): 35,154, 96, 66 and 128;
mouse2 (all):102,168,138,126.5 and 147; mouse 2 (HD): 97,154,129,114.75and

Calciumimaging of the HD network

We performed calcium imaging of the anterodorsal thalamic nucleus
(ADN) in three mice using ahead-mounted endoscope®~°. Our record-
ings (n =102 20 min sessions, with baseline periods of 3, 5 or 10 min
depending on the experiment) enabled us to monitor up to 255 ADN
cells simultaneously as mice freely explored a small elevated circular
platforminside alarger enclosed chamber (Fig.1a-g and Extended Data

139.75; mouse 3 (all): 90, 255,174,137 and 204.5; mouse 3 (HD): 88, 239,162.5,
133and195.5). The values above the box plotsindicate the percentage of HD
cells (green) amongallrecorded ADN cells (blue) shownas mean + s.d. f, The
distribution of correlation coefficients of ADN cells. The dashed yellow line
represents the HD neuron detection threshold (shuffled control: P< 0.05).
Datafromthree10 minbaselinerecording sessions (one per mouse). g, HD
population coverage of the azimuthal plane from one session. h, Projection of
high-dimensional neural data onto a 2D polar plane using a feedforward neural
network during abaselinerecording. i, HD decoding. Top, log-likelihood
distributionacross time. Bottom, measured HD (blue) and decoded HD (red)
using maximum likelihood. j, The distribution of the absolute residual error
across baseline recordings from the first experiment (n = 42 sessions).

Fig.1a-c). This chamber was composed of a 360° circular LED screen
covered by anopaque dome (Fig. 1a). During baseline recordings at the
start of each session, we displayed a polarizing vertical white stripe on
the otherwise black LED screen. All subsequent testing involved the
manipulation of this visual cue.

Calcium imaging data were motion-corrected and spiking activity
wasinferred from extracted fluorescent transients*~? (Extended Data
Fig.1d). Baseline recordings revealed HD cells with preferred firing
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directions (PFDs) that tiled the full 360° horizontal plane (Fig. 1g and
Extended Data Fig. 1c). Consistent with previous research, ADN neu-
rons were tuned to specific HDs"**** albeit with higher proportions
(Fig. 1c-g and Extended Data Figs. 1and 2). HD tuning was stable in
the presence of visual cues® (Fig. 1c and Extended DataFigs.1d and 2),
and exhibited anticipatory firing® (Extended DataFig. 3a). In contrast
to the HD system in the central complex of Drosophila®®, we did not
observe topographic organization (Fig.1d and Extended Data Fig.1b).

Toinfer the internal HD representation (referred to here asinternal
HD), we trained a Bayesian decoder® to estimate the animal’s HD on
the basis of the baseline training data (Fig. 1i). This decoder accurately
recovered the measured HD in stable experimental conditions (median
absolute error (MAE) of test data = 5.96°; Fig. 1j).

To visualize the low-dimensional structure of the HD representa-
tion, we developed a method to project large ensemble recordings
onto atwo-dimensional (2D) polar state space (Methods). We trained
adeep neural network onthe measured head direction while allowing
an untrained latent variable to capture variability in the neural data
that cannot be explained by changes in the head direction alone. This
inferred latent variable constitutes the radial component in the 2D
polar state space (thatis, secondary dimension). When applied to the
baseline data, we obtained aring-like structure (Fig. 1h), reminiscent of
ring attractor models and previous analyses>738, This further confirms
that theinternal HD representation is approximately unidimensional
instable conditions.

Network gain covaries with reset dynamics

To investigate how HD network dynamics enable reorientation, we
recorded the HD network during a cue-shift paradigm. After abaseline
recording, the cue was removed for 2 min (darkness) and then reap-
peared at a 90° shifted position for 2 min. We repeated this sequence
four times per recording session (Fig. 2a).

This manipulation resulted in predictable changes in the HD net-
work’s patterns of activity. To characterize these dynamics, we defined
an ‘offset’ as the mismatch between the measured and decoded HD (see
the ‘Analysis of drift’ section of the Methods). Tracking this offset, we
observed arotational response after cue reappearance that matched
the cue shift. We refer to this phenomenon as areset (Fig. 2a). Notably,
resetting events were not homogeneous, as they occurred across awide
range of angles and speeds (Fig. 2b).

Cuesshiftsinduced significant changes in the overall network activ-
ity. We observed modulation in the amplitude of the bump of activ-
ity (see the ‘Reconstruction of the bump of activity’ section of the
Methods), which coincided with changes in the radius of the latent
space (Fig. 2c,d). Intuitively, allowing the internal HD representation
to occupy a 2D polar state space makes the distance between any two
givenangles 8,and 6, a function of the radial component, which led us
to hypothesize that changesin radius not only reflected changesinthe
overall populationactivity but would also correlate with changes in the
speed of reset (Extended Data Fig. 4). To quantify this, we computed the
total population activity normalized to the baseline activity,ameasure
that we refer to as the network gain (Extended Data Fig. 5; see the ‘Calcu-
lation of network gain’ section of the Methods). State-space radius was
highly correlated with network gain (Fig. 2d,e), indicating that gain can
beused as aninterpretable measure of the radial component. To better
understand the relationship betweenresetting events and network gain,
wefirstanalysed the 90°-centred reset range (thatis, [70:110]° range).
We found that the speed of HD-network reorientation, or ‘reset speed’,
was anticorrelated with network gain (Fig. 2g—-i). Separation of the
resetting eventsinto two groups (Fig. 2g) revealed that fast resets were
associated with a substantial reduction in network gain shortly after
cue reappearance, whereas slow resets exhibited a smaller reduction
ingain (Fig. 2h and Extended Data Fig. 6a). Inall cases, resetting events
took the form of a continuous rotation of the HD representation from
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aninitial orientation to the reset direction, passing by allintermediate
angles without the appearance of secondary bumps of population
activity (Extended Data Fig. 7a). This reset was slower than what has
previously been reported®, possibly due to differences in behaviour,
habituation and/or the geometry of the testing set-up. Our modelling
resultsshow thatanattractor network model thatincorporated network
gainreplicated these dynamics with 71% accuracy in classifying fast
versus slow resets (Fig. 2j,k and Extended Data Figs. 7b-d).

Behavioural differences as measured by the head angular velocity
before and after cue onset could not explainthe sharp decreaseingain
amplitudes (Extended Data Fig. 8a). However, reduced head angular
velocity immediately preceding cue events was predictive of fast resets,
and vice versa (Extended Data Fig. 8b,c).

Resetting eventsalso varied in the angular difference between their
initial and stabilizing orientations. We grouped resets by the distance
between pre-cue offset and the offset after stabilization (Extended Data
Figs. 6b and 9a), and found that network gain was anticorrelated with
reset range (Extended Data Figs. 6b and 9b,c). This relationship was
independent of reset speed (Extended Data Fig. 9a), suggesting that net-
work gainisindependently modulated by the estimated error between
the internal representation and the actual location of the visual cue.

Wealso detected arapid spikeingain at the cue onset that was largest
in short-range resets (Extended Data Fig. 9d). This may reflect visual
inputs, but further investigation was limited by the temporal resolu-
tion of calcium imaging.

HD neurons maintain a trace of the cue

The HD network drifts in the absence of visual cues®*°, We hypoth-
esized that network gain would decrease once the visual cue is removed
due to decreased sensory input. This would bring the HD system to a
lower energy state and cause the internal representation to become
proneto spontaneous shiftsbecause of the decrease in signal-to-noise
ratio of neural activity. During all darkness epochs (D1 to D4), we
observed anincreasein drift relative to baseline (Fig.3a,b and Extended
DataFig.10a), which coincided with an abrupt decrease in the network
gain after cue removal (Fig. 3c). Notably, changes in the network gain
were dependent ontheinternal HD during darkness. When the internal
HD pointed towards the internal location of the visual cue (0°), the
reductioningain was minimal; deviations from this direction resulted
in more pronounced gain decreases (Fig. 3d,e). This gain profile per-
sisted across all darkness periods with the difference between peak
and troughincreasing from the first to last darkness epoch (Extended
DataFig.10d,e). Animal behaviour did not significantly affect the gain
landscape, except that gain amplitude increased with the absolute
head angular velocity (Fig. 3e and Extended Data Fig. 11), consistent
with previous observations®**’, This suggests that the HD network
maintains a ‘memory trace’ of salient visual cues.

Drift patterns were not homogenous across the four darkness epochs
(Extended Data Fig. 10a-c). During D1, drift fluctuated around the
baseline orientation with no directional bias. By contrast, driftin D2,
D3 and D4 exhibited directional biases dependent on the baseline ori-
entationand previous cue location. During D2, drift diverged fromits
resetorientation towardsits baseline orientation, counter to the rota-
tionimplied by the previous cue shift. During D3 and D4, drift rotated
towards the baseline orientation but consistent with the direction
implied by the previous cue shifts. These observations indicate that
drift depends on previous visual experience. These predictable drift
biases after exposure to the changing visual reference frame (D2 to D4)
appeared to consistently bring the HD network closer to its original
configuration (that is, the baseline state). Consecutive shifts of the
visual cue in one direction further biased the drift in that direction
(Extended Data Fig.10b,c). These results suggest that both the stable
allocentric and dynamic visual reference frames exert a persistent
influence on the network orientation.
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Fig.2|Network gain covaries withresetting dynamics. a, Experimental
protocol (top). Middle, example session showing the offset obtained by
subtracting decoded from measured HD (blue dots). Red, smoothed offset.
Darkness periods areshadedin grey. Bottom, measured (blue) and decoded
(green) HD. b, Example fast (top) and slow (bottom) resets. The horizontal solid
lineindicates the cuelocation. The offsetis relative toits angle at the cue onset.
¢, Projection of population activity onto the polar plane for the baseline (left)
andtheentire session (right).d, The same asinc; however, points are shaded by
their radius (left). Right, mean bump of activity in the internal reference frame
acrossradiusranges. e, Therelationship between network gain and state radius
(n=42x L datapoints, where L is the number of frames in asession). R?value of
linear regression model fit. Dataaremean +s.d. f, Triggered average of network
gain(n=168 =4 x 42 cue events). The dashed red line indicates the cue display.
g, Mean offsets for fast (light blue; n = 22 resets) and slow (dark blue; n =20
resets) resets. Both groups have similar ranges (two-sided Wilcoxon rank-sum
test, P=0.4131,Z=0.82), yet their speeds are different (two-sided Wilcoxon

Drift patterns are experience-dependent

The presentation of a rotated visual cue for 2 min was sufficient to cause
arepresentational shift and override the influence of non-visual cues
(self-motion, olfactory and so on). Yet, we observed atendency of the

rank-sumtest, P=1.0982 x107%, Z=4.87;150 frames (-5 s) after the cue).

h, Network gains of fast and slow reset groups have similar amplitudes before
cuedisplay (two-sided Wilcoxon rank-sumtest, P=0.6234, Z= 0.49; 50 frames
(-1.67 s) before the cue), yet are different after cue display (two-sided Wilcoxon
rank-sumtest, P=0.0085,7=2.63;150 frames (-5 s) after the cue). The same data
asing.i, Therelationship between gain and reset speed within150 frames (-5's)
after the cue (n =42 x 150 datapoints). The Pvalue was calculated using an F-test
onalinear modelfit.j, Simulation of the bump of activity showing gain control
ofreset speed. The gain remains constant after cue display (dashed red). The
solid white lines show the relative cue location. k, Model-based prediction (red)
and truereset (blue). The dashed blacklines indicate the cue display. The solid
yellowlines indicate therelative cue location. All clockwise sessions were
reflected across the xaxis and transformed into counter-clockwise ones. Time-
dependentsignalsinf-hareshownasmean +s.e.m.Bargraphsanderrorbars,
exceptine,showmean ts.e.m.withindividual datapoints.

network torotate back towards theinitial configuration, thatis, revert
tobaseline, during darkness. We hypothesized that this could implicate
plastic processes through which a ‘memory’ of baseline state exerts
influence on the internal HD representation. If true, drift dynamics
might depend onthe duration of exposure to the shifted-cue context.
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the dottedredline (two-sided Wilcoxon rank-sum test, P=9.0165 x 10,
Z=6.81; comparisonbetween mean values over 40 s before and 40 s after cue
removal; thesame dataasina).d, Network gain tuning curves at the baseline

Totest this, we limited the display of the rotated visual cue to 20 s (+90°
fromthebaseline; Fig. 4a). These shortened cue events elicited resets
followed by reversions towards baseline during darkness (Fig. 4a-c).
However, in comparison to the 2 min experiment (specifically D2, which
was similarly preceded by a +90° rotated cue event), reversion was
much stronger after the presentation of a20 s visual cue (Fig. 4c). The
attraction of the network toits baseline state was further demonstrated
through vector field analysis (Fig. 4d; see the ‘Vector field analysis’
section of the Methods). These results indicate that the internal rep-
resentation of the baseline allocentric reference frame is not entirely
lost after a reset and can still influence the HD network in darkness,
depending on the duration of experience within the competing reset
reference frame context. Addition of Hebbian learning to our model
shows that,indeed, HD neurons could form new associations with the
unchangedallocentric cues, depending onthe duration of exposure to
thereset context. Givenenough time, the synaptic strength of these new
associationsincreased while old associations were depleted, resulting
in a new steady state. In this scenario, our simulations of the internal
HD representation showed limited baseline attraction. By contrast,
synaptic weights did not change significantly after shorter (20 s) cue
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exposures, and baseline associations remained dominant, resultingin
strong reversions (Extended Data Fig. 12).

Next, we examined potential competition between baseline and
reset reference frames by comparing network gain patterns after long
and short shifted-cue exposures. While the gain landscape during D2
exhibited a single peak at 0° in the internal HD (corresponding to the
shifted cue orientation after reset), the gain landscape during darkness
after the 20 s cue events exhibited additional peaks at +90° (Fig. 4e,f
and Extended Data Fig. 13). Notably, these peaks matched the alter-
nating +90° cue structure of the experimental design, suggesting the
coexistence of associations between HD neurons and allocentric cues
from multiple visual contexts. These differences provide additional
evidence of time-dependent effects of visual experience.

Cuerotation causes persistent drift bias

Inthe 2 min cue-shift experiment, visual information provided adomi-
nant polarizing cue to reset the HD system. In some cases, resets were
slow (>30 s), indicating that non-visual cues competed with visual
information to stabilize the network. The 20 s cue-shift experiment
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provided further evidence that the baseline reference frame maintains
a persistent influence on the HD network. To better understand the
dynamics of this competition, we tested whether visual information
coulddrive resetting when in continuous conflict with non-visual infor-
mation, including self-motion cues. We recorded HD cell populations
during presentation of a slow rotating visual cue (1.5 or 3.0° per s) for
7 min (Fig. 5a,b).In all cases, and for both speeds, the HD network was
continuously updated by the visual cue (Fig. 5a-c), highlighting the
dominant effect that the visual input has over all other inputs in con-
trolling the HD system.

Notably, the HD network continued to rotate in the same direction
and atasimilar speed when the rotating cue was turned off (Fig. 5a,b,d
and Extended Data Fig. 14a; see the ‘Analysis of cue-rotation sessions’
section of the Methods). This persistent bias was replicated in our net-
work model by adding arecalibration circuit to asymmetrically change
the strength of vestibular input through visual feedback (Extended
DataFig. 14b-e and Supplementary Information). We also observed
an attraction to the baseline internal representation, similar to our
prior experiments. The system started to stabilize once the internal

arrowsindicate the direction of meandrift speed and meandrift acceleration
(fromn =58 events). The arrow length was scaled down for illustration. Right,
simulated streamlines. The stable regimeis highlightedinred. e, Network gain
heat maps. Left, 20 s cue-exposure experiment. Datarepresentinstances of
reversionto the baseline (n =43 events). Right, D2 of the 2 min cue-exposure
experiment (n =34 events).f, The gain difference between heat mapsine
showing the appearance of new bumps at the locations of cue-shifts (+90°)
(left). Right, P-value matrix for the data on the left (two-sided Wilcoxon rank-
sum test; pixels where P> 0.001and/or gain (20 s) < gain (D2) are marked as not
anumber (NaN)). Time-dependentsignalsinaand care shown as mean (solid
line) +s.e.m. (shaded area).

HDrepresentation approached the baseline state (Fig. 5e and Extended
Data Fig. 14a). This phenomenon could also be reproduced in our
modelinwhich, after 7 min of cue rotation, no strong new associations
between HD neurons and allocentric cues could emerge to form anew
steady state. Instead, baseline associations remained dominant, albeit
with a significant weight decay in the synaptic matrix (Extended Data
Fig.14d). Together, these resultsindicate that experience with dynamic
reference frames can bias the HD network and implicate asymmetric
recalibration of vestibular input integration within the HD network as
apotential source of this bias.

Discussion

We combined large population recordings of ADN neurons with visual
cue manipulations to characterize the population dynamics of the
mammalian HD system. Controlled manipulations of a visual cue
induced global fluctuations in network activity captured by a meas-
ure that we termed network gain. Network gain represents a func-
tional dimension in the internal HD representation, in addition to its
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classically appreciated angular dimension. Reorientations, in response
to visual cue shifts, were associated with a transient decrease in net-
work gain, the magnitude of which was correlated with the speed of
the HD network’s realignment with the rotated visual reference frame
(thatis, reset). By extending a standard model of the HD system*® to
incorporate network gain, we were able to predict the speed of the
reset response. These results suggest that modulation of network
gain provides the HD system with a mechanism to rapidly reorient.
Network gain also reflected the past experience of the system—
apolarizing visual landmark induced persistent distortions in the
network gain profile, forming a memory trace in darkness. These
network gain patterns were dependent on the duration of the pre-
vious shifted-cue exposure, suggestive of plastic processes in the
HD network. Evidence for plasticity was further strengthened by
experience-dependent drift behaviours in darkness periods. Incor-
porating Hebbian plasticity into our network model replicated these
observations. Finally, the HD system anchored to a continuously rotat-
ing visual cue and continued to rotate after the cue was removed. A
model of asymmetric vestibular input recalibration reproduced these
results, suggesting that the integration of vestibular information within
the HD network is also experience dependent.
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Fig.5|Opticflow calibratesintegration of changein HD. a, Experimental
protocol (top). Middle, example offset (blue dots) during fast cue rotation
(3°pers) showing persistent drift bias after cue removal. The solid red lines
show low-pass filtered offset. Bottom, cue location (dashed yellow) and
measured HD (solid black) relative to baseline cue location. Darkness periods
areshowningrey. b, Example fast-cue-rotation session showing stabilization of
theinternalrepresentation with an overshoot past the baseline orientation
(top). Bottom, thesame asina. c, Meandrift speed during cue rotation (rot.)
for fast (light blue) and slow (dark blue) sessions. Data are across-session

mean +s.d. Top leftinset: subtraction of the cue-rotation speed from the
average drift speed forindividual sessions shows the average deviation of
drift-speed with reference to the cue-rotation speed per session. Bottom right
inset: comparison of drift-speed s.d. values between fast and slow sessions
(two-sided Wilcoxon rank-sumtest, P=0.5262,7=0.63).d, The mean offset for
fast (light blue; n=19 events) and slow (dark blue; n = 25 events) sessions (left).
Thedotted lines correspond to the natural progression of offset if drift speed
matched the speed of cue rotation. Data are mean (solid line) + s.e.m. (shaded
area). Right, drift-speed comparison between fast and slow sessionsin the first
minute after cue removal (Wilcoxon rank-sumtest, P=0.0393,7=2.06). All
clockwise sessions were reflected across the xaxis and transformed into
counter-clockwise ones. e, Drift vector field (left). The arrows indicate the
direction of mean drift speed and mean drift acceleration (n = 60 sessions).
Arrow lengthwas scaled down forillustration purposes. Right, simulated
streamlines. The stableregimeis highlightedinred. Ina-d, fast sessionsin
which the offset angle at the beginning of the second darkness was within
[-180:-145]U[145:180]° were considered, whereas slow sessions in which the
offset’sinitial positionin the second darkness was within [-125:-55]° were
included.Ine, all sessions were considered regardless of the offset angle at the
start of the second darkness. Forcandd, dataare mean +s.e.m. withindividual
datapoints.

Network gainreduction during realignment of the HD network sug-
geststhatafeedback signal downstream of ADN provides global inhibi-
tion to the network. Similar ideas have been proposed in the central
complex of fruit flies**2. Modulation of global neural activity might
allow the HD system to operate at different energy levels with varying
degrees of stability, reflecting uncertainty in the HD representation.
We hypothesize that the animal’s engagement in exploratory behaviour
together withincreased familiarity with the experimental environment
andits geometric specificities could sustain a high-gain/high-certainty
regime of operation and cause resistance to HD network reorientations
imposed by visual cue shifts.

Recentresearchin fruit flies demonstrated plasticity between visual
input and the compass neurons*?, The current study complements
these studies and provides evidence for experience-dependent influ-
ence of visual landmarks in mammals. Indeed, the mammalian brain
appearsto maintainamemory of the associations between HD neurons
and visuallandmarks, inthe form of preferential firing, long after land-
marks disappear. We propose that memory traces of salient cues in
ADN cells help to stabilize the HD system during navigation, evenin the
absence of reliable environmental anchors by maintaining high activity
levels (that s, high signal-to-noise ratio) around internal cue locations.
Whether these network gain bumps have an active role in guiding navi-
gation behaviour remains an open question. Moreover, baseline-state
attraction during darkness is further evidence of long-term effects
in the HD system. As the strength of this attraction depends on the
duration of exposure to the shifted-cue context, we speculate that the
underlying mechanisms leading to such behaviour involve synaptic
plasticity. Through network modelling, we demonstrated that, by add-
ing Hebbianlearning, the observed drift patterns could bereplicated.
Our model proposes that neurons akin to the ring cells of fruit flies could
mediate experience-dependent drift dynamics. Whether such neurons
existin the mammalian brainis yet to be determined.

The factthata continuously rotating visual scene caused persistent
biases in the HD representation, as demonstrated in our cue-rotation



experiment, suggests that the integration of vestibular inputs under-
goes an experience-dependent calibration. Our findings complement
asimilar finding in place cells?? and support a model of hierarchical
transfer of information from HD neurons to downstream cells of the
navigation system (thatis, place cells, grid cellsand so on) to maintain
consistent and flexible cognitive maps"*+*¢,

Ultimately, our findings provide insights into the mechanisms
that govern realignment and stabilization of the HD network, and
how long-term effects of previous experience affect its dynamics.
Importantly, these findings highlight the complexity of the internal
HD representation and motivate studying this cognitive systemina
multidimensional framework. Here we show evidence for the func-
tionalimportance of the global fluctuations in network activity (that s,
gain) asacritical, yet previously underappreciated, dimension. Future
studies examining the origins of such fluctuations will be critical to
unveil the complete picture of the intrinsic structure of this circuit.
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Anymethods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
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Methods

Mice

Twelve male wild-type mice (C57BI/6, Charles River) were used for this
study, three of which provided enough simultaneously recorded HD
cellsfor continued experimentation. Mice were housed individually at
22°Cunderal2 h-12 hlight-dark cycle and 40% humidity with food and
water ad libitum. All of the experiments were performed inaccordance
with McGill University and Douglas Hospital Research Centre Animal
Use and Care Committee (protocol 2015-7725) and inaccordance with
Canadian Institutes of Health Research guidelines.

Surgeries

During all surgeries, mice were anesthetized by inhalation of a com-
bination of oxygen and 5% isoflurane before being transferred to the
stereotaxic frame (David Kopf Instruments), where anaesthesia was
maintained by inhalation of oxygenand 0.5-2.5%isoflurane for the dura-
tion of the surgery. Body temperature was maintained with a heating
pad and eyes were hydrated with gel (Optixcare). Carprofen (10 ml kg™)
and saline (0.5 ml) were administered subcutaneously, respectively,
at the beginning and end of each surgery. Preparation for recordings
involved three surgeries per mouse. First, at the age of 7-8 weeks, each
mouse was injected with 600 nl of the non-diluted viral vector AAV9.
syn.GCaMP6f.WPRE.eYFP, sourced from University of Pennsylvania
Vector Core. All injections were administered through glass pipettes
connected to the Nanoject Il (Drummond Scientific) injector at a flow
rate of 23 nl s One week after injection, a0.5-mm-diameter gradient
refractiveindex (GRIN) relay lens (Go!Foton) wasimplanted above the
ADN (AP, -1.05; ML, 0.8; DV, -3). No aspiration was required. Inaddition
tothe GRIN Iens, three stainless steel screws were threaded into the skull
tostabilize the implant. Dental cement (C&B Metabond) was applied to
secure the GRIN lens and anchor screws to the skull. Asilicone adhesive
(Kwik-Sil, World Precision Instruments) was applied to protect the top
surface of the GRIN lens until the next surgery. Then, 2 weeks after lens
implantation, an aluminium baseplate was affixed by dental cement
(C&B Metabond) to the skull of the mouse, which would later secure
the miniaturized fluorescent endoscope (miniscope) in place during
recording. The miniscope/baseplate was mounted to a stereotaxic
armfor lowering above the implanted GRIN lens until the field of view
contained visible cell segments, and dental cement was applied to
affix the baseplate to the skull. A polyoxymethylene cap was affixed to
the baseplate when the mice were not being recorded to protect the
baseplate and lens. After surgery, animals were continuously moni-
tored until they recovered. For theinitial 3 days after surgery, the mice
were provided with a soft diet supplemented with Carprofen for pain
management (MediGel CPF). Screening and habituation to recording
in the experimental environment began 2-3 days after the baseplate
surgery. The first 3-4 weeks of recordings were used to confirm the
quality and reliability of the calcium data while the animal was explor-
ing the environment with different screen displays.

Data acquisition

In vivo calcium videos were recorded with a miniscope (v3; https://
miniscope.org) containing a monochrome CMOS imaging sensor
(MT9V032C12STM, ON Semiconductor) connected to a custom data
acquisition (DAQ) box (https://miniscope.org) with alightweight, flex-
ible coaxial cable. The cable was attached to anoiseless pulley system
with acounterbalance (placed outside the recording environment) to
preventinterference withthe recorded animal’s movements andto alle-
viate the weight of the miniscope. The DAQ was connected to a PC with
a USB 3.0 SuperSpeed cable and controlled using Miniscope custom
acquisition software (https://miniscope.org). The outgoing excitation
LED was set to 3-6%, depending on the mouse, to maximize the signal
quality with the minimum possible excitation light to mitigate the risk
of photobleaching. The gain was adjusted to match the dynamic range

oftherecorded video to the fluctuations of the calcium signal for each
recording to avoid saturation. Behavioural video data were recorded
using awebcam mounted above the environment. The DAQ simultane-
ously acquired behavioural and cellular imaging streams at 30 Hz as
uncompressed AVIfiles and all recorded frames were timestamped for
post hocalignment. Two controllable LEDs (green and red) were added
and used for tracking such that, whenever the miniscope was attached
tothebaseplate, the green LED pointed to the right side of the mouse’s
head and the red LED pointed to the left side. All other light sources
from the miniscope were covered. All recordings took place inside
a360° LED screen (height: 1 m, diameter: 90 cm; Shenzhen Apexls
Optoelectronic), at the centre of which we placed a wall-less circular
platform (diameter, 20 cm) raised 50 cm above the ground. Mouse
bedding was evenly spread over the platform before each recording
session. In all recordings, mice were free to move on top of the raised
platform. A half spherical dome was used to cover the environment and
prevent external light from entering, while it also held the behavioural
camera. The experimental environment was designed to maximize
circularsymmetry, in the absence of any screen display. During habitu-
ation, mice were recorded while exposed to asingle vertical stripe or no
visual display (darkness). These recordings were also used to confirm
the quality of tracking the head direction and the cue location, in dif-
ferent conditions. Inall experimentsin this study, the visual cue refers
to asingle white vertical stripe (width, 15 cm; height, 1 m).

Data preprocessing

Calcium imaging data were preprocessed before analyses through a
pipeline of open-source MATLAB (MathWorks; v.R2015a) functions to
correct for motion artifacts®, segment cells and extract transients**¢,
and infer the likelihood of spiking events by deconvolution of the tran-
sient trace through afirst-order autoregressive model’’. We wrote a MAT-
LAB (MathWorks, v.2015a) program to perform offline tracking of the
LEDs and determine, at each frame, the animal’s head direction. Another
custom-written program was used to estimate the location of the visual
cue. Both scripts were incorporated into the preprocessing pipeline.

Data analysis

Inthisstudy, neural activity refers to the deconvolved calciumtraces as
described previously™ unless specified. The resulting time series (per
neuron, per session) correspond to the inferred likelihood of spiking
events.Amoving average filter of width 3 frames (100 ms) is thenapplied
on each time series. We refer to the obtained signal as firing activity.

Identification of HD cells

Foreveryidentified cell segment (ROI), we construct an HD tuning curve
by measuring the occupancy-normalized firing activity within each
angle bin (1° per bin) of the horizontal plane (xaxis). The tuning curve
is circularly smoothed with a moving average filter of width 50°. This
enables us to have abetter estimate of the angle bin that corresponds
to the maximum firing activity of agiven neuron’s tuning curve, which
we will refer to as the PFD. We next construct a stimulus signal for that
specific PFD by convolving the measured HD signal (from the behav-
ioural camera) with a narrow Gaussian kernel (mean = PFD, s.d. =17°)
such that for every neuron i:

_ (angdiff(PFD;, Byyp(¢))?
stim;(¢) =e 202

Where, 8,5 is the measured HD time series, ois the s.d. of the Gaussian
kernel and, angdiff (a, b) isa MATLAB function that gives the subtrac-
tion of a from b, wrapped on the [-11,1t] interval. We correlate the
stimulus signal with anormalized version of the firing activity to obtain
the Pearson correlation coefficient r of each neuron. To determine the
threshold value of rabove which a cell can be identified as an HD neu-
ron, we used data from ten baseline recordings (3 min) per animal,
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randomly selected from the reset experiment. We start with arelatively
high value ry,.., and select allneurons such that r > ry,.qn. FOr each neu-
ron, we produce 1,000 shuffles of the firing activity using the MATLAB
circshift function (to preserve the temporal correlation of the firing
activity signal) at random shifts. We next correlate each shuffled ver-
sion with the stimulus signal of the corresponding neuron to obtain a
distribution of correlation coefficients (3 separate distributions, 1 per
mouse). We define r,9nSth as the value that corresponds to the 95th per-
centiles of the distribution, for mouse m. If r, g, > ", we keep iterat-
ingthesame procedure while decreasing .., by 0.01until convergence
(thatis, ry, e reo™), which constitutes the correlation coefficient
threshold to identify HD neurons for mouse m (see Extended Data
Fig.1d,e for anillustration of the results).

HD decoding from neural data

We trained a recently developed Bayesian decoder to infer the HD
direction fromthe deconvolved calcium responses of theimaged neural
population. Noise independence across neurons was assumed. Con-
ceptually, this decoderis similar to the Bayesian decoding method for
spike trains as commonly used in the literature*, except that we used
zero-inflated-gamma distribution to model the stochasticity of the
deconvolved calcium responses, instead of Poisson distribution. Our
previousresults showed that the zero-inflated-gammamodel could bet-
ter capture the noise of the calcium signal and provide better decoding
results compared with the Poisson noise model and a few other alterna-
tives. Details of this procedure can be foundinsection 4 of ref.*”. Here we
smoothed thelog-likelihood matrix (rows, angle bins; columns, frames)
by iteratively summing thelikelihoods over 5frames (-166.7 ms) centred
around the corresponding timestep of each iteration, for each angle
bin. Note that, owing to the predominance of HD-tuned neurons among
detected cell segments and to avoid selection biases, the neural activ-
ity from all ADN cells was used as an input to the decoding algorithm.

Analysis of drift
We define the offset as the angular difference between the measured
head direction (0,,casureq) and the decoded head direction (G gecoded):

OffSEt(t) = angdiﬁ:(edecodedf emeasured)

Inallanalysesinvolving drift estimation, both measured and decoded
HDs were smoothed with a moving average filter of width 20 frames
(-667 ms). For the analysis of drift during darkness (except for heat
maps), further smoothing was applied to extract the low-frequency
component of the signal whereby a moving average filter of width
300 frames (-10 s) was used. In all cases, a simple linear regression
was performed on the unwrapped offset signal over a sliding window
of 20 frames (667 ms) to estimate the drift speed at the centre of the
regression window (that s, slope of the fitted line).

Separation of fast and slow resets

Classification of resets within the [70:110]° range was done using
the k-means clustering function in MATLAB. We used data from the
first 1,450 frames after cue display. The algorithm separates between
two clusters by generating 50 replicates with different initial cluster
centroid positions for each replicate and then calculating the sums
of point-to-centroid distances for each cluster using the ‘city block’
distance metric.

Reconstruction of the bump of activity

At any given time, we can reconstruct the bump of activity from the
firingactivity of each neuron and their respective tuning curves using
anormalized weighted sum of tuning curves*s:

S.f O)r(0)

A6,t) =W,

where, Aisa360-by-T matrix (eachrowis a1°bin of the horizontal plane
and each columnis aframe within range T of the analysis), f;is the tuning
curve of neuroniand r;is the firing activity of neuron .

Calculation of network gain

We assume that, at any given time, the thalamic HD network is subject
to a global gain modulation of the firing activity, applied homogene-
ously on all ADN neurons such that:

re=a.f(6)+e, €-MO,0%),

where r;, is the instantaneous firing activity of ADN neuron i; a, is the
instantaneous gainfactor;f;is the tuning curve of ADN neuroni (calcu-
lated onthebasis of the response measured in the baseline condition);
6,isthe decoded head direction from neural activity at time ¢; and €is
the additive Gaussian noise.

Our goal is to estimate the value of a, at any given time ¢ using
maximum-likelihood estimation approach.

Given the decoded head direction at time ¢, 8, as well as the tuning
curves f;for all ADN neurons, we obtain the likelihood of observing r;,
with parameter a,:

P(r | f (6 a) =Ma, f (6),07).

We define the vectors:
I ACY
r
R=| |, Foy=| %,
In¢ ﬁv (0[)

where Nis the number of ADN neurons in the network.
Assuming independent activity between said neurons, we can cal-
culate the likelihood of observing R,:

PRAF@);a) =], PG f; B )

((r.-,f—atﬁwt»j
o< ni expl——5—|.

-202
We apply the logarithm on both sides:

it (6 2
log(P(R,IF (6, a,)) «_% y. % '

Our goal is to determine the parameter &, that maximizes the log-
likelihood such that:

a,=argmax log((P(RIF(,); a,)) =argmin ) . (r; .~ & f (6,))°.

a; a

Todo so, we take the derivative of the objective function with refer-
enceto a.and set it to zero:

d%‘t zi (r;,l‘_atﬁ (e[))z =0.

Thus:
2 I ACA

L)

t

Similar to the offset signal, the obtained gain is smoothed with a
moving-average filter of width 20 frames (-667 ms), unless otherwise
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specified. With the exception of Extended Data Fig. 5b-d, the gain
was always normalized to the average baseline activity. In Extended
DataFig. 5b-d, the tuning curves represent the average firing rates as
afunction of the internal HD for the entire recording session.

Gain heat-map analysis

Gain heat maps are 2D matrices in which each pixel p(x, y) isa2D bin of
width 1.5° per s corresponding to the measured angular head velocity
andheight1°correspondingtothe decoded HD. Pixel p(x, y) represents
the mean network gain—across mice and across sessions—withina 2D
average window of width [x - 3:x + 3]° persand height [y - 15:y + 15]°.
A 2D Gaussianfilter of s.d. =15 (15° x 22.5° per s) is then applied. The
network gain, the decoded HD and the measured HD were allsmoothed
with a moving-average filter of width 20 frames (-667 ms) while the
measured head angular velocity was approximated by asimple linear
regression with a regression window of similar width. To evaluate
the significance of the difference between gain heat maps (Fig. 4f),
we performed a Wilcoxon rank-sum test to compare, at each pixel,
the gain distributions within the 2D window of width [x — 3:x + 3]°
per s and height [y —15:y + 15]° between darkness epochs of the 20 s
experiment and D2 of the 2 min experiment. As we are only interested
inthe significance of the positive values (indicating the appearance
of new bumps), negative values as well as P> 0.001 were marked
as NaN.

Drift-speed heat-map analysis

Drift-speed heat maps were generated according to the same approach
asforthegain heat maps. However, drift speed was approximated by a
simple linear regression with aregression window of width 20 frames
(-667 ms). The P-value matrix for drift speed difference betweenthe 20 s
experiment and D2 of the 2 min experiment (Extended Data Fig. 13e)
was calculated as described above. However, only P values > 0.001
were marked as NaN.

Vector field analysis

The purpose of thisanalysisis toillustrate baseline attractiveness. We
define the state space (y axis, drift-speed (° per s); x axis, drift-angle
(°)). We construct a vector field matrix by dividing the x axis into 18
bins of width 20° each within the range [-180:180]°, and the y axisinto
20 bins of width 0.03° per s each, within the range [-3:3]° per s. Ateach
bin (x,y), we calculate the mean drift speed and mean drift acceleration
across mice and across sessions. The two latter quantities represent the
velocity components (u,v) that determine the length and direction of
the velocity vector. We assume the vector field has a central symmetry
withreferenceto the baseline point (0,0) owing to the symmetryinthe
experimental design. We therefore generate an image of the original
vector field that is its reflection across the origin. The two versions
arethenaveraged to producethe final 2D vector field. Streamlines are
generated using the streamline functionin MATLAB. For Figs. 4d and e,
streamlines were simulated over 1,000 timesteps.

Analysis of cue-rotation sessions

Atthebeginning of each continuous cue-rotation epoch, the visual cue
was displayed at the same location as in the baseline. After cue removal
and depending on its previous rotation speed, the cue would have
either reached +180° or +90° (cue orientation in clockwise-cue-rotation
sessions was reflected across the x axis so that the cue ends at +180°
(fast cue-rotation) or —90° (slow cue-rotation)). The offset is therefore
expected tostart withina closerange of these two directions during the
second darkness epoch. However, in some cases, drifts during the first
darkness epoch were large enough so that the initial anchoring to the
rotating cue occurred considerably far from baseline. This caused the
drift signal during the second darkness to start further away from the
expected location. In Fig. 5d, we limited our analysis to drifts starting
within [-180:-145]U[145:180]° for fast cue rotation and [-125:-55]°

for slow cue rotation, to study the effects across sessions with similar
stability during baseline (total n = 44 out of 60).

Dimensionality reduction

Itis generally believed that the main function of the HD system is
to provide an estimate of the HD at any given time. As most studies
of this network, including ours, are conducted while recording the
neural activity in animals placed on horizontal planes, it is fair to
assume that most of the variability in the activity of HD neural popu-
lation can be captured by a single variable representing the angle
faced by the animal, at aninstant ¢, with reference to agiven allocen-
tric reference frame. Indeed, previous studies have shown that, in
stable conditions, different dimensionality reduction methods'*®
would produce a circular manifold that can be fairly approximated
in a unidimensional polar state-space with a fixed radius. Neverthe-
less, a previous study” observed that the structure becomes more
complex during slow-wave sleep. Our guiding hypothesis is that the
intrinsic geometric structure of the neural activity in the HD network
liesin amultidimensional state space and that latent variables other
than the angular component are needed to explain the variability in
spiking data, during non-stable conditions such as resets and drift
situations. Here we propose the simplest augmentation to the latent
structure by adding a radial component that we expect to indicate
instantaneous changes in global firing activity of the HD network.
Although we believe that the true intrinsic dimensionality of the HD
neural datais higher than two, the current paper mainly focuses on
the necessity of at least asecond dimension of the HD system during
instability.

To test our hypothesis, we developed a deep feedforward neural
network that maps the high-dimensional input (neural) dataonto the 2D
polarspace (angular dimension #and radial dimension R). The network
istrained oncircular datafrom the measured head direction. The radial
componentRisalatent variable that can take any non-negative value.
Our previous analyses (not included here) have shown that, although
methods suchas principal component analysis and Isomap can uncover
looped latent structures, these unsupervised learning algorithms tend
to produce distorted circles, inthe presence of noise, when applied on
baseline data (that s, stable condition), which makes the definition
of aradius less straightforward and motivates our use of a supervised
learning method.

We used afeedforward neural network with three parallel branches.
Two of these branches have three fully connected hidden layers
(referred to as first and second or B, and B,, respectively), while the
third branch has two fully connected hidden layers (referred to as
middle or B,,) (Extended Data Fig. 4d). The input layer receivesaN x 1
vector of neural activity from N ADN neurons at time ¢ (both calcium
traces aswell as firing activity from deconvolved spikes canbe fed to the
model). The output layer is composed of two units that are the results
of multiplying the output g, of the middle branch with the output z, , of
the firstbranch, on one hand, and the output z, ,of the second branch,
on the other hand, as illustrated in the diagram of Extended Data
Fig. 4d.

We trained our model on baseline data. The objective is to find the
set of weights Wthat minimize the distance between the network out-
put 8 Z1e cos(8,)

22,t sin(6,)
direction of the animal at instant t. We define the loss function as the
mean squared error:

and the vector ,Where 6, is the measured head

cos(6,) _ 821t ’
sin(6,) ) \8:%2¢ X

where, Tis the duration of the training epoch and |l.||, is the L, norm.
If the algorithm converges, we obtain the following approximations:

T

1
MSE =
r4




_cos(6,)
Lt gt
sin(6,)
25t %
8

LetR, = gi, then we canrewrite the output of each branch:
t

By:z,~R.cos(6,)
B,:z,,~Rsin(6,)
1
Bm:gt = RTI
In effect, this would allow branches B, and B, to learn a mapping
from the input (neural) space to the Cartesian transformation of the
polar coordinates of agiven states,, at any time ¢ (respectively, B, pro-
jects the input onto the x axis and, B, projects the input onto the y
axis). From these two branches, we can extract the decoded angle
ét: arctan %[ . While branch B,, would learn a mapping from the
input space to the inverse of the approximate radius R, of said state,
in polar space. If we assume that R, is a certain reflection of global
neural activity, as per our hypothesis, then we expect small fluctua-
tions of population activity in the training data (baseline) to be suf-
ficient to allow the network to extrapolate R, on test data with larger
fluctuations.

Statistics and reproducibility

All statistical tests are noted where the corresponding results are
reported throughout the main text and Supplementary Information. All
tests were uncorrected two-tailed tests unless otherwise noted. Outliers
were identified as data points that fall outside the mean + (3 s.d.) range.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The complete dataset for all experiments is available at Figshare
(https://doi.org/10.6084/m9.figshare.21792689). The dataset should
notbe used for republication without prior consent from the authors.

Code availability

All source codes used in the current study are available on request to
the corresponding authors.
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Extended DataFig.1|Calciumimaginginthe anterodorsal thalamic
nucleus (ADN) and identification of HD neurons. a. Histology data showing
coronal brainsections from each mouse with GCaMPé6f expression, in ADN
(anterior part). Mouse ID written in the top right and scale-bars shownin the
bottom left of each panel.Intotal, 12 mice were injected and implanted for this
study, only 3 (shown here) provided enough simultaneously recorded
head-direction cells for continued experimentation. b. Directional maps of
ADNineachmouse.HD cells are coloured by their preferred firing direction
(PFD). Colour-wheel shows angle-colour assignments. Mouse ID written on the
top rightand scale-bars shownin the bottom left of each panel. c. Examples of
HD cells’ coverage of the azimuthal plane, in each mouse. Rows in each matrix
represent tuning curve heatmaps of individual HD cells. The amplitudes of
individual tuning curves are normalized. Mouse ID written above each panel.
d. Left: Anexample polar tuning curve foraHD neuron. Yellow line: direction of
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obtain the Pearson’s correlation coefficient which reflects the cell’s degree of
HD tuning (r = 0.85in the case of the current example). e. Distributions of
correlation coefficients after 1000 circular-shift shuffles of the firing activity
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Extended DataFig. 5| Relationship between network gainand population
activity. a.Reconstructed bump of activity (averaged over n =42 sessions of
the firstexperiment) for varying network gain ranges. Gain modulation not
only affects the activity packet but also baseline activity. The decreasing
baselineamplitude at low network gainindicates that the modulationis not
drivenbyincreased activity outside the mainactivity packet. Notice that the
width of the activity packet remains within anarrow range. ‘fwhm’: the full
width at halfmaximumin°.b.Method used to determine the variance explained
by gain. Using theinternal HD and neural activity fromall recorded neurons

per session asinputs (S ,cu..;; S examples shown forillustration purposes), we
canextract thetuning curve of each neuron (average firing activity asafunction
ofinternal HD, f(8,)) as well as the gain signal (g,), while assuming that pairwise
coherencebetweenHD cellsis preserved. Two reconstructions of the neural

activity are then produced from tuning curves and internal HD: In the first case
(Dark-blue) neuralactivity is multiplied by gain (R%,,,,, ) while in the second
case (Light-blue), gainis not takeninto account (R ,.,,,.;)- The sumofvariance
acrossneuronsis calculated for each group of neural activity (including ground-
truth (S ,..n:))- ¢. Comparison of variance explained in percentage between
the neural activity reconstruction withand without gain (sumof variancein
eachgroupisdivided by the sum of variance in the ground-truth group) (n =42
sessions; Two-sided Wilcoxon rank-sumtest: p = 0.0245,Z = 2.2499). Error bars
showmean + SEM. d.Increasein variance explained when gainis applied to
reconstructed neural activity relative to the case where gainis notapplied
(thatis, ratiobetween % variance explained with and without gain, minus 1)
(n=42sessions;Mean=13.71%, s.d. = 5.14%). Error-bars show mean +s.d. Dots
representindividual datapoints.
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Extended DataFig.7|Agreement between true and model-predictedresets.
a.Averaged heatmaps of the reconstructed bump of activity during fast (left

column) and slow (right column) resets (same data asin Fig.2g,h). Datais

presentedinthe egocentric reference frame, without drift adjustment (top row)
and with drift adjustment (bottom row) showing, inboth cases, no additional
bumpsoutside the main activity packet. Dashed red lineindicates cue-onset,
while white horizontal line at 90°is for reference. Firing activity is normalized.

(thatis, gain) asina. c. Top: Mean simulated reset signals for fast (light blue) and
slow (dark blue) groups. Bottom: Mean simulated gain signals for the same

groups. Dataare mean +s.e.m. Dashed signals represent means of ground-

b. Simulation output of the gain-modulated attractor model taking input data

truthdata. d. Individual examples of simulation predictions (red lines) for fast
andslowreset groups, plotted against actual resets (blue lines). Yellow lines
indicate cuelocation. Amplitudes arerelative to angles at cue-onset (dashed
blackline).
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Extended DataFig. 8| Animal behaviour, prior to cue display, is predictive
ofresetspeed. a. Triggered average of gain shows asharp decrease after cue
display (Two-sided Wilcoxon rank-sum test: average gain1-second pre-cue
versus average gain 1-second post-cue: p=0.0228,Z =2.28) (top). However,
overall absolute head angular velocity (aHAV) does not seem to differ before
and after cue display (Two-sided Wilcoxon rank-sum test: average aHAV
1-second pre-cue versus average aHAV 1-second post-cue: p = 0.6259,Z = 0.49)
(bottom).Samereset eventsasin Fig.2g,h (n =42 events).b. Separation of
signalsina.between fast (Light blue; n = 22 events) and slow (Dark blue; n =20
events) resets shows similar gain amplitudes over al-second interval prior to

cuedisplay (Two-sided Wilcoxon rank-sum test: p = 0.3580,Z = 0.92) (top).
However, aHAVis lower for fast resets compared with slow resets, over the same
period (Two-sided Wilcoxon rank-sum test: p = 0.0294, Z = 2.18) (Bottom).
c.Head angular velocity becomes more predictive of reset type closer to the
moment of cue-display when compared with prediction performance based on
gainamplitudes within the same time interval. Deviance of the fitis used as
defined in Matlab’s mnrfit function for logistic regression. Datashownis same
asinFig.2g,h. Time dependentsignals,inaandb, areshownasmean +s.e.m.
and bar-graphs show mean + s.e.m. withindividual datapoints.
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Extended DataFig.9|Relationship betweenresetrange and gain
modulation. a. Mean drifts for short- (grey; n = 27 events), mid- (dark blue;
n=40events) and long- (lightblue; n = 67 events) range reset-groups showing
non-significant difference indrift-speeds between mid- and long-range groups
(Two-sided Wilcoxon rank-sum test: Short-Mid: p = 4.19e-5,Z = 4.10; Short-Long:
p=7.73e-5,Z=3.95;Mid-Long: p=0.62,Z =0.50;150 frames (-5 s) post-cue).
b.Network gains for the short-, mid- and long- ranges have similar amplitudes
prior to cue-display (Two-sided Wilcoxon rank-sum test: Short-Mid: p = 0.1174,
Z=1.57;Short-Long:p=0.32,Z=1.00; Mid-Long: p=0.2984,Z =1.04; 50
frames (-1.67 s) pre-cue), yet they exhibit gradual decrease after cue-display
(Two-sided Wilcoxon rank-sumtest: Short-Mid: p = 0.0129, Z =2.49; Short-
Long:p =2.6876e-9,Z =5.95;Mid-Long: p=1.2130e-5,Z = 4.38;150 frames (-5 s)
post-cue). c. Relationship between average gain and reset range. Each dot
representsacorrectreset event (n =134 events). TheR?value correspondstoa

linear regression model fit (greenline). All clockwise sessions have been
reflected across the x-axis and transformed into counter-clockwise ones.
d.Rapid gainspikes canbe seenshortly after cue-display, inthe threereset-range
groups (Same dataasinb, with higher temporal resolution). All reset ranges
startatsimilaramplitudes at the end of the darkness period (Two-sided
Wilcoxon rank-sum test: short-mid: p=0.3940, Z = 0.85; short-long: p = 0.2090,
Z=1.26; mid-long:p=0.4686,Z = 0.72). Following cue-display, each group
exhibitsabriefgainincrease (5 frames (-150 ms) pre-cue vs 5 frames (150 ms)
post-cue: Two-sided Wilcoxon rank-sumtest: short: p=6.9690e-4,7Z = 3.39;
mid:p=0.0369,Z=2.09;long:p =2.6898e-4,Z =3.64). These gain spikes are
largest for the short-range group (Two-sided Wilcoxon rank-sum test: short-mid:
p=4.4888e-4,Z=3.51;short-long: p=1.8600e-4, Z=3.74; mid-long: p= 0.9326,
Z=0.08). Time-dependent signalsare shown as dataare mean +s.e.m.and
bar-graphs show mean + s.e.m. withindividual datapoints.
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Extended DataFig.10 | Distinct drift and gain patterns across darkness
periods. a. Drift variability increases significantly following areset (D2, D3 and
D4)in comparison with D1 (Mean drifts.d. compared across darkness epochs:
Two-sided Wilcoxon rank-sum test: BL-D1: p = 3.1214e-15,Z = 7.89; D1-D2:
p=1.1477e-6,Z=4.86;D1-D3:p=8.3761e-5,Z=3.93;D1-D4:p =5.6600e-11,
Z=6.55).Drifts.d.alsoincreases withtime after areset (D2, D3 and D4) while it
remains constant following baseline (D1). (Number of epochs: D1: n = 42; D2:
n=35;D3:n=32;D4:n=35).b.Meandrift-speed in each darkness epoch shows
systematic biases that depend on prior cue-event. (Two-sided Wilcoxon
rank-sumtest: BL-D1: p = 0.1250, Z = 1.53; Two-sided Wilcoxon signed rank test:
D2:p=0.0168,Z=-2.39;D3:p=0.0313,Z=2.15;D4:p =2.9929¢-4,Z =3.62).
(Numberof epochs:D1:n=42;D2:n=35;D3:n=33;D4:n=34).c. Comparison
betweendriftsin D2 and D4 of the 90°-cue-shift experiment. Although the two

Internal HD (Deg)

events are experimentally symmetric to each other with reference to baseline,
driftsin D4 appear to have larger biases (in absolute value terms) than D2. Left:
Meandrift signals,in D2 (green) and D4 (dark-blue). Driftsin D2 have been
mirrored across the 0°-line for comparison purposes. Right: Comparison
between average drift speeds, in D2-mirrored (green; n=35epochs) and D4
(dark-blue; n =34 epochs) (Two-sided Wilcoxon rank-sumtest: p = 0.0184,
Z=2.36).d.Average gain tuning curves across light conditions. e. Average gain
tuning curves across darkness conditions show agradual decrease of the
network gain away from the internal cue location (dashed yellow line) from D1
toD4 (Number ofepochs: D1: n=42; D2:n=35;D3:n=33;D4:n=35). Time-
dependentsignals and gain tuning curves are shown as mean + s.e.m. bar-graphs
showmean +s.e.m.withindividual datapoints.
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Extended DataFig.11|Network gain patterns across mice and darkness
epochs. a.Network gain during darkness shown as heatmaps (top row) and
tuning curves (bottomrow), per mouse. Inboth cases, datais averaged across
sessions and darkness epochs (D1to D4) of the 90°-cue-shift experiment.
Values for the tuning curves are shown as mean + s.e.m. Mouse ID written above
each panel.b. Top row: Network gain heatmaps showing same dataasina, split
(from left toright, respectively) across the different darkness epochs D1to D4
of the 90°-cue-shift experiment. Bottom row: Drift speed heatmaps showing a

consistent pattern, yet with varying amplitudes, across darkness epochs D1to
D4.Noobvious effect of the gainlandscape canbe seenin these patterns and
gainfluctuations did not correlate with any measurable distortion to the
drift-speed landscape within the Head AV-vs-Internal HD state-space which
maintained similar patterns to baseline (Extended Data Fig. 3b). This
observationdraws aclear distinction from the rapid representational shifts
seenduringresets and may point to acompletely different mechanism linking
network gain and driftsin dark conditions.
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time (thatis, 20 s case) and so, baseline associations between the two layers are scenarios shaded areasindicate SEM.
maintained which causes theinternal HD representation to revert to baseline
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particular external inputand/or currentregime of the network.c,d,and e.
Comparison of drift patterns between darkness epochs of the 20 s cue-
exposure experiment and D2 of the 2 min cue-exposure experiment. c. Same
asmainFig.4c.d. Drift-speed heatmaps. Left: 20 s cue-exposure experiment
(n=43epochs).Right: D2 of the 2 min cue-exposure experiment (n =35
epochs).e. Left: Drift-speed difference (same data asind) showingasignificant
distortion of the patternseenin the first experiment around the internal
location of the cue. Right: p-value matrix for datain left (Wilcoxon rank-sum
test; pixels where p > 0.001 were marked as NaN). Inaddition to the network
gain, the drift pattern also shows systematic differences as afunction of
angular velocity and internal head directionbetween D2 and the darkness
following 20 s visual-cue display.
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Extended DataFig. 14 | Persistent drift biasesin darkness after cue
rotation, betweenactual dataand model-based simulations. a. Recorded
examples of drift biases for continuous fast (left group) and slow (right group)
cue-rotation.b, ¢,d and e. Model-simulation of vestibular input recalibration
by visual experience.b. Synaptic weight matrix linking the HD layer to the

Sensorimotor-by-HD layer (see model in Extended Data Fig.12), during baseline.

c.Simulations of offset during cue-rotation and in subsequent darkness for the
fast (3%/s) and slow (1.5%/s;1.28°/s) cases. Behaviour for individual examples
(i.e.head angular velocity) is shared across scenarios and is taken from actual
recordings. Sessions without vestibularinput recalibration (that s, vestibular

angular velocity neurons donotreceive input from the bias cells - see model
detailsin Supplementary Information) for both 3°/sand 1.5%/s cases were
used as test examples. The 1.28°/s cue-rotation sessions were used to show the
effect of cue rotation-speed on drift biases regardless of offset proximity to
baseline condition. d. Synaptic weight matrices at the beginning of the 2™
darkness phase for fast (3°/s) and slow (1.5°/s) scenarios showing that baseline
associations remain dominant even after 7 min of cue rotation which explains the
stabilization around the 0°-offset line. e. Mean drifts (solid lines) in darkness
acrossscenarios. Shaded areasindicates.e.m.
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Software and code
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Data collection  Data collection was done using open source software from miniscope.org (2018 version) allowing simultaneous data collection from an
implanted miniscope and a behavioural camera

Data analysis Data preprocessing was done using MATLAB (MathWorks, v. R2015a). Most of the data analysis was done using MATLAB (MathWorks, v.
R2018b) a few exceptions include Python scripts run on PyCharm (v. 2018.3 (Edu)) with their outputs transferred to MATLAB. Open source
code was used for cell segmentation (Miniscope software package (from miniscope.org (2018 version)); MATLAB (MathWorks, v. R2015a)),
motion correction (Miniscope software package (Miniscope software package (from miniscope.org (2018 version)); MATLAB (MathWorks, v.
R2015a)), spike inference (Miniscope software package (from miniscope.org (2018 version)); MATLAB (MathWorks, v. R2015a)) and head
direction decoding (Python (PyCharm v. 2018.3 (Edu))). The remaining analysis was done using custom code written in MATLAB (MathWorks,
v. R2015a)) except for the dimensionality reduction which was done using Python (PyCharm v. 2018.3 (Edu)) script that transfers the output to
MATLAB.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data used in this manuscript will be made publicly available via: DIO:10.6084/m9.figshare.21792689

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The number of subjects in this study was limited by the difficulty of accessing the mouse anterodorsal thalamic nucleus using miniaturized
microscopes combined with thin (0.5mm diameter) relay lenses. The success rate of the surgeries being very low, our objective was to record
from at least three mice per experiment.

On the other hand, for each mouse we get an average of over a hundred neurons simultaneously recorded per session which constitutes a
sample size with an order of magnitude higher than the largest neural population ever reported in the studies of the head direction system, at
the time of submission of this manuscript.

Data exclusions  Outliers were identified as data points outside the range of mean +/- 3*(standard deviation). If found, these outliers were excluded from the
analysis.
Data automatically included based on specific selection criteria was manually checked to ensure inclusion was not biased by measurement
noise.

Replication Findings in this manuscript have been replicated in all animals and data per animal is shown in supplementary figures.

Randomization  Thisis not relevant to our study. We have a single experimental group.

Blinding This is not relevant to our study. We have a single experimental group.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants
Clinical data

Dual use research of concern
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Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals All animals used in this study are male wild-type mice (C57BI/6, Charles River) aged between 6 and 8 weeks at the time of the first
surgery.
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Wild animals The study did not involve wild animals.
Field-collected samples  The study did not involve field collected samples.

Ethics oversight All experiments were carried out in accordance with McGill University and Douglas Hospital Research Centre Animal Use and Care
Committee (protocol #2015-7725) and in accordance with Canadian Institutes of Health Research guidelines.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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