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Universal logic with encoded spin qubits in 
silicon
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Quantum computation features known examples of hardware acceleration for  
certain problems, but is challenging to realize because of its susceptibility to  
small errors from noise or imperfect control. The principles of fault tolerance may 
enable computational acceleration with imperfect hardware, but they place strict 
requirements on the character and correlation of errors1. For many qubit 
technologies2–21, some challenges to achieving fault tolerance can be traced to 
correlated errors arising from the need to control qubits by injecting microwave 
energy matching qubit resonances. Here we demonstrate an alternative approach to 
quantum computation that uses energy-degenerate encoded qubit states controlled 
by nearest-neighbour contact interactions that partially swap the spin states of 
electrons with those of their neighbours. Calibrated sequences of such partial swaps, 
implemented using only voltage pulses, allow universal quantum control while 
bypassing microwave-associated correlated error sources1,22–28. We use an array of six 
28Si/SiGe quantum dots, built using a platform that is capable of extending in two 
dimensions following processes used in conventional microelectronics29. We quantify 
the operational fidelity of universal control of two encoded qubits using interleaved 
randomized benchmarking30, finding a fidelity of 96.3% ± 0.7% for encoded controlled 
NOT operations and 99.3% ± 0.5% for encoded SWAP. The quantum coherence offered 
by enriched silicon5–9,16,18,20,22,27,29,31–37, the all-electrical and low-crosstalk-control of 
partial swap operations1,22–28 and the configurable insensitivity of our encoding to 
certain error sources28,33,34,38 all combine to offer a strong pathway towards scalable 
fault tolerance and computational advantage.

The ultimate requirements for useful quantum hardware are set by fault 
tolerance (FT), whereby information is encoded in a way that contains 
and negates errors with a combination of redundancy, symmetry and 
careful scheduling of operations. FT requires, in part, that qubits be 
well-isolated from microscopic sources of noise and controlled with 
precision and high speed, all in a platform capable of scaling to sizes 
of computational relevance. Achieving the necessary scale favours 
lithographically defined qubits such as superconducting transmons39 
or single electron spins in Si quantum dots22. These approaches have 
enjoyed significant recent progress in scaling3,40, control fidelity5–7,41 
and advanced fabrication42,43. Crucially, however, FT also depends sensi-
tively on the structure and correlation of the errors it is responsible for 
mitigating. Accordingly, qubit platforms that seem to satisfy the scale 
and fidelity requirements of quantum algorithms could nevertheless 
fail to achieve FT and so too fall short of computational acceleration. 
One significant source of possible correlated noise results from finite 
and varying energy splittings between qubit states, featured in most 
single-spin and transmon qubit systems. The phase evolution set by 

those splittings must be stable and continuously tracked, and con-
ventional methods of control based on resonant driving between such 
splitting present challenges with respect to crosstalk.

Here we report on the realization of an alternative approach to 
quantum computation (QC) that uses degenerate qubit states and 
coherent partial swap interactions, the combination of which intrinsi-
cally avoids the FT challenges related to finite qubit energy splittings. 
Conventionally, qubits are controlled with arbitrary unitary rotations 
such as Rx(θ) = cos(θ/2) id + i sin(θ/2) σx, where id is the identity and σx 
is the quantum analogue of the classical NOT, associated with adding or 
removing energy from a qubit. The combination of Rv(θ) (for arbitrary 
axis v and angle θ) and a two-qubit gate such as controlled NOT (CNOT) 
constitutes a universal quantum gate set44, analogous to the universal 
NOT and AND gates for classical bits (Fig. 1). This quantum gate set is 
able to traverse the very large continuous special unitary (SU) group 
of SU(2n), where n is the number of qubits, rather than the (still very 
large) discrete symmetric group of 2n bitstrings in the case of classical 
digital computers. Our alternative method of qubit control evokes the 
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classical ‘conservative logic’45 of controlled-swapping of bits, which, 
as a Hamming-weight-conserving operation, operates on a smaller set 
of bitstrings scaling as 2n/n for large n. This logarithmic overhead in 
bit number may be an acceptable cost for the benefit, in principle, of 
reducing heat associated with bit flips. In our quantum case, we apply 
arbitrary unitary superpositions of swapping and not swapping spins j 
and k of an n-spin array, that is, ‘partial swaps’, written as Ujk(θ) = cos(θ/2) 
ID + i sin(θ/2) SWAPjk for any angle θ. Such a quantum computer could 
traverse SU(≈ 2n/n3/2) for large n (ref. 23).

Our demonstration uses a further refined subsystem, encoding n/3 
qubit states in n spins. The remaining spin states outside this encod-
ing are called leakage states, and their availability using controlled 
partial swapping provides a necessary resource for multi-qubit 
encoded universal quantum logic1,24. The linearly reduced qubit 
number and control-complexity overhead of our encoding relative 
to single-spin-based qubits enables the storage and control of qubit 
information in gapless quantum states. Indeed, this embedding was 

first theoretically proposed more than 20 years ago1,23–25 precisely to 
avoid the correlated error whereby a global magnetic field fluctuation 
could dephase every qubit in a single-spin-based quantum computer 
at once. Such highly correlated errors would be ruinous to FT. By using 
only partial swaps in a global uniform field, this type of correlated error 
is avoided entirely; such encodings were hence called noiseless codes25 
or decoherence-free subsystems (DFSs)1.

We implement the partial swap operation needed for DFS qubits 
with the calibrated activation of the contact exchange interaction 
between lithographically defined quantum dots. This highly local 
interaction, which arises as a consequence of the Pauli exclusion prin-
ciple, is also commonly used for two-qubit operations in single-spin 
qubits and in double-spin singlet-triplet qubits22 in conjunction with 
mechanisms to differentiate spin-splitting energies (for example, 
magnetic field gradients). For exchange-only (EO) operation, however, 
a critical design difference is the choice to remove as much variation in 
spin splittings as possible to maintain encoded-state degeneracy. EO 
operation has been demonstrated previously in GaAs26 and Si-based27,35 
triple-quantum dots, but those encodings were limited to a single qubit 
with no ability to use leakage states to complete encoded universal 
quantum logic1,23.

Our device confines electrons in a 5-nm-thick silicon well that 
is isotopically enhanced to a residual 800-ppm content of 29Si; the 
well is surrounded by isotopically natural Si0.3Ge0.7 barriers. Isotopic 
enhancement reduces gradients in the effective magnetic field seen 
by electron spins because of hyperfine interactions22, which consti-
tute the dominant source of undesired spin-splitting variation and 
resulting control error for our encoding. Lithographically patterned 
metallic gates with tuned biases establish the electrostatic potentials 
that laterally confine and control interactions between electrons in 
the six quantum dots comprising the qubits and the two measurement 
dots (Fig. 2a,b). Voltages on plunger gates (P1–P6) accumulate a single 
electron in each dot and exchange gates (X1–X5) control the interac-
tion strength between neighbouring electrons. Extra tunnel (T1, T6), 
bath (B1–B3) and charge sensor gates (M1, M2, Z1–Z4) (Fig. 2a) enable 
initialization and readout46.

Our previous work32,33,35,46–48, similar to other recent silicon qubit 
results5,6,8,9,49, used an architecture that uses overlapping aluminium 
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Fig. 1 | Example universal gate sets for four computational models. Top left, 
digital Boolean logic is universal with NOT and AND. Top right, single-spin- 
based quantum, with rotations about vector v, Rv(θ) and CNOT. Bottom left, all 
Boolean logic may be performed reversibly within a subsystem using the 
Fredkin gate. Likewise, bottom right, all quantum logic may be performed 
within a subsystem using partial swaps.
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Fig. 2 | A six-quantum-dot, two-qubit SLEDGE device in silicon. a, Top-view 
scanning electron micrograph of the etched TiN single metal layer, defining  
the device’s plunger (P), exchange (X), tunnel (T), bath (B), barrier (Z) and 
measure-dot (M) electrode gates. Two DFS qubits are formed with the P1–P3 
and P4–P6 dots and connected by a single exchange gate (X3). Unlabelled 
patches of metal are field gates, held at constant bias. b, Cross-sectional 
transmission electron micrograph of gate and TiN via electrodes, cut along  
the line of plunger and exchange gates in (a). Electrons depicted as circles with 
arrows are vertically confined by the Si/SiGe heterostructure boundaries and 
laterally confined by the induced electrostatic potential from the device gates. 
Al2O3/HfO2 dielectrics appear as a black boundary around the electrode gates29. 

c, Qubit states are manipulated using sequences of voltage pulses (‘playing’ 
from the upper left in this schematic) that actuate nearest-neighbour exchange 
interactions. The interactions are principally modulated by X gates33,35. We 
perform entangling operations on the two-qubit encoded subspace with 
sequences of partial swaps such as the sequence shown playing to the lower 
right. d, Schematic of a future multilayer-BEOL SLEDGE device that enables 
scaling in the lateral dimension. Devices designed using this capability could 
feature several rails of coupled quantum dots and readout channels by 
leveraging the standard methods of BEOL signal interconnection used in the 
semiconductor microelectronics industry.
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gates, which was challenging to reliably yield performant quantum 
dots at the level required for practical EO operation in extended 
arrays. Our present demonstration is instead based on the single-layer 
etch-defined gate electrode (SLEDGE) platform, recently detailed in 
Ha et al.29, whose improved yield results from separation in design and 
fabrication of the gate-defining layer (the ‘single layer’, which is a sheet 
of TiN-on-oxide above the silicon) from the back-end-of-line (BEOL) 
wiring, which contacts the gate layer through vertical via structures, 
as seen in Fig. 2. Although our device contains only two rows of quan-
tum dots, the SLEDGE architecture readily allows extension of this 
geometry to two-dimensional (2D) arrays by stacking via-connected 
routing layers, as shown in Fig. 2d, following the BEOL interconnect 
strategies of modern silicon microprocessors29. Existing demonstra-
tions of 2D arrays of semiconductor qubits use either carrier depletion 
in GaAs10 or ring-like geometries of overlapping gates11,12, both posing 
challenges to scaling that are circumvented by the via-based approach 
of SLEDGE. Arbitrarily large 2D arrays are still prevented by a finite num-
ber of feasible routing layers at the quantum dot pitch, but sufficient 
connectivity should nevertheless be available to enable 2D codes13,14,50 
when using the high-fidelity native encoded-SWAP operation that we 
demonstrate below.

We encode qubits using spins capable of partial swaps by associat-
ing quantum information with the total angular momentum quan-
tum number of pairs of two spins, say 1 and 2, where states with S12 = 0 
(the antisymmetric singlet state) map to |0⟩ and states with S12 = 1 (the 
symmetric triplet state) map to |1⟩. Hence S12 and S56 represent the two 
qubit states in our six-dot array (Fig. 2c). The addition of a third unpo-
larized and unmeasured spin to each qubit enables individual qubit 
control with only exchange, as shown in Kempe et al.23, DiVincenzo 
et al.24 and Andrews et al.35, and elaborated in Methods. Unlike most 
other qubit systems15,39, no additional physical mechanism is needed to 
generate entanglement between these encoded qubits. Sequences of 
exchange-based partial swaps must, however, be designed both to navi-
gate leakage spaces and to be agnostic to the unknown relative states 
of the unpolarized spins (known as the gauge freedom), as derived by 
Fong and Wandzura (FW)28,51 and further elaborated in Methods and 
Extended Data Figs. 5 and 6.

Qubit preparation and measurement is achieved with Pauli spin 
blockade. This is a common spin qubit technique that maps spin par-
ity (symmetric versus antisymmetric configurations) to the more  
easily detected charge configuration22. We initialize the outermost dot 
pairs (P1/P2 and P5/P6), with the X3 gate connecting the innermost, 
uninitialized electron spins in dots P3 and P4. In Si/SiGe, the fidelity of 
these state preparation and measurement (SPAM) operations are, in 
part, limited by the valley excited-state energies of the dots, which we 
measure using photon-assisted tunnelling to be 70 μeV for dot P1 and 
14 μeV for dot P6. The relatively poor valley splitting on P6 is consistent 
with observations of reduced SPAM fidelity when using sensor M2 to 
measure Pauli blockade on dots P5/P6, and is why we later prioritize  
P1/P2 measurement using sensor M1 when possible (Methods). 
M1-based measurement shows more than 96.0% ± 0.1% fidelity46 in 
single-qubit characterizations (Extended Data Fig. 2). Valley splitting 
may be more reliably large in narrower wells48, or possibly using other 
techniques;52 SPAM fidelity was recently validated to reach more than 
99.7% in a similar, narrower-well device46.

We perform exchange-based control of our encoded qubits 
using interleaved sequences of baseband voltage pulses that acti-
vate nearest-neighbour interactions for a fixed duration tpulse, with 
pulse-to-pulse spacing tidle. A single exchange pulse is actuated by 
voltage-modulating gate Xn by approximately 100 mV (and neighbour-
ing Pn and P(n + 1) gates by about −20 mV for capacitive compensation 
to achieve symmetric operation)33. This drives a partial swap Un,n+1(θ) 
by temporarily raising exchange energy JXn from a negligible value to 
JXn/h ≈ 100 MHz (Fig. 2c). The specific angles θ we used for two-qubit 
gates are tabulated in Extended Data Table 1 and for single-qubit Clif-
ford gates in Extended Data Table 2, although θ may be continuously 
tuned for arbitrary control. We provide control performance metrics 
in the Extended Data using methods described in Reed et al.33 and 
Andrews et al.35, including an evaluation of random magnetic field 
gradients due to residual nuclear spins in Extended Data Fig. 1a and 
control-signal crosstalk in Extended Data Fig. 2b. These metrics are 
explained further in Methods.

With encoding, SPAM and control in hand, we demonstrate two 
families of encoded two-qubit gates: CNOT (completing the universal 
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Fig. 3 | Two-qubit process tomography and RB. a,b, Exchange pulse diagrams 
and ideal process matrices of FW-CNOT (a) and SWAP (b) gates. The shading  
of exchange pulse boxes is proportional to the pulse exchange angle; detailed 
pulse angles may be found in Extended Data Tables 1 and 2. c,d, Maximum- 
likelihood estimates of measured quantum process matrices of FW-CNOT and 
SWAP gates. These data depend on joint measurement, so the relatively low M2 
SPAM fidelity reduces contrast. The CNOT tomogram was measured on a 

similar device from the same wafer, with the same well width and gate pitch  
and comparable SPAM. e, Two-qubit RB with tpulse = 10 ns, tidle = 5 ns and applied 
magnetic field B = 2.1 mT. Individual dots represent the average from 500 shots 
of a single instance of a random Clifford sequence. Error bars here represent 
the 1σ standard deviation calculated at each Clifford length. Two-qubit Clifford 
gates are compiled using FW-CNOT, SWAP and single-qubit Clifford gates Cx 
(inset).
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gate set for quantum computing shown in Fig. 1) and SWAP. The latter 
is composed of 15 full spin swaps, and is the key resource for moving 
information through a larger array of dots. We diagram the FW-CNOT 
and SWAP pulse sequences, decomposed as partial swaps, in Fig. 3a,b. 
The corresponding gate-specific voltages used for the FW-CNOT case  
are elaborated in Extended Data Fig. 3. As initial confirmation that we 
are performing the intended logical operations, we characterize the 
gates using quantum process tomography (QPT)53, shown in Fig. 3c,d. 
We see qualitative agreement with expected tomograms, but, because 
of the weakness of our QPT inversion method to leakage and SPAM 
errors, and in particular the poor M2 SPAM in the present device, it 
is difficult to extract meaningful quantitative results from this pro-
tocol. This could, in principle, be mitigated with increased averaging 
and self-consistent gate set tomography5,16,54, but we do not explore 
that here.

Randomized benchmarking (RB) is our preferred method of char-
acterizing gate performance as it is fast, simple, relatively insensitive 
to SPAM error and requires measurement of only one qubit55,56. In RB, 
a randomly selected sequence of gates that compile to the identity are 
chosen from a discrete group of qubit operations, typically the Clif-
ford group. This choice depolarizes noise in the encoded subspace, 
allowing gate performance to be inferred by sweeping the sequence 
length and fitting return probability to an exponential decay. We gen-
erate two-qubit Cliffords by means of standard compilation rules57 

using the FW-CNOT entangling gate, the aforementioned SWAP gate 
and single-qubit Cliffords. Of the 11,520 two-qubit Clifford gates, 90% 
include a CNOT in our composition, 50% include the encoded SWAP and 
each has an average of 3.1 single-qubit Clifford gates; each operation 
thus contains 41.1 exchange pulses on average. As shown in Fig. 3e, we 
find an average two-qubit Clifford fidelity of 97.1% ± 0.2%, far better 
than suggested by the SPAM-afflicted QPT and comparable to con-
temporary single silicon spin qubit two-qubit RB errors7,17, despite 
using a much larger number of exchange operations per Clifford. 
(This definition of fidelity incorporates errors due to leakage outside 
the encoded space but does not separate such leakage from encoded 
error as in the blind RB protocol35, for which a two-qubit extension is 
an ongoing effort, see Methods and Extended Data Fig. 7.) The leak-
age calculation predicting the observed asymptote of 17/60 ≈ 0.283 
is discussed in Methods.

We also measure the performance of individual gates of interest 
using interleaved randomized benchmarking (IRB)30. In this protocol, 
the operation in question is repeatedly interleaved between a random 
Clifford gate and the resulting decay is compared with a reference RB 
decay to infer the operation’s fidelity. We perform IRB for FW-CNOT 
and encoded SWAP in Fig. 4a,b, finding a fidelity of 96.3% ± 0.7% and 
99.3% ± 0.5%, respectively. The SWAP error is more than five times 
lower than that of CNOT, constituting a high-fidelity mechanism for 
moving data in constrained geometries using this technology. (Spin 
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a function of B and pulse idle time. B is oriented in-plane and perpendicular to 
the dot array. We see consistent improvement for lower tidle, eventually limited 
by the available bandwidth of the signal chain (not shown). As B increases, we 
first observe an improvement in fidelity above 200  μT, consistent with the 
suppression of transverse hyperfine magnetic gradients. The fidelity decreases 
for B > 3 mT because of induced paramagnetic gradients32, see Extended Data 
Fig. 4. All dots in (a–c) represent the average from 1,000 shots of a single 
random Clifford sequence. All error bars in this figure correspond to 1σ 
standard deviation intervals.
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shuttling through empty dots17,18,50,58 is a notable alternative.) A third 
gate we examine resolves a new potential obstacle to FT posed by 
our encoding, namely, that gate error can now lead to qubit leakage 
and the FW-CNOT can spread that leakage throughout a register. 
To avoid this, a variant of FW-CNOT called the leakage-controlled 
controlled-Z (LCCZ) was designed to reduce  the probability of 
leakage spreading to approximately the same probability as direct 
leakage. We find the LCCZ fidelity to be 93.8% ± 0.7% in this device;  
see Methods.

The dominant error in our EO operation is due to residual hyperfine 
interactions from the 800 ppm of 29Si nuclear spins and natural abun-
dance of barrier 73Ge spins. Evidence for this is provided by the scaling of 
the sequence error with duration (Fig. 4d), magnetic field dependence 
(Fig. 4e) and comparison to detailed quantitative numeric simulations, 
all elaborated in Methods. This varies from studies on single-spin qubits 
using micromagnetic field gradients, in which isotopic enhancement 
typically reduces magnetic noise beneath a floor set by charge noise19–21. 
EO is different, as it depends more critically on field uniformity, but 
is more resilient to charge noise, which we estimate as providing less 
than 6% of the observed error.

We have demonstrated encoded universal quantum logic opera-
tions, including single-qubit gates, CNOT, controlled-Z (CZ), LCCZ 
and SWAP, using only the exchange-based partial swap interaction 
and implemented in an extensible physical architecture. This control 
scheme is distinct from the traditional non-energy-conserving meth-
ods of other quantum technologies and may by itself offer near-term 
opportunities for analogue simulation59,60. In the longer term, although 
the EO DFS encoding offers fundamental advantages, achieving FT with 
it would require, in part, improved gate fidelity. Given the hyperfine 
contribution to our error, the primary pathway is to pursue faster 
control or improved isotopic purification. These refinements could 
be made independent of SPAM, fabrication yield and crosstalk per-
formance, and are compatible with scaling to larger devices using 
several back-end metal layers within the SLEDGE platform. This con-
trasts with lithographically defined microwave-actuated qubits, for 
which crosstalk reduction and site selectability typically require sub-
stantial device redesign with scale. An open question is whether our 
demonstrated coherent EO universal gate set may leverage states 
beyond our demonstrated encoding to enable other computational 
modalities, such as high-efficiency reversible classical computation45 
or permutational QC61.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-023-05777-3.

1.	 Bacon, D., Kempe, J., Lidar, D. A. & Whaley, K. B. Universal fault-tolerant quantum 
computation on decoherence-free subspaces. Phys. Rev. Lett. 85, 1758 (2000).

2.	 Blais, A., Huang, R. S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum 
electrodynamics for superconducting electrical circuits: an architecture for quantum 
computation. Phys. Rev. A 69, 062320 (2004).

3.	 Arute, F. et al. Quantum supremacy using a programmable superconducting processor. 
Nature 574, 505–510 (2019).

4.	 Xue, X. et al. Benchmarking gate fidelities in a Si/SiGe two-qubit device. Phys. Rev. X 9, 
021011 (2019).

5.	 Xue, X. et al. Quantum logic with spin qubits crossing the surface code threshold. Nature 
601, 343–347 (2022).

6.	 Mills, A. R. et al. Two-qubit silicon quantum processor with operation fidelity exceeding 
99%. Sci. Adv. 8, eabn5130 (2022).

7.	 Takeda, K., Noiri, A., Nakajima, T., Kobayashi, T. & Tarucha, S. Quantum error correction 
with silicon spin qubits. Nature 608, 682–686 (2022).

8.	 Noiri, A. et al. Fast universal quantum gate above the fault-tolerance threshold in silicon. 
Nature 601, 338–342 (2022).

9.	 Philips, S. G. J. et al. Universal control of a six-qubit quantum processor in silicon. Nature 
609, 919–924 (2022).

10.	 Mortemousque, P.-A. et al. Coherent control of individual electron spins in a two-dimensional 
quantum dot array. Nat. Nanotechnol. 16, 296–301 (2021).

11.	 Ansaloni, F. et al. Single-electron operations in a foundry-fabricated array of quantum 
dots. Nat. Commun. 11, 6399 (2020).

12.	 Hendrickx, N. W. et al. A four-qubit germanium quantum processor. Nature 591, 580–585 
(2021).

13.	 Vandersypen, L. M. K. et al. Interfacing spin qubits in quantum dots and donors—hot, 
dense, and coherent. npj Quantum Inf. 3, 34 (2017).

14.	 Veldhorst, M., Eenink, H., Yang, C. H. & Dzurak, A. S. Silicon CMOS architecture for a spin- 
based quantum computer. Nat. Commun. 8, 1766 (2017).

15.	 Monroe, C. et al. Programmable quantum simulations of spin systems with trapped ions. 
Rev. Mod. Phys. 93, 025001 (2021).

16.	 Madzik, M. T. et al. Precision tomography of a three-qubit donor quantum processor in 
silicon. Nature 601, 348 (2022).

17.	 Mills, A. et al. Shuttling a single charge across a one-dimensional array of silicon quantum 
dots. Nat. Commun. 10, 1063 (2019).

18.	 Yoneda, J. et al. Coherent spin qubit transport in silicon. Nat. Commun. 12, 4114 (2021).
19.	 Kawakami, E. et al. Gate fidelity and coherence of an electron spin in an Si/SiGe quantum 

dot with micromagnet. PNAS 113, 11738–11743 (2016).
20.	 Struck, T. et al. Low-frequency spin qubit energy splitting noise in highly purified 28Si/SiGe. 

npj Quantum Inf. 6, 40 (2020).
21.	 Yoneda, J. et al. A quantum-dot spin qubit with coherence limited by charge noise and 

fidelity higher than 99.9%. Nat. Nanotechnol. 13, 102 (2018).
22.	 Burkard, G., Ladd, T. D., Nichol, J. M., Pan, A. & Petta, J. R. Semiconductor spin qubits. Rev. 

Mod. Phys. (in the press); preprint available at https://arxiv.org/abs/2112.08863.
23.	 Kempe, J., Bacon, D., Lidar, D. A. & Whaley, K. B. Theory of decoherence-free fault-tolerant 

universal quantum computation. Phys. Rev. A 63, 042307 (2001).
24.	 DiVincenzo, D. P., Bacon, D., Kempe, J., Burkard, G. & Whaley, K. B. Universal quantum 

computation with the exchange interaction. Nature 408, 339–342 (2000).
25.	 Zanardi, P. & Rasetti, M. Noiseless quantum codes. Phys. Rev. Lett. 79, 3306–3309  

(1997).
26.	 Medford, J. et al. Self-consistent measurement and state tomography of an exchange-only 

spin qubit. Nat. Nanotechnol. 8, 654–659 (2013).
27.	 Eng, K. et al. Isotopically enhanced triple-quantum-dot qubit. Sci. Adv. 1, e1500214  

(2015).
28.	 Fong, B. H. & Wandzura, S. M. Universal quantum computation and leakage reduction  

in the 3-qubit decoherence free subsystem. Quantum Info. Comput. 11, 1003–1018  
(2011).

29.	 Ha, W. et al. A flexible design platform for Si/SiGe exchange-only qubits with low disorder. 
Nano Lett. 22, 1443 (2021).

30.	 Magesan, E. et al. Efficient measurement of quantum gate error by interleaved randomized 
benchmarking. Phys. Rev. Lett. 109, 080505 (2012).

31.	 Tyryshkin, A. M. et al. Electron spin coherence exceeding seconds in high-purity silicon. 
Nat. Mater. 11, 143–147 (2012).

32.	 Kerckhoff, J. et al. Magnetic gradient fluctuations from quadrupolar 73Ge in Si/SiGe 
exchange-only qubits. PRX Quantum 2, 010347 (2021).

33.	 Reed, M. D. et al. Reduced sensitivity to charge noise in semiconductor spin qubits via 
symmetric operation. Phys. Rev. Lett. 116, 110402 (2016).

34.	 Sun, B. et al. Full-permutation dynamical decoupling in triple-quantum-dot spin qubits. 
Preprint at https://arxiv.org/abs/2208.11784 (2022).

35.	 Andrews, R. et al. Quantifying error and leakage in an encoded Si/SiGe triple-dot qubit. 
Nat. Nanotechnol. 14, 747 (2019).

36.	 Witzel, W. M., Carroll, M. S., Morello, A., Cywiński, Ł. & Sarma, S. D. Electron spin decoherence 
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Methods

Encoded subspace notation
In the following sections, we elaborate sources of noise, the theoretical 
construction of two-qubit gates and further two-qubit benchmark-
ing results. For these elaborations, a more detailed description of the 
encoded subspace is required, which is best described according to 
angular momentum quantum numbers. A single spin, say spin 1, has 
S1 = 1/2 and projection m1 = ±1/2. For two spins, labelled 1 and 2, the 
total angular momentum S12 can be S12 = 0, the singlet state for which 
m12 = 0, or S12 = 1, the triplet of states for which m12 = −1, 0 or 1. We notate 
these four states as |S12; m12⟩. The smallest universally controllable EO 
qubit requires adding a third spin, for which the algebra of angular 
momentum provides the quantum number S123, which can be 1/2 either 
by adding the single S3 = 1/2 spin to the S12 = 0 singlet or by adding S3 to 
the S12 = 1 triplet. These two choices for S123 = 1/2 comprise our encoded 
qubit, and the quadruplet of states with S123 = 3/2, which also results 
from adding S3 to the S12 = 1 triplet, comprise our leaked states. We also 
have a total spin projection m123 = −S123, −S123 + 1, ..., S123. We thus notate 
these states here as |S12, S123; m123⟩ and our qubit states are |0, 1/2; m123⟩ 
and |1, 1/2; m123⟩. The m123 degree of freedom is called the gauge, and it is 
unaffected by exchange operation between any of the three spins. The 
Pauli spin blockade process on dots 1 and 2 provides initialization and 
measurement of only the S12 quantum number and has no impact on 
m123 (ref. 46). Singlet measurements on spins 1 and 2 therefore measure 
the probability of |0, 1/2; m123⟩ independent of m123, and provide no 
information to distinguish encoded triplet |1, 1/2; m123⟩ states from 
leaked states |1, 3/2; m123⟩. More information about exchange-based 
gates in a single-qubit system is available in Andrews et al.35.

Physical noise sources
We now discuss our techniques for characterizing two well-understood 
sources of noise and decoherence in our device, that is, magnetic noise 
and charge noise, and our techniques for limiting crosstalk error. This 
constitutes a more detailed discussion of Extended Data Figs. 1 and 2 
than the main text could contain.

Magnetic or hyperfine noise. The DFS encoding we use is predicated 
on a homogeneous (although possibly time-varying) magnetic field 
from one dot to the next. Uniform magnetic fields are thus effectively 
ignored by the DFS encoding, whereas magnetic gradients drive relative 
precession of electron spin pairs, causing decoherence and leakage 
out of the encoded subspace. As such, magnetic gradients between 
spins cause error, both within the encoded subsystem and outside it 
(that is, leakage.) Magnetic gradient fluctuations, caused by the noisy 
magnetization of 29Si and 73Ge nuclear spins coupled to the electron 
spins by means of the contact hyperfine interaction, provide the larg-
est contribution to our gate error32.

We characterize the effective decoherence rate due to hyperfine 
noise, T2*, by measuring the decay of a singlet prepared between two 
electrons and left in the low-exchange ‘idle’ configuration for a vary-
ing amount of time. The ensemble-averaged measurement projection 
decays to a value associated with the predicted mixture of encoded and 
non-encoded states: with probability 1/2 to the initial singlet |0, 1/2;  
m123⟩, 1/6 to the encoded triplet |1, 1/2; m123⟩ and 1/3 to the leaked state 
|1, 3/2; m123⟩62. Spin singlet pairs are initialized on either side of the 
device then shuttled to and from the desired location by consecutive 
π exchange pulses. Owing to the relatively poor SPAM fidelity on the 
M2 side of the device, spin pairs measured on the M2 side show devia-
tions in the decay asymptote from the predicted value of 1/2. The 1/e 
point of the Gaussian decay defines T2*, which we measured to be about 
3.5 μs for six different spin pairs, as shown in Extended Data Fig. 1a. 
This timescale is further characterized in Kerckhoff et al.32 and is fully 
expected for the present isotopic content. As expected for the number 
of hyperfine nuclei contributing to this dephasing, there is relatively 

little variation between each dot32. Other silicon qubits with varying 
levels of isotopic enhancement have been demonstrated elsewhere; for 
example Xue et al.5 used similar 800-ppm Si and natural Ge, but Struck 
et al.20 used 60-ppm 29Si, and key demonstrations of long decoherence 
times approaching minutes have emerged from echo experiments from 
donor-bound electrons in 50-ppm 29Si (ref. 31). In single-dot experi-
ments with thicker quantum wells and micromagnetic gradients, a 
key learning19–21 is that isotopic purification of the silicon is sufficient 
to cause T2* to be dominated by transduced charge noise, whereas in 
thinner quantum wells without gradients, such as the present device, 
nuclear hyperfine effects continue to dominate, with a clear pathway 
for improvement of increased isotopic enrichment32,36.

Unlike charge noise, magnetic noise acts during both pulsing and 
idling62 (for example, regardless of exchange energy), and so dephasing 
occurs continuously during evolution, leading to a total error scaling 
as (tgate/T2*)2. The prefactor of that scaling depends on how much the 
sequence permutes spins and decouples magnetic noise32. In Fig. 4d, 
we plot the IRB error of idle operations of increasing duration t. The cal-
culated theoretical IRB error is ε = (120/129) (t/T2*)2, in good agreement 
with the data. (The coefficient 120/129 is calculated by the convolution 
method presented in Merkel et al.63.) For non-idle operations, error 
typically falls beneath the ε ≈ (tgate/T2*)2 error level of ‘doing nothing’, 
because of the partial homogenization of gradient fields due to driven 
spin exchange. As an example, the LCCZ operation shown here has 
roughly half the infidelity of an equal-duration idle. The expected IRB 
error due to magnetic noise for a particular gate built from multipulse 
exchange sequences is evaluated by numeric simulation35,62. We find 
simulated magnetic error rates to be consistent with the measured 
data, although they are field dependent, and agreement is limited to 
uncertainties in the actual magnetic field witnessed at the quantum dot.

Although the EO encoding is explicitly immune to static and fluctuat-
ing global fields, global fields do affect the magnitude of local magnetic 
field gradients. In Fig. 4e, we plot average two-qubit Clifford fidelity 
measured using RB as a function of both applied field and tidle. Here, 
the magnetic field is aligned in-plane with the device substrate and 
roughly perpendicular to the linear dot array. We find that error ini-
tially decreases by nearly a factor of two with increasing field strength, 
which is understood as the suppression of nuclear magnetic fluctua-
tions transverse to the field direction, consistent with our numerical 
simulations32.

At fields >3 mT, error increases again because of a combination 
of spin-orbit effects and Meissner screening effects from supercon-
ducting parts of the gate stack. The differences in Larmor frequency 
between the P1 dot and the P2–P5 dots are measured as in Eng et al.27 
and plotted in Extended Data Fig. 4, suggestive of a very small Meissner 
gradient of order g|dB/dx|/h = 0.04 (kHz/mT)/nm, but certainly also 
including a contribution from spin-orbit coupling37,64. The Meissner 
screening effect was much stronger in earlier devices using alumin-
ium metal32, but is much weaker in the present device because of the 
non-superconducting or weakly superconducting TiN gates used in 
the SLEDGE process29. The amount of spin-orbit (which depends on 
random Ge atom placement) and Meissner screening (which depends 
on deposition properties and geometry of TiN gates) vary significantly 
from dot to dot.

Charge or exchange noise. Another contribution to our gate error 
is charge noise, here manifest as exchange noise induced by fluctua-
tions in the lateral trapping and tunnelling potentials. These fluctua-
tions are due to either noise in the signal chain or defects in the gate 
stack and have a strong 1/f spectrum across many decades65. This type 
of noise induces error only during active exchange pulsing, as 
nearest-neighbour tunnel coupling is suppressed when the associ-
ated spins are idling. This idle error suppression results from the ex-
ponential scaling of the spin–spin exchange interaction with applied 
barrier potentials in general, and in particular from the large on/off 
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ratios that are available with our tightly confining SLEDGE design29. 
As shown in Extended Data Fig. 1b, we quantify this charge noise con-
tribution to our error budget with an exchange oscillation Q-factor at 
a given J (typically J/h ≈ 100 MHz). The product of J/h with the 1/e dura-
tion of the Gaussian decay envelope of exchange oscillations gives us 
a number of oscillations, Nosc. As a budgeting metric, Nosc is a superior 
parametrization, compared with the decay time, as the impact of 
charge noise on J scales as |dJ/dV| for gate voltages V. If J were exactly 
exponential with voltage, Nosc would be independent of voltage,  
but it is not perfectly so as exchange is subexponential with X-gate 
voltage33. Similar to our magnetic noise heuristic, the estimated theo-
retical gate error from charge noise scales quadratically with this de-
cay envelope, N1/ osc

2 .
We repeatedly measure Nosc as a function of J along the symmet-

ric operation axis, finding that Nosc reaches about 50 at 100 MHz, the 
frequency of operation for experimental convenience. Notably, and 
contrary to pure exponential activation, Nosc rapidly increases from 
<100 at  J/h = 1 GHz to >1600 above J/h ≈ 20 GHz, where we observe a 
sharp reduction in |dJ/dV| as the potential barrier flattens (Extended 
Data Fig. 1c). This is the underlying reason that exchange is a subexpo-
nential function of voltage, such that the sensitivity to voltage fluctua-
tions, which scales as |∂J/∂V|, reduces as J increases. We see in Extended 
Data Fig. 1 that, as exchange asymptotically approaches the approxi-
mate double-dot orbital energy, |∂J/∂V| nearly vanishes, leading to a 
marked insensitivity to noise and thousands of exchange oscillations. 
This phenomenon has been previously reported in GaAs in a different 
operating regime66. The accessibility of this operation point in a SiGe 
accumulation mode device can be attributed to the large gate action 
of the SLEDGE design. To resolve coherent oscillations, which occur at 
exchange frequencies well above the 200-MHz Nyquist frequency of 
our arbitrary wave generators, we shift the arbitrary wave generator 
time basis, which is normally set to 2.5 ns, to within the range 2.5–5 ns.  
A continuous shift of the time basis within this range provides the 
smooth sampling needed to resolve coherent oscillations without alias-
ing, and thus to extract both the exchange rate, J/h, and Nosc. Although 
these exchange energies are too high for practical pulsed operation, 
they may prove valuable for microwave-sensitive EO encodings67.

We perform an initial validation of our error model with single-qubit 
RB in Extended Data Fig. 2a. To properly account for leakage out of our 
encoded space, we use the ‘blind’ benchmarking technique described 
in Andrews et al.35, whereby sequences are chosen to compile either 
to the identity or to one of the Pauli gates, and we analyse differences 
between the I, Z and X, Y branches. We find an average single-qubit  
Clifford error of (1.1 ± 0.1) × 10−3 with a leakage error of (3 ± 1) × 10−4. This 
is in approximate agreement with our simulated prediction of error 
from magnetic and charge noise alone, 5.0 × 10−4, but these simula-
tions do not include the effects of pulse distortion or other physical 
contributions such as Meissner screening or spin-orbit interactions. 
Evaluation of the impact of charge noise on two-qubit sequences is 
again done by numeric simulation, and it is found that, for these longer 
sequences, charge noise provides a smaller contribution to the error, 
<6%, as indicated in the main text.

Crosstalk. A low level of crosstalk is a key ingredient for practical 
scalability of a quantum register. Although the exchange interaction 
is intrinsically strongly limited to only nearest-neighbour action22, 
thus limiting ‘accidental’ exchange for pairs not actively pulsed, 
control-signal crosstalk could still occur if attempting several exchange 
operations simultaneously in too small a region. The ultimate reason 
for this is the classical cross-capacitance of metal gates, which leads to 
a spurious signal in a neighbouring gate, an interaction which falls off 
as approximately 1/r3 for gates separated by physical distance r. The 
effects of this are mitigated in our system in three ways. First, because 
exchange is an approximately exponential function of its control volt-
age, a small spurious voltage signal would cause only an exponentially 

small deviation of exchange rate at ‘idle’. This is because when spins are 
in the ‘idle’ configuration, exchange rates are very low ( JXn/h < 10 kHz) 
and their derivatives relative to the small voltages that may be gener-
ated by cross-capacitance to actively controlled gates are also very low 
(dJ/dV/h < kHz/mV).

By contrast, when activated by d.c. voltage pulses of order 100 mV, 
both exchange rates are fast ( JXn/h ≈ MHz to GHz) and derivatives 
large (dJ/dV ≈ J/(10 mV)), meaning that simultaneous operation of an 
exchange pulse for two nearby pairs in an array is best avoided. For 
the size of array used here, all spins are considered to be ‘nearby’ for 
the purposes of crosstalk. This is the reason for our second crosstalk 
mitigation, which is to ensure that only one spin pair is active at a time, 
and all others are idle. Future, larger arrays will rely on distant cross-
talk signals being small enough to not cause unacceptable errors even 
with the large values of dJ/dV associated with active exchange, and 
therefore will allow simultaneous operation. In this case, the approxi-
mately 1/r3 scaling of voltage signal crosstalk will allow simultaneous 
operation as long as a zone of exclusion is respected; we expect this 
zone to be comparable in size to the present device. This constitutes 
only a relatively small overhead in time, which is well worth the cost 
of avoiding correlated errors from simultaneous control noise or the 
need for contextual calibration. We note that both of these ‘idle’ and 
‘exchange’ regimes, associated respectively with our first and second 
crosstalk mitigation strategy, are a consequence of the high on/off 
ratio for exchange evident in Extended Data Fig. 1c and in Reed et al.33.

Third, voltage pulsing is done using ‘virtual gates’17,59 that compensate 
proximal barriers to keep nearest-neighbour electrons in idle and align 
the potential biases to symmetrize the exchange interaction to reduce 
the sensitivity of the system to charge noise33.

To demonstrate this low susceptibility to crosstalk when operated 
with these mitigations in place, in Extended Data Fig. 2b we compare 
the IRB error of an idle period interleaved between Clifford gates with 
that of a control operation of equivalent duration performed on the 
neighbouring qubit. (For the reason explained in the discussion of 
the second mitigation strategy described above, we emphasize that 
exchange pulses are never simultaneously applied to generate this or 
any other data in this experiment.) As expected, because of the low 
voltage-crosstalk susceptibility at idle, the avoidance of simultaneous 
pulses and the use of symmetric operation (respectively mitigations 
one to three), there is no significant difference in error for the two cases 
to within the uncertainty of the RB measurement. This lack of degrada-
tion in performance from operations performed on a neighbouring 
qubit confirms that our control approach, whereby exchange pulses 
are applied sequentially to the device without temporal overlap, enjoys 
minimal crosstalk error.

Theory of multi-qubit exchange-only pulse sequences
In this section we explain the structure of the entangling pulse 
sequences we demonstrated, including the purpose and construc-
tion of the LCCZ gate.

Unlike the single-encoded-qubit case, when considering operations 
on two encoded qubits on dots 1–6, the gauges of the two qubits, m123 
and m456, become important. Notating the total angular momentum 
of all six spins as S rather than S123456 and their projection as m instead 
of m123456 for brevity, the two S123 = S456 = 1/2 qubits may combine into 
an S = 0 subspace and an S = 1 subspace. Although exchange conserves 
m, still respecting gauge freedom, its action for interqubit operations 
does depend on S, which, in turn, is set by the relative value and phase 
of m123 and m456. The gauge freedom, which can be safely ignored 
for single-qubit gates, must therefore be carefully considered with 
two-qubit operations.

In 2000, DiVincenzo et al.24 provided a 19-pulse entangling gate 
sequence between two encoded qubits that required the total angu-
lar momentum of all six spins to be S = 1, which was imagined to be 
accomplished by polarizing the gauge of each qubit. However, the 



small spin-orbit effect and long spin relaxation times in silicon leave 
few good hardware choices for such polarization in our system, limiting 
the practicality of this approach. A decade later, the FW construction28 
was discovered by computational search using a genetic algorithm. 
This construction is a gauge-independent CNOT sequence, meaning it 
correctly performs the same CNOT sequence on the S12 and S45 degrees 
of freedom for both S = 0 and S = 1. Gauge independence allows each 
triple-dot EO qubit to be initialized as a pair of spin-singlet states and 
an unpolarized spin, as we do in the present demonstration.

In 2016, Zeuch and Bonesteel51 showed that the FW sequence is in 
fact composed of three repetitions of a shorter primitive composite 
sequence acting on four spins, shown in Extended Data Fig. 5. This 
primitive sequence is a quasi-Fredkin (controlled-SWAP)45 gate, swap-
ping the gauge m123 with m4 only if S12 = 1, but not if S12 = 0. Applying this 
quasi-Fredkin gate to one qubit on spins 1, 2 and 3 and alternatingly on 
spins 4, 5 and then 4 again, a S12 = 0 condition will apply identity three 
times, whereas an S12 = 1 condition will swap spins 4 and 5, leaving m123 
in its initial state (regardless of what that initial state is). These three 
uses provide a Fredkin gate with a three-spin EO qubit as control and 
two spins as target. If those two spins are the singlet–triplet pair of an 
EO qubit, this controlled-SWAP becomes an encoded CZ, the Fong–
Wandzura controlled-Z (FWCZ), with no gauge dependence.

Compiling the primitive sequences together (for example, shuffling 
and combining commuting pulses, removing 2π pulses), one arrives at 
an entangling gate using 12 π/2 exchange pulses (that is, spin √SWAP 
gates) on just five fully connected spins. Assuring a CZ adds two more 
π/2 pulses, and adapting to the linear, nearest-neighbour coupled 
layout we use here with the measured singlet–triplet pairs on the ends 
of the array, the FWCZ ends up using all six spins with a further 12 π 
pulses (swaps on spins) for a total of 26 pulses. The sequence is shown 
in Extended Data Table 1. We may convert the CZ into CNOT by means 
of the construction shown in Extended Data Fig. 6a, adding two more 
pulses. To highlight the physical implementation of such sequences, we 
present an illustrative example in Extended Data Fig. 3 of the 28-pulse 
FW-CNOT sequence translated into experimentally accurate voltage 
waveforms required for device control. The sequences are compiled 
sequentially, so that no two pulses occur simultaneously, to avoid 
crosstalk (see Methods above).

The quasi-Fredkin gate on four spins discussed above has an unde-
sired feature, however: if the EO qubit is in its S123 = 3/2 leaked state, 
then the gate applies a phase flip to the S1234 = 2 states relative to the 
S1234 = 1 states. Mathematically, no EO four-spin sequence can avoid 
this problem. As a result, when S123 = 3/2 and we apply this primitive 
operation as described for the FWCZ, then when S12345 = 1/2 and S45 = 1, 
the resulting unitary provides a phase flip, and when S12345 = 3/2, the 
resulting unitary applies a π rotation about an axis tipped an angle 
tan−1[3 (15/11) ] from the Bloch-sphere z-axis to the singlet–triplet 
qubit defined by S45. These operations in general will leak the EO qubit 
including spins 4 and 5; even when applying the FW gate perfectly, 
leakage will have spread from one qubit to the next. (Notably, leakage 
spreads only from the |S12, S123; m123⟩ qubit to the |S45, S456; m456⟩ qubit; if 
the |S45, S456; m456⟩ is leaked into |1, 3/2; m456⟩, then the gate behaves as 
intended for S45 = 1 regardless of S456). This leakage spreading could be 
highly detrimental to FT, as we are unable to detect leakage directly in 
general and most quantum error correcting codes are ill-equipped to 
correct leakage even when it is detected.

The goal of the LCCZ gate is to avoid this leakage spreading when 
applying encoded CZ gates. The key insights to the LCCZ gate are that 
the unwanted leakage-induced phase flip or π rotation on the S45 qubit 
are both square roots of an identity operation and all single-qubit 
operations are identity on leakage spaces. Therefore, if we apply two 
FWCZ sequences with a single-qubit gate on the qubit composed of 
dots 1–3 in between, then we will have achieved some controlled- 
π-rotation gate on the encoded subspaces. The π-rotation angle 
depends on the choice of single-qubit operation and can be converted 

back to Pauli operators Z or X with single-qubit corrections. In particu-
lar, we use the construction shown in Extended Data Fig. 6b. The oper-
ator Z  (called S† in Extended Data Table 2, but not to be confused here 
with total spin) on |S45; m12⟩ is simply another π/2 pulse on these spins, 
and the single-qubit rotations R, R† and H may be readily derived as 
exchange sequences similar to those in Andrews et al.35. If the CZ in this 
construction is the FWCZ and the S12 qubit is leaky (that is, S123 = 3/2), 
then all single-qubit gates have no action and the two FWCZ gates com-
bine into identity, leaving behind only the correctable 
single-qubit-encoded Z  on the S45 pair (which is also Z  on a |S45, S456; 
m456⟩ qubit). After some compiling, the resulting sequence is 46 pulses 
for a leakage-controlled CNOT and 44 pulses for an LCCZ; the compiled 
sequences are also shown in Extended Data Table 1.

The final sequence we demonstrate is encoded SWAP, which is not 
entangling, but is nonetheless a critical two-qubit gate for moving 
data and for RB. In many qubit modalities, the SWAP is more complex 
than the CNOT, as a typical construction uses three CNOT sequences. 
However, for EO qubits, SWAP is the one transversal operation of the 
underlying spins; for example, swapping all the underlying spins also 
constitutes a SWAP of the encoded qubits. If our spins were fully con-
nected, three π pulses to enact spin swaps would suffice. The 15-pulse 
sequence shown in Extended Data Table 1 performs the permutations 
needed to move spin information in linear, nearest-neighbour coupled 
architecture with the three-spin structure reflected about the centre. 
The timing of these spin-swap operations is chosen so that each spin 
spends approximately the same amount of time in each dot. A sequence 
that equalizes time exactly effectively decouples low-frequency mag-
netic noise;34,38 the 15-pulse swap shown only partially completes such 
a permutative dynamical decoupling operation, but is nevertheless 
much more resilient to magnetic noise than other operations of similar 
duration.

Two-qubit benchmarking with bilateral readout and inversion 
rotations
Although all the RB results in the main text were generated with 
one-sided readout only, we present here benchmarking results with 
readout from both sides. As stated in the text, small valley splitting on 
dot P6 limits the SPAM fidelity and results in a meaningful reduction in 
measurement visibility. Nonetheless, as Extended Data Fig. 7 shows, the 
decay rates measured on either side are consistent; we observe similar 
gate performance using measurement on either side of the device.

In addition, we have explored the RB sequences with and without 
X-gate pre-rotations, reminiscent of the single-qubit blind RB proto-
col35 and of character benchmarking on the larger space of encoded 
qubits68. Unlike the single-qubit case, in which linear combinations 
of the two measurement results can be used to differentiate error in 
the qubit computational space from leakage error, the two-qubit case 
navigates through a larger Hilbert space, which requires a greater num-
ber of measurements to distinguish those types of error in a similar 
manner. Although we have not yet formalized such a technique, we 
still emphasize that the decay rates on the singlet and triplet branches 
are consistent within the confidence intervals. We take this as a strong 
sign that the single exponential decay model for each channel is valid 
here, lending the possibility that linear combinations of exponential 
decays will enable more detailed leakage analysis in future efforts.

Finally, we explain the different asymptotic singlet probability values 
at large Clifford numbers for the different RB experiments we present. 
These may be understood by a relatively simple counting argument, 
which uses the fact that the total electron spin projection, m, is par-
tially conserved in our experiments. This conservation is stronger at 
higher magnetic fields, where the mismatch of electron and nuclear 
Larmor frequencies suppress electron-nuclear flip flops and pulse 
sequences are insufficiently fast to drive the spin system to compen-
sate. Although this conservation law is weaker at low magnetic fields, 
it is strong enough even in Earth’s field that the following counting 



Article
argument applies. For one-qubit RB, there are three states for three 
spins at constant value of m123 = ±1/2; in the |S12, S123; m123⟩ notation: 
|0, 1/2; m123⟩, |1, 1/2; m123⟩ and |1, 3/2; m123⟩. Magnetic noise will, under 
application of a large number of Clifford sequences, scramble these 
and result in a probability of 1/3 of measuring S12 = 0 at sequence end. 
For two-qubit RB, m is the projection across all six spins, and half of 
experiments begin with m = 0, a quarter begin with m = 1 and another 
quarter begin with m = −1, depending on the random gauge of the two 
initialized qubits. There are 6!/(3!3!) = 20 ways to obtain m = 0 and  
6!/(4!2!) = 15 ways to obtain m = ±1. Six of the 20 m = 0 states have S12 = 0 
and four of the 15 m = 1 states have S12 = 0, and so if these are again fully 
scrambled, the expected asymptote is ((6/20) + (4/15))/2 = 17/60 ≈  
0.283. (If we were to instead construct our Clifford gate set using the 
LCCZ gate, state mixing under m-conservation would be less complete 
and the theoretical asymptote would again become 1/3.) The asymp-
totic value observed when using the M2 readout is significantly higher 
than 1/3, as seen in Extended Data Fig. 7b, and is another indication of 
reduced SPAM performance on this side of the device.

Data availability
All data generated or analysed during this study are included in this 
published article and in its extended data.
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Extended Data Fig. 1 | Device performance metrics. a, Magnetic dephasing  
of a spin singlet at the idle position (where J ≈ 0), prepared on different dot pairs. 
The 1/e point of the Gaussian decay envelope defines t = T2* and is a simple metric 
for characterizing the impact of substrate nuclear magnetic noise on qubit 
performance. We plot a T2* = 3.5 μs envelope as a visual guide in dashed black. 
Most pairs are prepared and measured with high fidelity on the M1 side (left 
vertical axis); the P5/P6 pair uses M2 (right vertical axis) and has lower contrast. 
b, Charge noise impact on exchange oscillations for each exchange axis. This 
measurement is analogous to the one for T2* except measured at J/h ≈ 100 MHz 
such that fluctuations in the exchange energy due to charge noise are the 
dominant source of decoherence. We parameterize the 1/e Gaussian decay point 

in terms of the number of coherent oscillations, Nosc, that occur in that time. 
Each successive curve is offset on the y-axis by 0.5 and on the x-axis by 10 ns. 
Here, Nosc = 57.6, 49.2, 33.4, 70.9 and 42.3 at J/h = 119 MHz, 84.2 MHz, 114 MHz, 
134 MHz and 103 MHz for axes JX1–JX5, respectively. c, Nosc as a function of J. Owing 
to the subexponential behaviour of exchange along the symmetric axis33 (inset), 
we observe that Nosc increases with J. At J/h ≥ 17 GHz, exchange asymptotes as a 
result of the flattening of the tunnel barrier to a value related to the double-dot 
orbital energy66. In this limit, where voltage excursions on numerous gates 
exceed ±200 mV, dJ/dV decreases significantly and Nosc rapidly increases to an 
observed maximum >1,600.
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Extended Data Fig. 2 | Single-qubit performance and inter-qubit crosstalk 
data. a, Single-qubit performance for the P1, P2, P3 qubit with M1 readout. The 
‘blind’ RB measurement35 yields an average single qubit gate error of (1.1 ± 0.1) ×  
10−3 and leakage error of (3 ± 1) × 10−4. Using the methods of Blumoff et al.46, we 
infer a SPAM fidelity on the M1 side from these data of 96.0% ± 0.1%. See Methods 
for more detailed discussion of this figure. b, Crosstalk characterization. IRB 
error on qubit Q0 (using exchange energies JX1 and JX2) while interleaving 
between each Clifford either periods of idle (blue) or composite Clifford gates 
(orange) on qubit Q1 (using exchange energies JX5 and JX4). The Q1 composite 
sequences used here are X, XX, XXX, Y, YY, YYY, S†, S†S† and S†S†S†. These gates, 

respectively, take 90 ns, 180 ns, 270 ns, 120 ns, 240 ns, 360 ns, 30 ns, 60  ns and 
90 ns. The x-axis is the duration of the interleaved idle period or total duration 
of the composite pulse sequence on qubit Q1. The black dashed line indicates 
modelled RB error due to hyperfine dephasing at each idle duration in a 
magnetic field of 20 μT as generated by a numeric simulation. As discussed in 
Methods, these data serve as a validation of our approach for limiting crosstalk 
error, which includes strict avoidance of simultaneous exchange pulses and 
low susceptibility to spurious signals in the device ‘idle’ configuration. All error 
bars in this figure correspond to 1σ standard deviation intervals.
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Extended Data Fig. 4 | Paramagnetic gradients. Magnetic gradients as a 
function of gate-to-gate separation in the lateral plane. Gradients are derived 
from singlet–triplet oscillations of a decay measurement, measured over 
various spatial separations, as described in Eng et al.27. A linear slope of 
0.04 (kHz/mT) nm−1 is plotted here as a guide to the eye.



Extended Data Fig. 5 | Mathematical construction of the FWCZ. A primitive 
subsequence coupling all pairs of four spins with π/2 pulses (spin √SWAP) gates 
is shown in the dashed box, which, in the S123 = 1/2 (encoded) subsystem, is 
controlled by the S12 quantum number of the |S12, S123; m123⟩ qubit. The primitive 
is identity for S12 = 0 and swaps m123 with a fourth spin if S12 = 1. Three uses with 
alternating choice of the fourth spin completes a controlled-Z between singlet–
triplet subsystems on S12 and S45. If S123 = 3/2 (leakage subsystem), the gate 
applies an S12345-dependent unitary U to S45, with U2 = 1. A full-pulse construction 
of this FWCZ including the extra π pulses (spin swaps) to adapt to a linear 
nearest-neighbour layout is shown in Extended Data Table 1.

https://www.ncbi.nlm.nih.gov/nuccore/S12345
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Extended Data Fig. 6 | LCCZ construction. a, FW-CNOT is made from FWCZ 
(Extended Data Fig. 5) in the standard way: two Hadamard gates, notated H, as 
in Andrews et al.35 and some compiling. b, The LCCZ sequence is made from two 
FWCZ sequences interspersed with single-qubit gates, and some compiling. 
Here R = (I + iZ)/√2 for identity I and Pauli Z. Full-pulse constructions are shown 
in Extended Data Table 1.
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Extended Data Fig. 7 | Two-qubit RB with two-sided readout.  
a,b, Benchmarking measurements on the M1 side (a) and M2 sides (b), with  
and without X-gate pre-rotations. Cliffords are compiled with the FW-CNOT 
entangling gate. We observe worse performance here than for the RB datasets 
in the main text as we operate here with tidle = 20  ns, compared with tidle = 5 ns in 
Fig. 3c, but performance here is consistent with that observed in Fig. 4e.
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Extended Data Table 1 | Two-qubit gate sequences

Exchange Pulse Diagram*Gate Operation
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*Angles presented here in decimal format are shorthand for the following expressions: cos−1(2√2/3) → 0.340, cos−1[(2 − √2 + 23/4)/3] → 0.714, cos−1[(−1 − 2√2)/3] → 0.915, cos−1(1/√3) → 0.955, cos−1(1/3) 
→ 1.231, cos−1(1/√3 − 1/√6) → 1.401, cos−1(−1/3) → 1.911, cos−1(−2√2/3)→ 2.802, cos−1[√(1/2 + √2/3)] → 2.972, 2π − cos−1[(2 − √2 + 23/4)/3] → 4.338, 2π − cos−1(1/√3) → 5.328 and 2π − cos−1[(−1 − 2√2)/3] → 5.368.



Extended Data Table 2 | Single-qubit Clifford gate sequence

*Angles used here are: θ1 = tan−1√8 → 70.529°, θ2 = π − tan−1(√5/2) → 131.81°, θ3 → 74.755° and θ4 → 
201.625°.
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