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Population dynamics of head-direction 
neurons during drift and reorientation

Zaki Ajabi1,2,7 ✉, Alexandra T. Keinath1, Xue-Xin Wei3,4,5,6 & Mark P. Brandon1,2 ✉

The head direction (HD) system functions as the brain’s internal compass1,2, 
classically formalized as a one-dimensional ring attractor network3,4. In contrast  
to a globally consistent magnetic compass, the HD system does not have a universal 
reference frame. Instead, it anchors to local cues, maintaining a stable offset when 
cues rotate5–8 and drifting in the absence of referents5,8–10. However, questions about 
the mechanisms that underlie anchoring and drift remain unresolved and are  
best addressed at the population level. For example, the extent to which the 
one-dimensional description of population activity holds under conditions of 
reorientation and drift is unclear. Here we performed population recordings of 
thalamic HD cells using calcium imaging during controlled rotations of a visual 
landmark. Across experiments, population activity varied along a second dimension, 
which we refer to as network gain, especially under circumstances of cue conflict and 
ambiguity. Activity along this dimension predicted realignment and drift dynamics, 
including the speed of network realignment. In the dark, network gain maintained a 
‘memory trace’ of the previously displayed landmark. Further experiments 
demonstrated that the HD network returned to its baseline orientation after brief, 
but not longer, exposures to a rotated cue. This experience dependence suggests 
that memory of previous associations between HD neurons and allocentric cues is 
maintained and influences the internal HD representation. Building on these results, 
we show that continuous rotation of a visual landmark induced rotation of the HD 
representation that persisted in darkness, demonstrating experience-dependent 
recalibration of the HD system. Finally, we propose a computational model to 
formalize how the neural compass flexibly adapts to changing environmental cues  
to maintain a reliable representation of HD. These results challenge classical 
one-dimensional interpretations of the HD system and provide insights into the 
interactions between this system and the cues to which it anchors.

The HD system, commonly referred to as the neural compass, under-
lies a navigator’s sense of direction1,2,11–14. In contrast to a traditional 
compass, the orientation of the HD system is anchored to local environ-
mental cues8,15,16. Our understanding of the mechanisms that support 
the ability of the HD network to align with specific cues and maintain 
a consistent sense of direction remains limited. Recent research has 
shown that substantial variability in HD cell activity during sleep can-
not be explained by a singular angular dimension17,18. This observation 
challenges the classical view of the internal HD representation as a 
unidimensional (that is, angular) construct and motivates further inves-
tigation of its complexity, from a population perspective, to under-
stand whether extra dimensions are needed to fully capture how the 
system adapts to unstable conditions (that is, changing, missing and/
or conflicting sensory information) in wakefulness. While updating 

the internal HD representation requires integration of information 
from multiple sensory modalities, manipulations of visual cues alone 
are sufficient to reorient this representation6,7,19–21. The visual input 
exerts a dominant influence on the HD network alignment, probably 
through a feedback correction that calibrates the integration of angular 
movements22. Computational models of the HD network suggest that 
plasticity mediates the integration of visual information within the 
network23–25, confirmed recently in fruit flies26,27 but not yet in mam-
mals. Here we characterize the thalamic HD network response to visual 
manipulations, yielding new insights into the mechanisms that underlie 
anchoring and calibration of this representation. Furthermore, we 
provide a network model to assess the plausibility of synaptic plastic-
ity as a mechanism to explain the observed variability in the system’s 
response to externally controlled changes in visual information.
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Calcium imaging of the HD network
We performed calcium imaging of the anterodorsal thalamic nucleus 
(ADN) in three mice using a head-mounted endoscope28–30. Our record-
ings (n = 102 20 min sessions, with baseline periods of 3, 5 or 10 min 
depending on the experiment) enabled us to monitor up to 255 ADN 
cells simultaneously as mice freely explored a small elevated circular 
platform inside a larger enclosed chamber (Fig. 1a–g and Extended Data 

Fig. 1a–c). This chamber was composed of a 360° circular LED screen 
covered by an opaque dome (Fig. 1a). During baseline recordings at the 
start of each session, we displayed a polarizing vertical white stripe on 
the otherwise black LED screen. All subsequent testing involved the 
manipulation of this visual cue.

Calcium imaging data were motion-corrected and spiking activity 
was inferred from extracted fluorescent transients31,32 (Extended Data 
Fig. 1d). Baseline recordings revealed HD cells with preferred firing 
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Fig. 1 | Population recordings in the mouse ADN. a, Schematic of the recording 
environment within a 360° LED screen. Scale bar, 20 cm. b, GCaMP6f expression 
in the ADN. In total, 12 mice were injected and implanted for this study, and only 
3 (Extended Data Fig. 1a–c) provided enough simultaneously recorded HD cells 
for continued experimentation. Scale bar, 2 mm. c, Example tuning curves of 
ADN cells with high directional tuning in polar coordinates. The red lines and 
numbers show the mean resultant vectors and PFD, respectively. R, correlation 
coefficient. d, Field of view (FOV) of the ADN showing the PFD of each cell. Scale 
bar, 0.125 mm. e, The distribution of ADN cells recorded across mice (n = 3)  
and sessions (n = 99). The red line indicates the median (minimum, maximum, 
median, 25th percentile and 75th percentile, respectively, are as follows:  
mouse 1 (all): 38, 188, 105, 70 and 131; mouse 1 (HD): 35, 154, 96, 66 and 128; 
mouse 2 (all): 102, 168, 138, 126.5 and 147; mouse 2 (HD): 97, 154, 129, 114.75 and 

139.75; mouse 3 (all): 90, 255, 174, 137 and 204.5; mouse 3 (HD): 88, 239, 162.5, 
133 and 195.5). The values above the box plots indicate the percentage of HD 
cells (green) among all recorded ADN cells (blue) shown as mean ± s.d. f, The 
distribution of correlation coefficients of ADN cells. The dashed yellow line 
represents the HD neuron detection threshold (shuffled control: P < 0.05). 
Data from three 10 min baseline recording sessions (one per mouse). g, HD 
population coverage of the azimuthal plane from one session. h, Projection of 
high-dimensional neural data onto a 2D polar plane using a feedforward neural 
network during a baseline recording. i, HD decoding. Top, log-likelihood 
distribution across time. Bottom, measured HD (blue) and decoded HD (red) 
using maximum likelihood. j, The distribution of the absolute residual error 
across baseline recordings from the first experiment (n = 42 sessions).
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directions (PFDs) that tiled the full 360° horizontal plane (Fig. 1g and 
Extended Data Fig. 1c). Consistent with previous research, ADN neu-
rons were tuned to specific HDs1,33,34 albeit with higher proportions 
(Fig. 1c–g and Extended Data Figs. 1 and 2). HD tuning was stable in 
the presence of visual cues34 (Fig. 1c and Extended Data Figs. 1d and 2), 
and exhibited anticipatory firing35 (Extended Data Fig. 3a). In contrast 
to the HD system in the central complex of Drosophila36, we did not 
observe topographic organization (Fig. 1d and Extended Data Fig. 1b).

To infer the internal HD representation (referred to here as internal 
HD), we trained a Bayesian decoder37 to estimate the animal’s HD on 
the basis of the baseline training data (Fig. 1i). This decoder accurately 
recovered the measured HD in stable experimental conditions (median 
absolute error (MAE) of test data = 5.96°; Fig. 1j).

To visualize the low-dimensional structure of the HD representa-
tion, we developed a method to project large ensemble recordings 
onto a two-dimensional (2D) polar state space (Methods). We trained 
a deep neural network on the measured head direction while allowing 
an untrained latent variable to capture variability in the neural data 
that cannot be explained by changes in the head direction alone. This 
inferred latent variable constitutes the radial component in the 2D 
polar state space (that is, secondary dimension). When applied to the 
baseline data, we obtained a ring-like structure (Fig. 1h), reminiscent of 
ring attractor models and previous analyses3,17,38. This further confirms 
that the internal HD representation is approximately unidimensional 
in stable conditions.

Network gain covaries with reset dynamics
To investigate how HD network dynamics enable reorientation, we 
recorded the HD network during a cue-shift paradigm. After a baseline 
recording, the cue was removed for 2 min (darkness) and then reap-
peared at a 90° shifted position for 2 min. We repeated this sequence 
four times per recording session (Fig. 2a).

This manipulation resulted in predictable changes in the HD net-
work’s patterns of activity. To characterize these dynamics, we defined 
an ‘offset’ as the mismatch between the measured and decoded HD (see 
the ‘Analysis of drift’ section of the Methods). Tracking this offset, we 
observed a rotational response after cue reappearance that matched 
the cue shift. We refer to this phenomenon as a reset (Fig. 2a). Notably, 
resetting events were not homogeneous, as they occurred across a wide 
range of angles and speeds (Fig. 2b).

Cue shifts induced significant changes in the overall network activ-
ity. We observed modulation in the amplitude of the bump of activ-
ity (see the ‘Reconstruction of the bump of activity’ section of the 
Methods), which coincided with changes in the radius of the latent 
space (Fig. 2c,d). Intuitively, allowing the internal HD representation 
to occupy a 2D polar state space makes the distance between any two 
given angles θ1 and θ2 a function of the radial component, which led us 
to hypothesize that changes in radius not only reflected changes in the 
overall population activity but would also correlate with changes in the 
speed of reset (Extended Data Fig. 4). To quantify this, we computed the 
total population activity normalized to the baseline activity, a measure 
that we refer to as the network gain (Extended Data Fig. 5; see the ‘Calcu-
lation of network gain’ section of the Methods). State-space radius was 
highly correlated with network gain (Fig. 2d,e), indicating that gain can 
be used as an interpretable measure of the radial component. To better 
understand the relationship between resetting events and network gain, 
we first analysed the 90°-centred reset range (that is, [70:110]° range). 
We found that the speed of HD-network reorientation, or ‘reset speed’, 
was anticorrelated with network gain (Fig. 2g–i). Separation of the 
resetting events into two groups (Fig. 2g) revealed that fast resets were 
associated with a substantial reduction in network gain shortly after 
cue reappearance, whereas slow resets exhibited a smaller reduction 
in gain (Fig. 2h and Extended Data Fig. 6a). In all cases, resetting events 
took the form of a continuous rotation of the HD representation from 

an initial orientation to the reset direction, passing by all intermediate 
angles without the appearance of secondary bumps of population 
activity (Extended Data Fig. 7a). This reset was slower than what has 
previously been reported6, possibly due to differences in behaviour, 
habituation and/or the geometry of the testing set-up. Our modelling 
results show that an attractor network model that incorporated network 
gain replicated these dynamics with 71% accuracy in classifying fast 
versus slow resets (Fig. 2j,k and Extended Data Figs. 7b–d).

Behavioural differences as measured by the head angular velocity 
before and after cue onset could not explain the sharp decrease in gain 
amplitudes (Extended Data Fig. 8a). However, reduced head angular 
velocity immediately preceding cue events was predictive of fast resets, 
and vice versa (Extended Data Fig. 8b,c).

Resetting events also varied in the angular difference between their 
initial and stabilizing orientations. We grouped resets by the distance 
between pre-cue offset and the offset after stabilization (Extended Data 
Figs. 6b and 9a), and found that network gain was anticorrelated with 
reset range (Extended Data Figs. 6b and 9b,c). This relationship was 
independent of reset speed (Extended Data Fig. 9a), suggesting that net-
work gain is independently modulated by the estimated error between 
the internal representation and the actual location of the visual cue.

We also detected a rapid spike in gain at the cue onset that was largest 
in short-range resets (Extended Data Fig. 9d). This may reflect visual 
inputs, but further investigation was limited by the temporal resolu-
tion of calcium imaging.

HD neurons maintain a trace of the cue
The HD network drifts in the absence of visual cues5,8–10. We hypoth-
esized that network gain would decrease once the visual cue is removed 
due to decreased sensory input. This would bring the HD system to a 
lower energy state and cause the internal representation to become 
prone to spontaneous shifts because of the decrease in signal-to-noise 
ratio of neural activity. During all darkness epochs (D1 to D4), we 
observed an increase in drift relative to baseline (Fig. 3a,b and Extended 
Data Fig. 10a), which coincided with an abrupt decrease in the network 
gain after cue removal (Fig. 3c). Notably, changes in the network gain 
were dependent on the internal HD during darkness. When the internal 
HD pointed towards the internal location of the visual cue (0°), the 
reduction in gain was minimal; deviations from this direction resulted 
in more pronounced gain decreases (Fig. 3d,e). This gain profile per-
sisted across all darkness periods with the difference between peak 
and trough increasing from the first to last darkness epoch (Extended 
Data Fig. 10d,e). Animal behaviour did not significantly affect the gain 
landscape, except that gain amplitude increased with the absolute 
head angular velocity (Fig. 3e and Extended Data Fig. 11), consistent 
with previous observations36,39. This suggests that the HD network 
maintains a ‘memory trace’ of salient visual cues.

Drift patterns were not homogenous across the four darkness epochs 
(Extended Data Fig. 10a–c). During D1, drift fluctuated around the 
baseline orientation with no directional bias. By contrast, drift in D2, 
D3 and D4 exhibited directional biases dependent on the baseline ori-
entation and previous cue location. During D2, drift diverged from its 
reset orientation towards its baseline orientation, counter to the rota-
tion implied by the previous cue shift. During D3 and D4, drift rotated 
towards the baseline orientation but consistent with the direction 
implied by the previous cue shifts. These observations indicate that 
drift depends on previous visual experience. These predictable drift 
biases after exposure to the changing visual reference frame (D2 to D4) 
appeared to consistently bring the HD network closer to its original 
configuration (that is, the baseline state). Consecutive shifts of the 
visual cue in one direction further biased the drift in that direction 
(Extended Data Fig. 10b,c). These results suggest that both the stable 
allocentric and dynamic visual reference frames exert a persistent 
influence on the network orientation.
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Drift patterns are experience-dependent
The presentation of a rotated visual cue for 2 min was sufficient to cause 
a representational shift and override the influence of non-visual cues 
(self-motion, olfactory and so on). Yet, we observed a tendency of the 

network to rotate back towards the initial configuration, that is, revert 
to baseline, during darkness. We hypothesized that this could implicate 
plastic processes through which a ‘memory’ of baseline state exerts 
influence on the internal HD representation. If true, drift dynamics 
might depend on the duration of exposure to the shifted-cue context. 
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across radius ranges. e, The relationship between network gain and state radius 
(n = 42 × L datapoints, where L is the number of frames in a session). R2 value of 
linear regression model fit. Data are mean ± s.d. f, Triggered average of network 
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To test this, we limited the display of the rotated visual cue to 20 s (±90° 
from the baseline; Fig. 4a). These shortened cue events elicited resets 
followed by reversions towards baseline during darkness (Fig. 4a–c). 
However, in comparison to the 2 min experiment (specifically D2, which 
was similarly preceded by a ±90° rotated cue event), reversion was 
much stronger after the presentation of a 20 s visual cue (Fig. 4c). The 
attraction of the network to its baseline state was further demonstrated 
through vector field analysis (Fig. 4d; see the ‘Vector field analysis’ 
section of the Methods). These results indicate that the internal rep-
resentation of the baseline allocentric reference frame is not entirely 
lost after a reset and can still influence the HD network in darkness, 
depending on the duration of experience within the competing reset 
reference frame context. Addition of Hebbian learning to our model 
shows that, indeed, HD neurons could form new associations with the 
unchanged allocentric cues, depending on the duration of exposure to 
the reset context. Given enough time, the synaptic strength of these new 
associations increased while old associations were depleted, resulting 
in a new steady state. In this scenario, our simulations of the internal 
HD representation showed limited baseline attraction. By contrast, 
synaptic weights did not change significantly after shorter (20 s) cue 

exposures, and baseline associations remained dominant, resulting in 
strong reversions (Extended Data Fig. 12).

Next, we examined potential competition between baseline and 
reset reference frames by comparing network gain patterns after long 
and short shifted-cue exposures. While the gain landscape during D2 
exhibited a single peak at 0° in the internal HD (corresponding to the 
shifted cue orientation after reset), the gain landscape during darkness 
after the 20 s cue events exhibited additional peaks at ±90° (Fig. 4e,f 
and Extended Data Fig. 13). Notably, these peaks matched the alter-
nating ±90° cue structure of the experimental design, suggesting the 
coexistence of associations between HD neurons and allocentric cues 
from multiple visual contexts. These differences provide additional 
evidence of time-dependent effects of visual experience.

Cue rotation causes persistent drift bias
In the 2 min cue-shift experiment, visual information provided a domi-
nant polarizing cue to reset the HD system. In some cases, resets were 
slow (>30 s), indicating that non-visual cues competed with visual 
information to stabilize the network. The 20 s cue-shift experiment 
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test, P = 7.5211 × 10−23, Z = 9.84). c, The triggered average of network gain shows 
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Z = 6.81; comparison between mean values over 40 s before and 40 s after cue 
removal; the same data as in a). d, Network gain tuning curves at the baseline 

(light blue) and during darkness (dark blue). The internal HD is relative to the 
baseline cue location (dashed yellow line). The gain remains flat at the baseline; 
however, it peaks around the internal cue location ([−90:90]°) and drops sharply 
away from it ([−180:−90]U[90:180]°) in darkness (n = 145 events; two-sided 
Wilcoxon rank-sum test, P = 5.8683 × 10−7, Z = 5.00). e, Network gain heat map. 
Note the increase in amplitude and width of the gain tuning curve at a larger 
head angular velocity. All clockwise sessions were reflected across the x axis 
and transformed into counter-clockwise ones. Signals in c and d are shown as 
mean (solid line) ± s.e.m. (shaded area). Bar graphs in b–d show the mean ± s.e.m. 
with individual datapoints.
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provided further evidence that the baseline reference frame maintains 
a persistent influence on the HD network. To better understand the 
dynamics of this competition, we tested whether visual information 
could drive resetting when in continuous conflict with non-visual infor-
mation, including self-motion cues. We recorded HD cell populations 
during presentation of a slow rotating visual cue (1.5 or 3.0° per s) for 
7 min (Fig. 5a,b). In all cases, and for both speeds, the HD network was 
continuously updated by the visual cue (Fig. 5a–c), highlighting the 
dominant effect that the visual input has over all other inputs in con-
trolling the HD system.

Notably, the HD network continued to rotate in the same direction 
and at a similar speed when the rotating cue was turned off (Fig. 5a,b,d 
and Extended Data Fig. 14a; see the ‘Analysis of cue-rotation sessions’ 
section of the Methods). This persistent bias was replicated in our net-
work model by adding a recalibration circuit to asymmetrically change 
the strength of vestibular input through visual feedback (Extended 
Data Fig. 14b–e and Supplementary Information). We also observed 
an attraction to the baseline internal representation, similar to our 
prior experiments. The system started to stabilize once the internal 

HD representation approached the baseline state (Fig. 5e and Extended 
Data Fig. 14a). This phenomenon could also be reproduced in our 
model in which, after 7 min of cue rotation, no strong new associations 
between HD neurons and allocentric cues could emerge to form a new 
steady state. Instead, baseline associations remained dominant, albeit 
with a significant weight decay in the synaptic matrix (Extended Data 
Fig. 14d). Together, these results indicate that experience with dynamic 
reference frames can bias the HD network and implicate asymmetric 
recalibration of vestibular input integration within the HD network as 
a potential source of this bias.

Discussion
We combined large population recordings of ADN neurons with visual 
cue manipulations to characterize the population dynamics of the 
mammalian HD system. Controlled manipulations of a visual cue 
induced global fluctuations in network activity captured by a meas-
ure that we termed network gain. Network gain represents a func-
tional dimension in the internal HD representation, in addition to its 
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classically appreciated angular dimension. Reorientations, in response 
to visual cue shifts, were associated with a transient decrease in net-
work gain, the magnitude of which was correlated with the speed of 
the HD network’s realignment with the rotated visual reference frame 
(that is, reset). By extending a standard model of the HD system40 to 
incorporate network gain, we were able to predict the speed of the 
reset response. These results suggest that modulation of network 
gain provides the HD system with a mechanism to rapidly reorient. 
Network gain also reflected the past experience of the system— 
a polarizing visual landmark induced persistent distortions in the 
network gain profile, forming a memory trace in darkness. These 
network gain patterns were dependent on the duration of the pre-
vious shifted-cue exposure, suggestive of plastic processes in the 
HD network. Evidence for plasticity was further strengthened by 
experience-dependent drift behaviours in darkness periods. Incor-
porating Hebbian plasticity into our network model replicated these 
observations. Finally, the HD system anchored to a continuously rotat-
ing visual cue and continued to rotate after the cue was removed. A 
model of asymmetric vestibular input recalibration reproduced these 
results, suggesting that the integration of vestibular information within 
the HD network is also experience dependent.

Network gain reduction during realignment of the HD network sug-
gests that a feedback signal downstream of ADN provides global inhibi-
tion to the network. Similar ideas have been proposed in the central 
complex of fruit flies41,42. Modulation of global neural activity might 
allow the HD system to operate at different energy levels with varying 
degrees of stability, reflecting uncertainty in the HD representation. 
We hypothesize that the animal’s engagement in exploratory behaviour 
together with increased familiarity with the experimental environment 
and its geometric specificities could sustain a high-gain/high-certainty 
regime of operation and cause resistance to HD network reorientations 
imposed by visual cue shifts.

Recent research in fruit flies demonstrated plasticity between visual 
input and the compass neurons26,27. The current study complements 
these studies and provides evidence for experience-dependent influ-
ence of visual landmarks in mammals. Indeed, the mammalian brain 
appears to maintain a memory of the associations between HD neurons 
and visual landmarks, in the form of preferential firing, long after land-
marks disappear. We propose that memory traces of salient cues in 
ADN cells help to stabilize the HD system during navigation, even in the 
absence of reliable environmental anchors by maintaining high activity 
levels (that is, high signal-to-noise ratio) around internal cue locations. 
Whether these network gain bumps have an active role in guiding navi-
gation behaviour remains an open question. Moreover, baseline-state 
attraction during darkness is further evidence of long-term effects 
in the HD system. As the strength of this attraction depends on the 
duration of exposure to the shifted-cue context, we speculate that the 
underlying mechanisms leading to such behaviour involve synaptic 
plasticity. Through network modelling, we demonstrated that, by add-
ing Hebbian learning, the observed drift patterns could be replicated. 
Our model proposes that neurons akin to the ring cells of fruit flies could 
mediate experience-dependent drift dynamics. Whether such neurons 
exist in the mammalian brain is yet to be determined.

The fact that a continuously rotating visual scene caused persistent 
biases in the HD representation, as demonstrated in our cue-rotation 
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experiment, suggests that the integration of vestibular inputs under-
goes an experience-dependent calibration. Our findings complement 
a similar finding in place cells22 and support a model of hierarchical 
transfer of information from HD neurons to downstream cells of the 
navigation system (that is, place cells, grid cells and so on) to maintain 
consistent and flexible cognitive maps1,41,43,44.

Ultimately, our findings provide insights into the mechanisms 
that govern realignment and stabilization of the HD network, and 
how long-term effects of previous experience affect its dynamics. 
Importantly, these findings highlight the complexity of the internal 
HD representation and motivate studying this cognitive system in a 
multidimensional framework. Here we show evidence for the func-
tional importance of the global fluctuations in network activity (that is, 
gain) as a critical, yet previously underappreciated, dimension. Future 
studies examining the origins of such fluctuations will be critical to 
unveil the complete picture of the intrinsic structure of this circuit.
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Methods

Mice
Twelve male wild-type mice (C57Bl/6, Charles River) were used for this 
study, three of which provided enough simultaneously recorded HD 
cells for continued experimentation. Mice were housed individually at 
22 °C under a 12 h–12 h light–dark cycle and 40% humidity with food and 
water ad libitum. All of the experiments were performed in accordance 
with McGill University and Douglas Hospital Research Centre Animal 
Use and Care Committee (protocol 2015-7725) and in accordance with 
Canadian Institutes of Health Research guidelines.

Surgeries
During all surgeries, mice were anesthetized by inhalation of a com-
bination of oxygen and 5% isoflurane before being transferred to the 
stereotaxic frame (David Kopf Instruments), where anaesthesia was 
maintained by inhalation of oxygen and 0.5–2.5% isoflurane for the dura-
tion of the surgery. Body temperature was maintained with a heating 
pad and eyes were hydrated with gel (Optixcare). Carprofen (10 ml kg−1) 
and saline (0.5 ml) were administered subcutaneously, respectively, 
at the beginning and end of each surgery. Preparation for recordings 
involved three surgeries per mouse. First, at the age of 7–8 weeks, each 
mouse was injected with 600 nl of the non-diluted viral vector AAV9.
syn.GCaMP6f.WPRE.eYFP, sourced from University of Pennsylvania 
Vector Core. All injections were administered through glass pipettes 
connected to the Nanoject II (Drummond Scientific) injector at a flow 
rate of 23 nl s−1. One week after injection, a 0.5-mm-diameter gradient 
refractive index (GRIN) relay lens (Go!Foton) was implanted above the 
ADN (AP, –1.05; ML, 0.8; DV, −3). No aspiration was required. In addition 
to the GRIN lens, three stainless steel screws were threaded into the skull 
to stabilize the implant. Dental cement (C&B Metabond) was applied to 
secure the GRIN lens and anchor screws to the skull. A silicone adhesive 
(Kwik-Sil, World Precision Instruments) was applied to protect the top 
surface of the GRIN lens until the next surgery. Then, 2 weeks after lens 
implantation, an aluminium baseplate was affixed by dental cement 
(C&B Metabond) to the skull of the mouse, which would later secure 
the miniaturized fluorescent endoscope (miniscope) in place during 
recording. The miniscope/baseplate was mounted to a stereotaxic 
arm for lowering above the implanted GRIN lens until the field of view 
contained visible cell segments, and dental cement was applied to 
affix the baseplate to the skull. A polyoxymethylene cap was affixed to 
the baseplate when the mice were not being recorded to protect the 
baseplate and lens. After surgery, animals were continuously moni-
tored until they recovered. For the initial 3 days after surgery, the mice 
were provided with a soft diet supplemented with Carprofen for pain 
management (MediGel CPF). Screening and habituation to recording 
in the experimental environment began 2–3 days after the baseplate 
surgery. The first 3–4 weeks of recordings were used to confirm the 
quality and reliability of the calcium data while the animal was explor-
ing the environment with different screen displays.

Data acquisition
In vivo calcium videos were recorded with a miniscope (v3; https://
miniscope.org) containing a monochrome CMOS imaging sensor 
(MT9V032C12STM, ON Semiconductor) connected to a custom data 
acquisition (DAQ) box (https://miniscope.org) with a lightweight, flex-
ible coaxial cable. The cable was attached to a noiseless pulley system 
with a counterbalance (placed outside the recording environment) to 
prevent interference with the recorded animal’s movements and to alle-
viate the weight of the miniscope. The DAQ was connected to a PC with 
a USB 3.0 SuperSpeed cable and controlled using Miniscope custom 
acquisition software (https://miniscope.org). The outgoing excitation 
LED was set to 3–6%, depending on the mouse, to maximize the signal 
quality with the minimum possible excitation light to mitigate the risk 
of photobleaching. The gain was adjusted to match the dynamic range 

of the recorded video to the fluctuations of the calcium signal for each 
recording to avoid saturation. Behavioural video data were recorded 
using a webcam mounted above the environment. The DAQ simultane-
ously acquired behavioural and cellular imaging streams at 30 Hz as 
uncompressed AVI files and all recorded frames were timestamped for 
post hoc alignment. Two controllable LEDs (green and red) were added 
and used for tracking such that, whenever the miniscope was attached 
to the baseplate, the green LED pointed to the right side of the mouse’s 
head and the red LED pointed to the left side. All other light sources 
from the miniscope were covered. All recordings took place inside 
a 360° LED screen (height: 1 m, diameter: 90 cm; Shenzhen Apexls 
Optoelectronic), at the centre of which we placed a wall-less circular 
platform (diameter, 20 cm) raised 50 cm above the ground. Mouse 
bedding was evenly spread over the platform before each recording 
session. In all recordings, mice were free to move on top of the raised 
platform. A half spherical dome was used to cover the environment and 
prevent external light from entering, while it also held the behavioural 
camera. The experimental environment was designed to maximize 
circular symmetry, in the absence of any screen display. During habitu-
ation, mice were recorded while exposed to a single vertical stripe or no 
visual display (darkness). These recordings were also used to confirm 
the quality of tracking the head direction and the cue location, in dif-
ferent conditions. In all experiments in this study, the visual cue refers 
to a single white vertical stripe (width, 15 cm; height, 1 m).

Data preprocessing
Calcium imaging data were preprocessed before analyses through a 
pipeline of open-source MATLAB (MathWorks; v.R2015a) functions to 
correct for motion artifacts45, segment cells and extract transients32,46, 
and infer the likelihood of spiking events by deconvolution of the tran-
sient trace through a first-order autoregressive model31. We wrote a MAT-
LAB (MathWorks, v.2015a) program to perform offline tracking of the 
LEDs and determine, at each frame, the animal’s head direction. Another 
custom-written program was used to estimate the location of the visual 
cue. Both scripts were incorporated into the preprocessing pipeline.

Data analysis
In this study, neural activity refers to the deconvolved calcium traces as 
described previously31 unless specified. The resulting time series (per 
neuron, per session) correspond to the inferred likelihood of spiking 
events. A moving average filter of width 3 frames (~100 ms) is then applied 
on each time series. We refer to the obtained signal as firing activity.

Identification of HD cells
For every identified cell segment (ROI), we construct an HD tuning curve 
by measuring the occupancy-normalized firing activity within each 
angle bin (1° per bin) of the horizontal plane (x axis). The tuning curve 
is circularly smoothed with a moving average filter of width 50°. This 
enables us to have a better estimate of the angle bin that corresponds 
to the maximum firing activity of a given neuron’s tuning curve, which 
we will refer to as the PFD. We next construct a stimulus signal for that 
specific PFD by convolving the measured HD signal (from the behav-
ioural camera) with a narrow Gaussian kernel (mean = PFD, s.d. = 17°) 
such that for every neuron i:

tstim ( ) = ei

θ t

σ
−

(angdiff(PFD , ( )))

2

i HD
2

2

Where, θHD is the measured HD time series, σ is the s.d. of the Gaussian 
kernel and, angdiff (a, b) is a MATLAB function that gives the subtrac-
tion of a from b, wrapped on the [−π,π] interval. We correlate the 
stimulus signal with a normalized version of the firing activity to obtain 
the Pearson correlation coefficient r of each neuron. To determine the 
threshold value of r above which a cell can be identified as an HD neu-
ron, we used data from ten baseline recordings (3 min) per animal, 
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randomly selected from the reset experiment. We start with a relatively 
high value rthresh and select all neurons such that r > rthresh. For each neu-
ron, we produce 1,000 shuffles of the firing activity using the MATLAB 
circshift function (to preserve the temporal correlation of the firing 
activity signal) at random shifts. We next correlate each shuffled ver-
sion with the stimulus signal of the corresponding neuron to obtain a 
distribution of correlation coefficients (3 separate distributions, 1 per 
mouse). We define r m

95th as the value that corresponds to the 95th per-
centiles of the distribution, for mouse m. If r r> mthresh

95th, we keep iterat-
ing the same procedure while decreasing rthresh by 0.01 until convergence 
(that is, r r mthresh

95th≃ ), which constitutes the correlation coefficient 
threshold to identify HD neurons for mouse m (see Extended Data 
Fig. 1d,e for an illustration of the results).

HD decoding from neural data
We trained a recently developed Bayesian decoder37 to infer the HD 
direction from the deconvolved calcium responses of the imaged neural 
population. Noise independence across neurons was assumed. Con-
ceptually, this decoder is similar to the Bayesian decoding method for 
spike trains as commonly used in the literature47, except that we used 
zero-inflated-gamma distribution to model the stochasticity of the 
deconvolved calcium responses, instead of Poisson distribution. Our 
previous results showed that the zero-inflated-gamma model could bet-
ter capture the noise of the calcium signal and provide better decoding 
results compared with the Poisson noise model and a few other alterna-
tives. Details of this procedure can be found in section 4 of ref. 37. Here we 
smoothed the log-likelihood matrix (rows, angle bins; columns, frames) 
by iteratively summing the likelihoods over 5 frames (~166.7 ms) centred 
around the corresponding timestep of each iteration, for each angle 
bin. Note that, owing to the predominance of HD-tuned neurons among 
detected cell segments and to avoid selection biases, the neural activ-
ity from all ADN cells was used as an input to the decoding algorithm.

Analysis of drift
We define the offset as the angular difference between the measured 
head direction (θmeasured) and the decoded head direction (θdecoded):

t θ θOffset( ) = angdiff( , )decoded measured

In all analyses involving drift estimation, both measured and decoded 
HDs were smoothed with a moving average filter of width 20 frames 
(~667 ms). For the analysis of drift during darkness (except for heat 
maps), further smoothing was applied to extract the low-frequency 
component of the signal whereby a moving average filter of width 
300 frames (~10 s) was used. In all cases, a simple linear regression 
was performed on the unwrapped offset signal over a sliding window 
of 20 frames (~667 ms) to estimate the drift speed at the centre of the 
regression window (that is, slope of the fitted line).

Separation of fast and slow resets
Classification of resets within the [70:110]° range was done using 
the k-means clustering function in MATLAB. We used data from the 
first 1,450 frames after cue display. The algorithm separates between 
two clusters by generating 50 replicates with different initial cluster 
centroid positions for each replicate and then calculating the sums 
of point-to-centroid distances for each cluster using the ‘city block’ 
distance metric.

Reconstruction of the bump of activity
At any given time, we can reconstruct the bump of activity from the 
firing activity of each neuron and their respective tuning curves using 
a normalized weighted sum of tuning curves48:

A θ t
f θ r t

f θ
( , ) =

∑ ( ) ( )

∑ ( )
,

i i i

i i

where, A is a 360-by-T matrix (each row is a 1° bin of the horizontal plane 
and each column is a frame within range T of the analysis), fi is the tuning 
curve of neuron i and ri is the firing activity of neuron i.

Calculation of network gain
We assume that, at any given time, the thalamic HD network is subject 
to a global gain modulation of the firing activity, applied homogene-
ously on all ADN neurons such that:

Nr α f θ ε ε σ= ( ) + , ~ (0, ),i t t i t,
2

where ri,t is the instantaneous firing activity of ADN neuron i; αt is the 
instantaneous gain factor; fi is the tuning curve of ADN neuron i (calcu-
lated on the basis of the response measured in the baseline condition); 
θt is the decoded head direction from neural activity at time t; and ε is 
the additive Gaussian noise.

Our goal is to estimate the value of αt at any given time t using 
maximum-likelihood estimation approach.

Given the decoded head direction at time t, θt as well as the tuning 
curves fi for all ADN neurons, we obtain the likelihood of observing ri,t 
with parameter αt:
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2

We define the vectors:

⋮ ⋮
R

r
r

r

F θ

f θ

f θ

f θ

= , ( ) =

( )

( )

( )

,t

t

t

N t

t

t

t

N t

1,

2,

,

1

2







































where N is the number of ADN neurons in the network.
Assuming independent activity between said neurons, we can cal-

culate the likelihood of observing Rt:
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We apply the logarithm on both sides:

∑P R F θ α
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Our goal is to determine the parameter α̂t that maximizes the log- 
likelihood such that:

∑α P R F θ α r α f θ^ = argmax log(( ( | ( ); )) = argmin ( − ( )) .t
α

t t t
α

i i t t i t,
2

t t

To do so, we take the derivative of the objective function with refer-
ence to αt and set it to zero:

∑d
dα

r α f θ( − ( )) = 0.
t i i t t i t,

2

Thus:
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Similar to the offset signal, the obtained gain is smoothed with a 
moving-average filter of width 20 frames (~667 ms), unless otherwise 
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specified. With the exception of Extended Data Fig. 5b–d, the gain 
was always normalized to the average baseline activity. In Extended 
Data Fig. 5b–d, the tuning curves represent the average firing rates as 
a function of the internal HD for the entire recording session.

Gain heat-map analysis
Gain heat maps are 2D matrices in which each pixel p(x, y) is a 2D bin of 
width 1.5° per s corresponding to the measured angular head velocity 
and height 1° corresponding to the decoded HD. Pixel p(x, y) represents 
the mean network gain—across mice and across sessions—within a 2D 
average window of width [x − 3:x + 3]° per s and height [ y − 15:y + 15]°.  
A 2D Gaussian filter of s.d. = 15 (15° × 22.5° per s) is then applied. The 
network gain, the decoded HD and the measured HD were all smoothed 
with a moving-average filter of width 20 frames (~667 ms) while the 
measured head angular velocity was approximated by a simple linear 
regression with a regression window of similar width. To evaluate 
the significance of the difference between gain heat maps (Fig. 4f ),  
we performed a Wilcoxon rank-sum test to compare, at each pixel, 
the gain distributions within the 2D window of width [x − 3:x + 3]° 
per s and height [ y − 15:y + 15]° between darkness epochs of the 20 s 
experiment and D2 of the 2 min experiment. As we are only interested 
in the significance of the positive values (indicating the appearance 
of new bumps), negative values as well as P > 0.001 were marked  
as NaN.

Drift-speed heat-map analysis
Drift-speed heat maps were generated according to the same approach 
as for the gain heat maps. However, drift speed was approximated by a 
simple linear regression with a regression window of width 20 frames 
(~667 ms). The P-value matrix for drift speed difference between the 20 s 
experiment and D2 of the 2 min experiment (Extended Data Fig. 13e)  
was calculated as described above. However, only P values > 0.001 
were marked as NaN.

Vector field analysis
The purpose of this analysis is to illustrate baseline attractiveness. We 
define the state space (y axis, drift-speed (° per s); x axis, drift-angle 
(°)). We construct a vector field matrix by dividing the x axis into 18 
bins of width 20° each within the range [−180:180]°, and the y axis into 
20 bins of width 0.03° per s each, within the range [−3:3]° per s. At each 
bin (x,y), we calculate the mean drift speed and mean drift acceleration 
across mice and across sessions. The two latter quantities represent the 
velocity components (u,v) that determine the length and direction of 
the velocity vector. We assume the vector field has a central symmetry 
with reference to the baseline point (0,0) owing to the symmetry in the 
experimental design. We therefore generate an image of the original 
vector field that is its reflection across the origin. The two versions 
are then averaged to produce the final 2D vector field. Streamlines are 
generated using the streamline function in MATLAB. For Figs. 4d and 5e,  
streamlines were simulated over 1,000 timesteps.

Analysis of cue-rotation sessions
At the beginning of each continuous cue-rotation epoch, the visual cue 
was displayed at the same location as in the baseline. After cue removal 
and depending on its previous rotation speed, the cue would have 
either reached ±180° or ±90° (cue orientation in clockwise-cue-rotation 
sessions was reflected across the x axis so that the cue ends at ±180° 
(fast cue-rotation) or −90° (slow cue-rotation)). The offset is therefore 
expected to start within a close range of these two directions during the 
second darkness epoch. However, in some cases, drifts during the first 
darkness epoch were large enough so that the initial anchoring to the 
rotating cue occurred considerably far from baseline. This caused the 
drift signal during the second darkness to start further away from the 
expected location. In Fig. 5d, we limited our analysis to drifts starting 
within [−180:−145]U[145:180]° for fast cue rotation and [−125:−55]° 

for slow cue rotation, to study the effects across sessions with similar 
stability during baseline (total n = 44 out of 60).

Dimensionality reduction
It is generally believed that the main function of the HD system is 
to provide an estimate of the HD at any given time. As most studies 
of this network, including ours, are conducted while recording the 
neural activity in animals placed on horizontal planes, it is fair to 
assume that most of the variability in the activity of HD neural popu-
lation can be captured by a single variable representing the angle 
faced by the animal, at an instant t, with reference to a given allocen-
tric reference frame. Indeed, previous studies have shown that, in 
stable conditions, different dimensionality reduction methods17,38 
would produce a circular manifold that can be fairly approximated 
in a unidimensional polar state-space with a fixed radius. Neverthe-
less, a previous study17 observed that the structure becomes more 
complex during slow-wave sleep. Our guiding hypothesis is that the 
intrinsic geometric structure of the neural activity in the HD network 
lies in a multidimensional state space and that latent variables other 
than the angular component are needed to explain the variability in 
spiking data, during non-stable conditions such as resets and drift 
situations. Here we propose the simplest augmentation to the latent 
structure by adding a radial component that we expect to indicate 
instantaneous changes in global firing activity of the HD network. 
Although we believe that the true intrinsic dimensionality of the HD 
neural data is higher than two, the current paper mainly focuses on 
the necessity of at least a second dimension of the HD system during  
instability.

To test our hypothesis, we developed a deep feedforward neural 
network that maps the high-dimensional input (neural) data onto the 2D 
polar space (angular dimension θ and radial dimension R). The network 
is trained on circular data from the measured head direction. The radial 
component R is a latent variable that can take any non-negative value. 
Our previous analyses (not included here) have shown that, although 
methods such as principal component analysis and Isomap can uncover 
looped latent structures, these unsupervised learning algorithms tend 
to produce distorted circles, in the presence of noise, when applied on 
baseline data (that is, stable condition), which makes the definition 
of a radius less straightforward and motivates our use of a supervised 
learning method.

We used a feedforward neural network with three parallel branches. 
Two of these branches have three fully connected hidden layers 
(referred to as first and second or B1 and B2, respectively), while the 
third branch has two fully connected hidden layers (referred to as 
middle or Bm) (Extended Data Fig. 4d). The input layer receives a N × 1 
vector of neural activity from N ADN neurons at time t (both calcium 
traces as well as firing activity from deconvolved spikes can be fed to the 
model). The output layer is composed of two units that are the results 
of multiplying the output gt of the middle branch with the output z1,t of 
the first branch, on one hand, and the output z2,t of the second branch, 
on the other hand, as illustrated in the diagram of Extended Data  
Fig. 4d.

We trained our model on baseline data. The objective is to find the 
set of weights W that minimize the distance between the network out-
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where, T is the duration of the training epoch and ‖.‖2 is the L2 norm. 
If the algorithm converges, we obtain the following approximations:



z
θ

g

z
θ

g

≈
cos( )

≈
sin( )

.
t

t

t

t
t

t

1,

2,













Let R̂ =t g
1

t
, then we can rewrite the output of each branch:

B z R θ

B z R θ

B g
R

: ≈ ˆ cos( )

: ≈ ˆ sin( )

: =
1
ˆ

.

t t t

t t t

t
t

1 1,

2 2,

m













In effect, this would allow branches B1 and B2 to learn a mapping 
from the input (neural) space to the Cartesian transformation of the 
polar coordinates of a given state st, at any time t (respectively, B1 pro-
jects the input onto the x axis and, B2 projects the input onto the y 
axis). From these two branches, we can extract the decoded angle 

( )θ̂ = arctant
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z
t

t

2,

1,
. While branch Bm would learn a mapping from the 

input space to the inverse of the approximate radius R̂t of said state, 
in polar space. If we assume that R̂t  is a certain reflection of global 
neural activity, as per our hypothesis, then we expect small fluctua-
tions of population activity in the training data (baseline) to be suf-
ficient to allow the network to extrapolate R̂t on test data with larger 
fluctuations.

Statistics and reproducibility
All statistical tests are noted where the corresponding results are 
reported throughout the main text and Supplementary Information. All 
tests were uncorrected two-tailed tests unless otherwise noted. Outliers 
were identified as data points that fall outside the mean ± (3 s.d.) range.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The complete dataset for all experiments is available at Figshare 
(https://doi.org/10.6084/m9.figshare.21792689). The dataset should 
not be used for republication without prior consent from the authors.

Code availability
All source codes used in the current study are available on request to 
the corresponding authors.
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Extended Data Fig. 1 | Calcium imaging in the anterodorsal thalamic 
nucleus (ADN) and identification of HD neurons. a. Histology data showing 
coronal brain sections from each mouse with GCaMP6f expression, in ADN 
(anterior part). Mouse ID written in the top right and scale-bars shown in the 
bottom left of each panel. In total, 12 mice were injected and implanted for this 
study, only 3 (shown here) provided enough simultaneously recorded 
head-direction cells for continued experimentation. b. Directional maps of 
ADN in each mouse. HD cells are coloured by their preferred firing direction 
(PFD). Colour-wheel shows angle-colour assignments. Mouse ID written on the 
top right and scale-bars shown in the bottom left of each panel. c. Examples of 
HD cells’ coverage of the azimuthal plane, in each mouse. Rows in each matrix 
represent tuning curve heatmaps of individual HD cells. The amplitudes of 
individual tuning curves are normalized. Mouse ID written above each panel.  
d. Left: An example polar tuning curve for a HD neuron. Yellow line: direction of 

maximum firing activity (that is, PFD). Firing activity is occupancy normalized. 
Right: Top-row: Example calcium signal deltaF/F (green) from one HD neuron 
and deconvolved trace (red). Both traces were normalized. Middle-row: 
Measured HD. Bottom-row: Extracted stimulus signal of the HD neuron’s  
PFD. Peaks indicate instances of the animal facing the particular PFD. The 
deconvolved signal is cross-correlated with the stimulus signal in order to 
obtain the Pearson’s correlation coefficient which reflects the cell’s degree of 
HD tuning (r = 0.85 in the case of the current example). e. Distributions of 
correlation coefficients after 1000 circular-shift shuffles of the firing activity 
signals (smoothed deconvolved traces) of all HD neurons, in each mouse. Red 
and green vertical lines indicate 95th and 99th percentiles, respectively. Data 
includes 10 baseline recordings of 3 min each, for every mouse. Of all recorded 
cells, ~94% met the 95th percentile selection criterion while ~83% met the 99th 
percentile selection criterion.



Extended Data Fig. 2 | Polar tuning curves of ADN neurons from a 10-minute baseline recording for each mouse (total number of neurons = 502).  
The directional tuning of each ADN neuron is shown by the correlation coefficients above each tuning curve. Mouse ID written on the left side.
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Extended Data Fig. 3 | Anticipatory behaviour and drift-speed pattern 
during baseline. a. Top row: Mean bump of activity divided between positive 
(blue) and negative (pink) head angular velocities (HAV). Bar graph: Mean 
difference between measured and decoded HD (n = 42x5000 data points from 
baseline recordings, between both groups; Two-sided Wilcoxon signed rank 
test: HAV < 0: p = 0, Z = 83.71; HAV > 0: p = 0, Z = −76.81). Bottom row: Mean 
cross-correlation of the mean bump of activity, per epoch, with the mean bump 
of activity for positive (blue) and negative (pink) HAVs. Bar graph: Mean peak 
angle of cross-correlation (n = 42x5000 data points from baseline recordings, 

between both groups; Two-sided Wilcoxon signed rank test: HAV < 0: p = 0, 
Z = −115.24; HAV > 0: p = 0, Z = 113.13). Both analyses show a significant amount 
of anticipation of future heading by the HD network. b. Top: Drift-speed 
heatmap showing an increased latency in updating the internal representation 
as the HAV becomes larger. Bottom: same pattern as the above, seen here in 
Internal HAV-versus-Measured HAV space. Notice the deviations of the mean 
signal (orange) from the diagonal, at high measured HAVs. Bar graphs indicate 
mean ± SEM.



Extended Data Fig. 4 | Hypothesized relationship between the population- 
activity and movements in the low dimensional polar state-space. a, b. The 
amount of the change of neural activity during bump movement depends on 
the gain of the network. x axis represents the neuronal space (assuming 
uniform distribution of HD cells by PFD). Mathematically, the distance between 
representations of internal HD from start to end of a rotation, in the Euclidean 
sense, is smaller at lower network gain. D: Euclidean distance, rr t

activity: Nx1 vector 
of firing rates from N HD neurons, at time t for ‘high’ or ‘low’ activity levels.  
c. The concept of decreasing distance between internal HD representations,  
at lower network gain, is naturally captured in the 2D polar plane if we assume 
that radius reflects the level of network activity. The distance travelled in the 
hypothetical state-space of the HD network is greater when the radius is larger 
as well as when the net gain is higher, which could be quantified by the total 

change of firing rate across the network. Thus, we hypothesize that radius is 
correlated with overall population activity (that is, network gain) and that 
decreasing distance facilitates rotations across the HD network. Assuming that 
the internal HD representation lives in a 2D polar state-space where each state 
is defined by phase and radius, state transitions would be fastest at the lower 
end of the radial component because of the decreasing distance between 
states representing different angles, near the centre of the baseline ring. 
Bar-graphs are only indicative and not to scale. d. Diagram of the artificial 
neural network used to project high-dimensional neural activity onto 2D polar 
space. Numbers inside each box correspond to the unit count. All activation 
functions are ‘relu’ except for nodes z1,t and z2,t where the activation function is 
‘tanh’. In all layers, we apply L2 regularization with regularization factor 0.001. 
Input data is normalized.
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Extended Data Fig. 5 | Relationship between network gain and population 
activity. a. Reconstructed bump of activity (averaged over n = 42 sessions of 
the first experiment) for varying network gain ranges. Gain modulation not 
only affects the activity packet but also baseline activity. The decreasing 
baseline amplitude at low network gain indicates that the modulation is not 
driven by increased activity outside the main activity packet. Notice that the 
width of the activity packet remains within a narrow range. ‘fwhm’: the full 
width at half maximum in °. b. Method used to determine the variance explained 
by gain. Using the internal HD and neural activity from all recorded neurons 
per session as inputs (Sneuron i; 5 examples shown for illustration purposes), we 
can extract the tuning curve of each neuron (average firing activity as a function 
of internal HD, f(θt)) as well as the gain signal (gt), while assuming that pairwise 
coherence between HD cells is preserved. Two reconstructions of the neural 

activity are then produced from tuning curves and internal HD: In the first case 
(Dark-blue) neural activity is multiplied by gain (R neuron i

g ) while in the second 
case (Light-blue), gain is not taken into account (Rneuron i). The sum of variance 
across neurons is calculated for each group of neural activity (including ground- 
truth (Sneuron i)). c. Comparison of variance explained in percentage between  
the neural activity reconstruction with and without gain (sum of variance in 
each group is divided by the sum of variance in the ground-truth group) (n = 42 
sessions; Two-sided Wilcoxon rank-sum test: p = 0.0245, Z = 2.2499). Error bars 
show mean ± SEM. d. Increase in variance explained when gain is applied to 
reconstructed neural activity relative to the case where gain is not applied  
(that is, ratio between % variance explained with and without gain, minus 1) 
(n = 42 sessions; Mean = 13.71%, s.d. = 5.14%). Error-bars show mean ± s.d. Dots 
represent individual datapoints.



Extended Data Fig. 6 | Reset behaviour and gain modulation across mice.  
a. Top row: Resets separated according to their speeds between fast (light blue) 
and slow (dark blue) groups. Mouse ID written above each panel. Bottom row: 
Corresponding gain signals for fast and slow resets. b. Top row: Resets separated 

according to their range between long- (light blue), mid- (dark blue) and short- 
(grey) groups. Mouse ID written above each panel. Bottom row: Corresponding 
gain signals for long-, mid- and short-range resets. Data are mean ± s.e.m.
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Extended Data Fig. 7 | Agreement between true and model-predicted resets. 
a. Averaged heatmaps of the reconstructed bump of activity during fast (left 
column) and slow (right column) resets (same data as in Fig. 2g,h). Data is 
presented in the egocentric reference frame, without drift adjustment (top row) 
and with drift adjustment (bottom row) showing, in both cases, no additional 
bumps outside the main activity packet. Dashed red line indicates cue-onset, 
while white horizontal line at 90° is for reference. Firing activity is normalized. 
b. Simulation output of the gain-modulated attractor model taking input data 

(that is, gain) as in a. c. Top: Mean simulated reset signals for fast (light blue) and 
slow (dark blue) groups. Bottom: Mean simulated gain signals for the same 
groups. Data are mean ± s.e.m. Dashed signals represent means of ground- 
truth data. d. Individual examples of simulation predictions (red lines) for fast 
and slow reset groups, plotted against actual resets (blue lines). Yellow lines 
indicate cue location. Amplitudes are relative to angles at cue-onset (dashed 
black line).



Extended Data Fig. 8 | Animal behaviour, prior to cue display, is predictive 
of reset speed. a. Triggered average of gain shows a sharp decrease after cue 
display (Two-sided Wilcoxon rank-sum test: average gain 1-second pre-cue 
versus average gain 1-second post-cue: p = 0.0228, Z = 2.28) (top). However, 
overall absolute head angular velocity (aHAV) does not seem to differ before 
and after cue display (Two-sided Wilcoxon rank-sum test: average aHAV 
1-second pre-cue versus average aHAV 1-second post-cue: p = 0.6259, Z = 0.49) 
(bottom). Same reset events as in Fig. 2g,h (n = 42 events). b. Separation of 
signals in a. between fast (Light blue; n = 22 events) and slow (Dark blue; n = 20 
events) resets shows similar gain amplitudes over a 1-second interval prior to 

cue display (Two-sided Wilcoxon rank-sum test: p = 0.3580, Z = 0.92) (top). 
However, aHAV is lower for fast resets compared with slow resets, over the same 
period (Two-sided Wilcoxon rank-sum test: p = 0.0294, Z = 2.18) (Bottom). 
c. Head angular velocity becomes more predictive of reset type closer to the 
moment of cue-display when compared with prediction performance based on 
gain amplitudes within the same time interval. Deviance of the fit is used as 
defined in Matlab’s mnrfit function for logistic regression. Data shown is same 
as in Fig. 2g,h. Time dependent signals, in a and b, are shown as mean ± s.e.m. 
and bar-graphs show mean ± s.e.m. with individual datapoints.
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Extended Data Fig. 9 | Relationship between reset range and gain 
modulation. a. Mean drifts for short- (grey; n = 27 events), mid- (dark blue; 
n = 40 events) and long- (light blue; n = 67 events) range reset-groups showing 
non-significant difference in drift-speeds between mid- and long-range groups 
(Two-sided Wilcoxon rank-sum test: Short-Mid: p = 4.19e-5, Z = 4.10; Short-Long: 
p = 7.73e-5, Z = 3.95; Mid-Long: p = 0.62, Z = 0.50; 150 frames (~5 s) post-cue).  
b. Network gains for the short-, mid- and long- ranges have similar amplitudes 
prior to cue-display (Two-sided Wilcoxon rank-sum test: Short-Mid: p = 0.1174, 
Z = 1.57; Short-Long: p = 0.32, Z = 1.00; Mid-Long: p = 0.2984, Z = 1.04; 50 
frames (~1.67 s) pre-cue), yet they exhibit gradual decrease after cue-display 
(Two-sided Wilcoxon rank-sum test: Short-Mid: p = 0.0129, Z = 2.49; Short- 
Long: p = 2.6876e-9, Z = 5.95; Mid-Long: p = 1.2130e-5, Z = 4.38; 150 frames (~5 s) 
post-cue). c. Relationship between average gain and reset range. Each dot 
represents a correct reset event (n = 134 events). The R2 value corresponds to a 

linear regression model fit (green line). All clockwise sessions have been 
reflected across the x-axis and transformed into counter-clockwise ones.  
d. Rapid gain spikes can be seen shortly after cue-display, in the three reset-range 
groups (Same data as in b, with higher temporal resolution). All reset ranges 
start at similar amplitudes at the end of the darkness period (Two-sided 
Wilcoxon rank-sum test: short-mid: p = 0.3940, Z = 0.85; short-long: p = 0.2090, 
Z = 1.26; mid-long: p = 0.4686, Z = 0.72). Following cue-display, each group 
exhibits a brief gain increase (5 frames (~150 ms) pre-cue vs 5 frames (~150 ms) 
post-cue: Two-sided Wilcoxon rank-sum test: short: p = 6.9690e-4, Z = 3.39; 
mid: p = 0.0369, Z = 2.09; long: p = 2.6898e-4, Z = 3.64). These gain spikes are 
largest for the short-range group (Two-sided Wilcoxon rank-sum test: short-mid: 
p = 4.4888e-4, Z = 3.51; short-long: p = 1.8600e-4, Z = 3.74; mid-long: p = 0.9326, 
Z = 0.08). Time-dependent signals are shown as data are mean ± s.e.m. and 
bar-graphs show mean ± s.e.m. with individual datapoints.



Extended Data Fig. 10 | Distinct drift and gain patterns across darkness 
periods. a. Drift variability increases significantly following a reset (D2, D3 and 
D4) in comparison with D1 (Mean drift s.d. compared across darkness epochs: 
Two-sided Wilcoxon rank-sum test: BL-D1: p = 3.1214e-15, Z = 7.89; D1-D2: 
p = 1.1477e-6, Z = 4.86; D1-D3: p = 8.3761e-5, Z = 3.93; D1-D4: p = 5.6600e-11, 
Z = 6.55). Drift s.d. also increases with time after a reset (D2, D3 and D4) while it 
remains constant following baseline (D1). (Number of epochs: D1: n = 42; D2: 
n = 35; D3: n = 32; D4: n = 35). b. Mean drift-speed in each darkness epoch shows 
systematic biases that depend on prior cue-event. (Two-sided Wilcoxon 
rank-sum test: BL-D1: p = 0.1250, Z = 1.53; Two-sided Wilcoxon signed rank test: 
D2: p = 0.0168, Z = −2.39; D3: p = 0.0313, Z = 2.15; D4: p = 2.9929e-4, Z = 3.62). 
(Number of epochs: D1: n = 42; D2: n = 35; D3: n = 33; D4: n = 34). c. Comparison 
between drifts in D2 and D4 of the 90°-cue-shift experiment. Although the two 

events are experimentally symmetric to each other with reference to baseline, 
drifts in D4 appear to have larger biases (in absolute value terms) than D2. Left: 
Mean drift signals, in D2 (green) and D4 (dark-blue). Drifts in D2 have been 
mirrored across the 0°-line for comparison purposes. Right: Comparison 
between average drift speeds, in D2-mirrored (green; n = 35 epochs) and D4 
(dark-blue; n = 34 epochs) (Two-sided Wilcoxon rank-sum test: p = 0.0184, 
Z = 2.36). d. Average gain tuning curves across light conditions. e. Average gain 
tuning curves across darkness conditions show a gradual decrease of the 
network gain away from the internal cue location (dashed yellow line) from D1 
to D4 (Number of epochs: D1: n = 42; D2: n = 35; D3: n = 33; D4: n = 35). Time- 
dependent signals and gain tuning curves are shown as mean ± s.e.m. bar-graphs 
show mean ± s.e.m. with individual datapoints.
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Extended Data Fig. 11 | Network gain patterns across mice and darkness 
epochs. a. Network gain during darkness shown as heatmaps (top row) and 
tuning curves (bottom row), per mouse. In both cases, data is averaged across 
sessions and darkness epochs (D1 to D4) of the 90°-cue-shift experiment. 
Values for the tuning curves are shown as mean ± s.e.m. Mouse ID written above 
each panel. b. Top row: Network gain heatmaps showing same data as in a, split 
(from left to right, respectively) across the different darkness epochs D1 to D4 
of the 90°-cue-shift experiment. Bottom row: Drift speed heatmaps showing a 

consistent pattern, yet with varying amplitudes, across darkness epochs D1 to 
D4. No obvious effect of the gain landscape can be seen in these patterns and 
gain fluctuations did not correlate with any measurable distortion to the 
drift-speed landscape within the Head AV-vs-Internal HD state-space which 
maintained similar patterns to baseline (Extended Data Fig. 3b). This 
observation draws a clear distinction from the rapid representational shifts 
seen during resets and may point to a completely different mechanism linking 
network gain and drifts in dark conditions.



Extended Data Fig. 12 | Model of the hypothesized role of plasticity in 
baseline attraction during darkness. a. To explain drift dynamics that we 
observed in darkness, we propose a model that incorporates a ‘sensorimotor- 
by-HD’ layer that represents a cortical consensus about the directional sensory 
experience. Each neuron in this layer synapses onto all HD neurons via plastic 
synapses. Depending on the duration of exposure to the shifted cue context, 
the network either has enough time (that is, 2 min case) to form new associations 
between neurons of the HD and sensorimotor-by-HD layers which results in the 
emergence of a new steady state and no reversion to baseline, or not enough 
time (that is, 20 s case) and so, baseline associations between the two layers are 
maintained which causes the internal HD representation to revert to baseline 

state. b, c, d, and e. Model simulations. b. Synaptic weight matrix linking the  
HD layer to the Sensorimotor-by-HD layer, during baseline. c. Simulations of 
representational drifts in 20 s (bottom row), 2 min (middle row) and 4 min (top 
row) exposures to the reset context. Behaviour for individual examples (that is, 
head angular velocity) is shared across scenarios and is taken from actual 
recordings. d. Synaptic weight matrices in darkness for the three scenarios 
showing the strengthening of new associations between HD and Sensorimotor- 
by-HD layers while baseline connections become weaker with increased duration 
of exposure to the reset context. e. Mean drifts (solid lines) in darkness across 
scenarios shaded areas indicate SEM.
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Extended Data Fig. 13 | Drift and gain patterns during reversion. a. Mean 
drift signal during reversion (n = 43 epochs). Dashed yellow line divides the 
darkness period in two halves with contrasting states of the HD network: 
drifting (1st half) and stabilizing (2nd half). Data shown as mean ± s.e.m. Bar 
graph: Comparison of mean drift-speeds between the first and second halves 
of the darkness period (Two-sided Wilcoxon rank-sum test: p = 3,5802e-8, 
Z = 5.51). Data are mean ± s.e.m. with individual datapoints. b. Top row: 
Heatmaps of network gain during the first (left) and second (right) halves. 
Bottom row: Heatmaps of drift-speed during the first (left) and second (right) 
halves showing state-dependent distortions of the drift-speed pattern. No 
obvious relationship between drift speed and network gain landscapes could 
be determined, unlike what we observed during reset events, indicating that 
the relationship between gain and network state updating depends on the 

particular external input and/or current regime of the network. c, d, and e. 
Comparison of drift patterns between darkness epochs of the 20 s cue- 
exposure experiment and D2 of the 2 min cue-exposure experiment. c. Same  
as main Fig. 4c. d. Drift-speed heatmaps. Left: 20 s cue-exposure experiment 
(n = 43 epochs). Right: D2 of the 2 min cue-exposure experiment (n = 35 
epochs). e. Left: Drift-speed difference (same data as in d) showing a significant 
distortion of the pattern seen in the first experiment around the internal 
location of the cue. Right: p-value matrix for data in left (Wilcoxon rank-sum 
test; pixels where p > 0.001 were marked as NaN). In addition to the network 
gain, the drift pattern also shows systematic differences as a function of 
angular velocity and internal head direction between D2 and the darkness 
following 20 s visual-cue display.



Extended Data Fig. 14 | Persistent drift biases in darkness after cue 
rotation, between actual data and model-based simulations. a. Recorded 
examples of drift biases for continuous fast (left group) and slow (right group) 
cue-rotation. b, c, d and e. Model-simulation of vestibular input recalibration 
by visual experience. b. Synaptic weight matrix linking the HD layer to the 
Sensorimotor-by-HD layer (see model in Extended Data Fig. 12), during baseline. 
c. Simulations of offset during cue-rotation and in subsequent darkness for the 
fast (3°/s) and slow (1.5°/s; 1.28°/s) cases. Behaviour for individual examples  
(i.e. head angular velocity) is shared across scenarios and is taken from actual 
recordings. Sessions without vestibular input recalibration (that is, vestibular 

angular velocity neurons do not receive input from the bias cells – see model 
details in Supplementary Information) for both 3°/s and 1.5°/s cases were 
used as test examples. The 1.28°/s cue-rotation sessions were used to show the 
effect of cue rotation-speed on drift biases regardless of offset proximity to 
baseline condition. d. Synaptic weight matrices at the beginning of the 2nd 
darkness phase for fast (3°/s) and slow (1.5°/s) scenarios showing that baseline 
associations remain dominant even after 7 min of cue rotation which explains the 
stabilization around the 0°-offset line. e. Mean drifts (solid lines) in darkness 
across scenarios. Shaded areas indicate s.e.m.
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