Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spontaneous generation and active manipulation of real-space optical vortices

Abstract

Optical vortices are beams of light that carry orbital angular momentum1, which represents an extra degree of freedom that can be generated and manipulated for photonic applications2,3,4,5,6,7,8. Unlike vortices in other physical entities, the generation of optical vortices requires structural singularities9,10,11,12, but this affects their quasiparticle nature and hampers the possibility of altering their dynamics or making them interacting13,14,15,16,17. Here we report a platform that allows the spontaneous generation and active manipulation of an optical vortex–antivortex pair using an external field. An aluminium/silicon dioxide/nickel/silicon dioxide multilayer structure realizes a gradient-thickness optical cavity, where the magneto-optic effects of the nickel layer affect the transition between a trivial and a non-trivial topological phase. Rather than a structural singularity, the vortex–antivortex pairs present in the light reflected by our device are generated through mathematical singularities in the generalized parameter space of the top and bottom silicon dioxide layers, which can be mapped onto real space and exhibit polarization-dependent and topology-dependent dynamics driven by external magnetic fields. We expect that the field-induced engineering of optical vortices that we report will facilitate the study of topological photonic interactions and inspire further efforts to bestow quasiparticle-like properties to various topological photonic textures such as toroidal vortices, polarization and vortex knots, and optical skyrmions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Magnetically controllable, spontaneous generation of an optical vortex–antivortex pair in a GTOC.
Fig. 2: Measured trivial and non-trivial topological phases in the GTOC.
Fig. 3: Magneto-optically driven dynamics of the optical vortex and antivortex controllable by the external magnetic field.
Fig. 4: Magnetically induced generation and annihilation of optical vortex–antivortex pair.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

All codes generated during this study are available upon request from the corresponding authors.

References

  1. Coullet, P., Gil, L. & Rocca, F. Optical vortices. Opt. Commun. 73, 403–408 (1989).

    Article  ADS  Google Scholar 

  2. Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    Article  ADS  CAS  Google Scholar 

  3. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Padgett, M. & Bowman, R. Tweezers with a twist. Nat. Photon. 5, 343–348 (2011).

    Article  ADS  CAS  Google Scholar 

  5. Schmiegelow, C. T. et al. Transfer of optical orbital angular momentum to a bound electron. Nat. Commun. 7, 12998 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Nicolas, A. et al. A quantum memory for orbital angular momentum photonic qubits. Nat. Photon. 8, 234–238 (2014).

    Article  ADS  CAS  Google Scholar 

  8. Weber, M. et al. MINSTED fluorescence localization and nanoscopy. Nat. Photon. 15, 361–366 (2021).

    Article  ADS  CAS  Google Scholar 

  9. Beijersbergen, M. W. Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun. 112, 321–327 (1994).

    Article  ADS  Google Scholar 

  10. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Chong, K. E. et al. Polarization-independent silicon metadevices for efficient optical wavefront control. Nano Lett. 15, 5369–5374 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Deng, Z.-L. et al. Observation of localized magnetic plasmon skyrmions. Nat. Commun. 13, 8 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Uhlíř, V. et al. Dynamic switching of the spin circulation in tapered magnetic nanodisks. Nat. Nanotechnol. 8, 341–346 (2013).

    Article  ADS  PubMed  Google Scholar 

  14. Jenkins, A. S. et al. Spin-torque resonant expulsion of the vortex core for an efficient radiofrequency detection scheme. Nat. Nanotechnol. 11, 360–364 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Kwon, W. J. et al. Sound emission and annihilations in a programmable quantum vortex collider. Nature 600, 64–69 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Veshchunov, I. S. et al. Optical manipulation of single flux quanta. Nat. Commun. 7, 12801 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dobrovoloskiy, O. V. et al. Ultra-fast vortex motion in a direct-write Nb-C superconductor. Nat. Commun. 11, 3291 (2020).

    Article  ADS  Google Scholar 

  18. Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591 (1979).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  19. Blatter, G. et al. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Shinjo, T. et al. Magnetic vortex core observation in circular dots of permalloy. Science 289, 930–932 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Chmiel, F. P. et al. Observation of magnetic vortex pairs at room temperature in a planar α-Fe2O3/Co heterostructure. Nat. Mater. 17, 581–585 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Lagoudakis, K. G. et al. Quantized vortices in an exciton-polariton condensate. Nat. Phys. 4, 706–710 (2008).

    Article  CAS  Google Scholar 

  23. Ma, X. et al. Realization of all-optical vortex switching in exciton-polariton condensates. Nat. Commun. 11, 897 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Indenbom, M. V. et al. Magneto-optical observation of twisted vortices in type-II superconductors. Nature 385, 702–705 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Reimann, T. et al. Visualizing the morphology of vortex lattice domains in a bulk type-II superconductor. Nat. Commun. 6, 8813 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181 (1973).

    Article  ADS  CAS  Google Scholar 

  27. Christodoulou, P. et al. Observation of first and second sound in a BKT superfluid. Nature 594, 191–194 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Allen, L. et al. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Gorodetski, A. et al. Observation of the spin-based plasmonic effect in nanoscale structures. Phys. Rev. Lett. 101, 043903 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Jin, J. et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering. Nature 574, 501–504 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Wang, B. et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat. Photon. 14, 623–628 (2020).

    Article  ADS  CAS  Google Scholar 

  32. Situ, G. & Fleischer, J. W. Dynamics of the Berezinskii–Kosterlitz–Thouless transition in a photon fluid. Nat. Photon. 14, 517–522 (2020).

    Article  CAS  Google Scholar 

  33. Bruno, P., Dugaev, V. K. & Tailefumier, M. Topological Hall effect and Berry phase in magnetic nanostructures. Phys. Rev. Lett. 93, 096806 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2017).

    Article  CAS  Google Scholar 

  35. Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).

    Article  CAS  Google Scholar 

  36. Zheng, G. et al. Tailoring Dzyaloshinskii–Moriya interaction in a transition metal dichalcogenide by dual-intercalation. Nat. Commun. 12, 3639 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu, S.-Y. et al. Topological phase transition and texture inversion in a tunable topological insulator. Science 332, 560–564 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Sie, E. J. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61–66 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Carcia, P. F. Perpendicular magnetic anisotropy in Pd/Co and Pt/Co thin-film layered structures. J. Appl. Phys. 63, 5066 (1988).

    Article  ADS  CAS  Google Scholar 

  40. Kim, D. et al. Extreme anti-reflection enhanced magneto-optic Kerr effect microscopy. Nat. Commun. 11, 5937 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Hu, Y. et al. On-chip electro-optic frequency shifters and beam splitters. Nature 599, 587–593 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Kita, D. M. et al. High-performance and scalable on-chip digital Fourier transform spectroscopy. Nat. Commun. 9, 4405 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  44. Lopez-Sanchez, O. et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Yu, Y. et al. Giant gating tunability of optical refractive index in transition metal dichalcogenide monolayers. Nano Lett. 17, 3613–3618 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Sroor, H. et al. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photon. 14, 498–503 (2020).

    Article  ADS  CAS  Google Scholar 

  47. Bahari, B. et al. Photonic quantum Hall effect and multiplexed light sources of large orbital angular momenta. Nat. Phys. 17, 700–703 (2021).

    Article  CAS  Google Scholar 

  48. Zdagkas, A. et al. Observation of toroidal pulses of light. Nat. Photon. 16, 523–528 (2022).

    Article  ADS  CAS  Google Scholar 

  49. Shen, Y., Hou, Y., Papasimakis, N. & Zheludev, N. I. Supertoroidal light pulses as electromagnetic skyrmions propagating in free space. Nat. Commun. 12, 5891 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Larocque, H. et al. Reconstructing the topology of optical polarization knots. Nat. Phys. 14, 1079–1082 (2018).

    Article  CAS  Google Scholar 

  51. Dennis, M. R. et al. Isolated optical vortex knots. Nat. Phys. 6, 118–121 (2010).

    Article  CAS  Google Scholar 

  52. Wang, K., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex-energy braiding of non-Hermitian bands. Nature 598, 59–64 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Lee, D. Kim, S. Park and H. Oh for discussions. M.-K.S. acknowledges the support of the KAIST Cross-Generation Collaborative Lab project and the National Research Foundation of Korea (NRF) (2020R1A2C2014685 and 2020R1A4A2002828). J.S. acknowledges the support of the NRF (2021R1A2C200868711). D.K. acknowledges the support of the NRF (2015H1A2A1033753 and 2019R1A6A1A10073887). Y.-S.C. acknowledges the support of the NRF (2020R1I1A1A01069219).

Author information

Authors and Affiliations

Authors

Contributions

D.K. conceived the idea. A.B. and D.K. designed and fabricated the gradient-thickness optical cavity samples. D.K. and Y.-S.C. built the magneto-optic off-axis holography set-up. D.K. performed the magneto-optic measurements and the theoretical calculations. D.K. and M.-K.S. analysed the data and wrote the manuscript with input from all other authors.

Corresponding authors

Correspondence to Dongha Kim or Min-Kyo Seo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Haoran Ren, Lei Shi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Amplitude and phase distribution of the calculated reflection coefficient components (r1 and r2) in the generalized parameter space (h1, h2).

a,b, Plot of the (a) amplitude and (b) phase of the reflection coefficient components r1 (the red curved surface) and r2 (the blue curved surface) near the reflection minima in the generalized parameter space for the GTOCs with hNi = 5, 10, and 15 nm. (Δh1, Δh2) represents the position away from the target reflection minimum in the generalized parameter space. The yellow and green solid curves represent the same amplitude (|r1| = |r2|) and out-of-phase conditions (arg(r1) = arg(−r2)), respectively. c, Projection of the same amplitude (the yellow curve) and out-of-phase (the green curve) conditions onto the generalized parameter space. The singular minimum of reflection for the non-trivial topological textures exists only when the two conditions intersect. The red and blue dots indicate the intersections for the optical vortex (w = +1) and antivortex (w = −1), respectively. The white circles indicate the positions of the weak reflection minima of the trivial topological phase (w = 0).

Extended Data Fig. 2 Polarization dependency of magneto-optically-driven optical vortex dynamics.

a,b, External magnetic-field-dependent behaviour of the complex reflection coefficient of the (a) optical vortex (Sample #2, w = +1) and (b) antivortex (Sample #3, w = −1) for the opposite handedness of the circular polarization (+σ and −σ) of the incident light.

Supplementary information

Supplementary Information

This file contains Supplementary Sections 1–13, including Supplementary Figs. 1–17 and References.

Peer Review File

Supplementary Video 1

Plot of the same amplitude (the yellow curve) and out-of-phase (the green curve) conditions inside the GTOC unit cell (p × p) in the generalized parameter space depending on the thickness of the Ni layer. The red and blue dots indicate the intersections for the optical vortex (w = +1) and antivortex (w = −1), respectively.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Baucour, A., Choi, YS. et al. Spontaneous generation and active manipulation of real-space optical vortices. Nature 611, 48–54 (2022). https://doi.org/10.1038/s41586-022-05229-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05229-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing