Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulating surface potential maximizes voltage in all-perovskite tandems

A Publisher Correction to this article was published on 24 July 2023

This article has been updated

Abstract

The open-circuit voltage (VOC) deficit in perovskite solar cells is greater in wide-bandgap (over 1.7 eV) cells than in perovskites of roughly 1.5 eV (refs. 1,2). Quasi-Fermi-level-splitting measurements show VOC-limiting recombination at the electron-transport-layer contact3,4,5. This, we find, stems from inhomogeneous surface potential and poor perovskite–electron transport layer energetic alignment. Common monoammonium surface treatments fail to address this; as an alternative, we introduce diammonium molecules to modify perovskite surface states and achieve a more uniform spatial distribution of surface potential. Using 1,3-propane diammonium, quasi-Fermi-level splitting increases by 90 meV, enabling 1.79 eV perovskite solar cells with a certified 1.33 V VOC and over 19% power conversion efficiency (PCE). Incorporating this layer into a monolithic all-perovskite tandem, we report a record VOC of 2.19 V (89% of the detailed balance VOC limit) and over 27% PCE (26.3% certified quasi-steady state). These tandems retained more than 86% of their initial PCE after 500 h of operation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analysis and strategies for the minimization of recombination between perovskite and ETL.
Fig. 2: Surface inhomogeneity and its remediation using surface-adsorbed molecular layers.
Fig. 3: Characterization of WBG perovskite solar cells.
Fig. 4: PV performance and stability of perovskite tandem solar cells.

Similar content being viewed by others

Data availability

All data are available in the main text or supplementary materials. The data that support the findings of this study are available from the corresponding authors on reasonable request.

Code availability

The code that supports the findings of this study is available from the corresponding authors on reasonable request.

Change history

References

  1. Oliver, R. D. J. et al. Understanding and suppressing non-radiative losses in methylammonium-free wide-bandgap perovskite solar cells. Energy Environ. Sci. 15, 714–726 (2022).

    Article  CAS  Google Scholar 

  2. Mahesh, S. et al. Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 13, 258–267 (2020).

    Article  MathSciNet  CAS  Google Scholar 

  3. Stranks, S. D., Hoye, R. L. Z., Di, D., Friend, R. H. & Deschler, F. The physics of light emission in halide perovskite devices. Adv. Mater. 31, 1803336 (2019).

    Article  CAS  Google Scholar 

  4. Stolterfoht, M. et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3, 847–854 (2018).

    Article  ADS  CAS  Google Scholar 

  5. Warby, J. et al. Understanding performance limiting interfacial recombination in pin perovskite solar cells. Adv. Energy Mater. 12, 2103567 (2022).

    Article  CAS  Google Scholar 

  6. Wang, R. et al. Prospects for metal halide perovskite-based tandem solar cells. Nat. Photon. 15, 411–425 (2021).

  7. Leijtens, T., Bush, K. A., Prasanna, R. & McGehee, M. D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828–838 (2018).

    Article  ADS  CAS  Google Scholar 

  8. Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Chen, W. et al. Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nat. Energy 7, 229–237 (2022).

    Article  ADS  CAS  Google Scholar 

  10. Lin, R. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. NREL. Best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html (accessed 21 November 2022).

  12. Jeong, M. et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 369, 1615–1620 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Zhang, J. et al. Intermediate phase enhances inorganic perovskite and metal oxide interface for efficient photovoltaics. Joule 4, 222–234 (2020).

    Article  Google Scholar 

  14. Liu, Z., Siekmann, J., Klingebiel, B., Rau, U. & Kirchartz, T. Interface optimization via fullerene blends enables open-circuit voltages of 1.35 V in CH3NH3Pb(I0.8Br0.2)3 solar cells. Adv. Energy Mater. 11, 2003386 (2021).

    Article  CAS  Google Scholar 

  15. Tong, J. et al. Wide-bandgap metal halide perovskites for tandem solar cells. ACS Energy Lett. 6, 232–248 (2021).

    Article  CAS  Google Scholar 

  16. Stolterfoht, M. et al. The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 12, 2778–2788 (2019).

    Article  CAS  Google Scholar 

  17. Zhao, T., Chueh, C. C., Chen, Q., Rajagopal, A. & Jen, A. K. Y. Defect passivation of organic-inorganic hybrid perovskites by diammonium iodide toward high-performance photovoltaic devices. ACS Energy Lett. 1, 757–763 (2016).

    Article  CAS  Google Scholar 

  18. Ross, R. T. Some thermodynamics of photochemical systems. J. Chem. Phys. 46, 4590 (2004).

    Article  ADS  Google Scholar 

  19. Teale, S. et al. Dimensional mixing increases the efficiency of 2D/3D perovskite solar cells. J. Phys. Chem. Lett. 11, 5115–5119 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Yang, S. et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365, 473–478 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019).

  22. Chen, H. et al. Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16, 352–358 (2022).

  23. Aber, A. G., Glunz, S. & Warta, W. Field effect passivation of high efficiency silicon solar cells. Sol. Energy Mater. Sol. Cells 29, 175–182 (1993).

    Article  Google Scholar 

  24. Jang, Y. W. et al. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 6, 63–71 (2021).

    Article  ADS  CAS  Google Scholar 

  25. Wu, W. Q. et al. Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Sci. Adv. 5, eaav8925 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kapil, G. et al. Tin-lead perovskite fabricated via ethylenediamine interlayer guides to the solar cell efficiency of 21.74%. Adv. Energy Mater. 11, 2101069 (2021).

    Article  ADS  CAS  Google Scholar 

  27. Hu, S. et al. Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells. Energy Environ. Sci. 15, 2096–2107 (2022).

    Article  CAS  Google Scholar 

  28. Frohna, K. et al. Nanoscale chemical heterogeneity dominates the optoelectronic response of alloyed perovskite solar cells. Nat. Nanotechnol. 17, 190–196 (2021).

    Article  ADS  PubMed  Google Scholar 

  29. Baldo, M. A. & Forrest, S. R. Interface-limited injection in amorphous organic semiconductors. Phys. Rev. B 64, 085201 (2001).

    Article  ADS  Google Scholar 

  30. Saidaminov, M. I. et al. Multi-cation perovskites prevent carrier reflection from grain surfaces. Nat. Mater. 19, 412–418 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Li, Z. et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416–420 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Zhang, F. et al. Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science 375, 71–76 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Zhang, L. et al. Surface defect passivation of pb–sn-alloyed perovskite film by 1,3-propanediammonium iodide toward high-performance photovoltaic devices. Sol. RRL 5, 2100299 (2021).

    Article  CAS  Google Scholar 

  34. Zhang, F. et al. Surface lattice engineering through three-dimensional lead iodide perovskitoid for high-performance perovskite solar cells. Chem 7, 774–785 (2021).

    Article  CAS  Google Scholar 

  35. Park, B. et al. Understanding how excess lead iodide precursor improves halide perovskite solar cell performance. Nat. Commun. 9, 3301 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  36. Yan, N. et al. Ligand-anchoring-induced oriented crystal growth for high-efficiency lead-tin perovskite solar cells. Adv. Funct. Mater. 32, 2201384 (2022).

    Article  CAS  Google Scholar 

  37. Chiara, R. et al. The templating effect of diammonium cations on the structural and optical properties of lead bromide perovskites: a guide to design broad light emitters. J. Mater. Chem. C Mater. 10, 12367 (2022).

    Article  CAS  Google Scholar 

  38. Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).

    Article  CAS  Google Scholar 

  39. Zheng, X. et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017).

    Article  ADS  CAS  Google Scholar 

  40. Stolterfoht, M. et al. How to quantify the efficiency potential of neat perovskite films: perovskite semiconductors with an implied efficiency exceeding 28%. Adv. Mater. 32, 2000080 (2020).

    Article  CAS  Google Scholar 

  41. Tong, J. et al. Carrier lifetimes of >1 ms in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364, 475–479 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Lin, R. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nat. Energy 4, 864–873 (2019).

    Article  ADS  CAS  Google Scholar 

  43. Xiao, K. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5, 870–880 (2020).

    Article  ADS  Google Scholar 

  44. Wen, J. et al. Steric engineering enables efficient and photostable wide-bandgap perovskites for all-perovskite tandem solar cells. Adv. Mater. 34, 2110356 (2022).

    Article  CAS  Google Scholar 

  45. Song, T., Freidman, D. J. & Kopidakis, N. How useful are conventional I–Vs for performance calibration of single- and two-junction perovskite solar cells? A statistical analysis of performance data on ≈200 cells from 30 global sources. Sol. RRL 6, 2100867 (2022).

    Article  CAS  Google Scholar 

  46. Chen, H. et al. Efficient and stable inverted perovskite solar cells incorporating secondary amines. Adv. Mater. 31, 1903559 (2019).

    Article  CAS  Google Scholar 

  47. Ilavsky, J. Nika: software for two-dimensional data reduction. J. Appl. Crystallogr. 45, 324–328 (2012).

    Article  CAS  Google Scholar 

  48. Jiang, Z. GIXSGUI: a MATLAB toolbox for grazing-incidence X-ray scattering data visualization and reduction, and indexing of buried three-dimensional periodic nanostructured films. J. Appl. Crystallogr. 48, 917–926 (2015).

    Article  CAS  Google Scholar 

  49. Burgelman, M., Nollet, P. & Degrave, S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361–362, 527–532 (2000).

    Article  Google Scholar 

  50. Shao, Y., Yuan, Y. & Huang, J. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nat. Energy 1, 15001 (2016).

    Article  ADS  CAS  Google Scholar 

  51. Aydin, E. et al. Ligand-bridged charge extraction and enhanced quantum efficiency enable efficient n–i–p perovskite/silicon tandem solar cells. Energy Environ. Sci. 14, 4377–4390 (2021).

    Article  CAS  Google Scholar 

  52. Delamarre, A., Lombez, L. & Guillemoles, J. F. Characterization of solar cells using electroluminescence and photoluminescence hyperspectral images. J. Photonics Energy 2, 027004 (2012).

    Article  Google Scholar 

  53. Rau, U. Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B Condens. Matter Mater. Phys. 76, 085303 (2007).

    Article  ADS  Google Scholar 

  54. Wurfel, P. The chemical potential of radiation. J. Phys. C Solid State Phys. 15, 3967–3985 (1982).

    Article  Google Scholar 

  55. El-Hajje, G. et al. Quantification of spatial inhomogeneity in perovskite solar cells by hyperspectral luminescence imaging. Energy Environ. Sci. 9, 2286–2294 (2016).

    Article  CAS  Google Scholar 

  56. Wurfel, P., Finkbeiner, S. & Daub, E. Generalized Planck’s radiation law for luminescence via indirect transitions. Appl. Phys. A 60, 67–70 (1995).

    Article  ADS  Google Scholar 

  57. Ren, X. et al. Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions. New J. Phys. 14, 053020 (2012).

    Article  ADS  Google Scholar 

  58. Havu, V., Blum, V., Havu, P. & Scheffler, M. Efficient O(N) integration for all-electron electronic structure calculation using numeric basis functions. J. Comput. Phys. 228, 8367–8379 (2009).

    Article  ADS  CAS  MATH  Google Scholar 

  59. Blum, V. et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180, 2175–2196 (2009).

    Article  ADS  CAS  MATH  Google Scholar 

  60. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett 77, 3865–3868 (1996).

    Article  PubMed  Google Scholar 

  61. Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009).

    Article  ADS  PubMed  Google Scholar 

  62. Huhn, W. P. & Blum, V. One-hundred-three compound band-structure benchmark of post-self-consistent spin-orbit coupling treatments in density functional theory. Phys. Rev. Mater. 1, 033803 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Warby for a useful discussion that contributed to our understanding of perovskite–ETL interfaces, and T. Song and N. Kopidakis at NREL for device certification. Z.W. acknowledges the Banting Postdoctoral Fellowships Program of Canada. GIWAXS patterns were collected at the BXDS-WLE Beamline at CLS with the assistance of C.-Y. Kim and A. Leontowich. This research was made possible by the US Department of the Navy, Office of Naval Research (grant nos. N00014-20-1-2572 and N00014-20-1-2725) and the US Department of Energy’s Office of Energy Efficiency and Renewable Energy under Solar Energy Technologies Office Award no. DE-EE0008753. This work was supported in part by the Ontario Research Fund Research Excellence programme (ORF7: Ministry of Research and Innovation, Ontario Research Fund-Research Excellence Round 7). This work was also supported by the King Abdullah University of Science and Technology under award no. OSR-CRG2020-4350. This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy for the US Department of Energy under contract no. DE-AC36-08GO28308. NREL authors acknowledge support from the Operational Energy Capability Improvement Fund of the Department of Defense. The views expressed in the article do not necessarily represent the views of the Department of Energy or the US Government. CLS is funded by NSERC, the Canadian Institutes of Health Research, CFI, the Government of Saskatchewan, Western Economic Diversification Canada and the University of Saskatchewan. This work was also supported by the Natural Sciences and Engineering Council of Canada and the Vanier Canada Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

H.C., A.M., S.T. and B.C. planned experiments and coordinated the work. H.C. fabricated WBG devices and tandems for performance and certification and fabricated perovskite films for characterization. H.C., A.M., C. Li and L.C. fabricated NBG devices and tandems. S.T. and A.M. wrote the original draft. S.T., B.C., E.U. and S.D.W. carried out optical spectroscopy of films and devices and performed data analysis. T.Z. carried out DFT calculations. G.H. and S.D.W. performed UPS measurements and data analysis. P.S. and T.F. carried out KPFM and data analysis. S.T. and L.G. performed GIWAXS measurements and analysed data. J.W., Z.W., L.Z., S.M.P. and L.G. helped optimize the single-junction and tandem device structure. R.A.A. conducted thermal admittance spectroscopy measurements. X.Z., J.M.L., C.X., B.S., C. Liu, Y. Yang, M.G.K. and N.J.P. assisted with device analysis and data interpretation. E.H.S., Y. Yan, S.D.W. and M.G.K. secured funding and helped to review and edit the manuscript.

Corresponding authors

Correspondence to Yanfa Yan or Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Weijun Ke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24, Tables 1–4, Notes 1 and 2 and references.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Maxwell, A., Li, C. et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2023). https://doi.org/10.1038/s41586-022-05541-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05541-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing