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Collagenolysis-dependent DDR1 signalling
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Pancreatic ductal adenocarcinoma (PDAC) is a highly desmoplastic, aggressive
cancer that frequently progresses and spreads by metastasis to the liver'.
Cancer-associated fibroblasts, the extracellular matrix and type I collagen (Col I)
support®? or restrain the progression of PDAC and may impede blood supply

and nutrient availability*. The dichotomous role of the stroma in PDAC, and the
mechanisms through whichitinfluences patient survival and enables desmoplastic
cancers to escape nutrient limitation, remain poorly understood. Here we show that
matrix-metalloprotease-cleaved Col I (cColI) and intact Col I (iCol I) exert opposing

effects on PDAC bioenergetics, macropinocytosis, tumour growth and metastasis.
Whereas cColl activates discoidin domain receptor 1(DDR1)-NF-kB-p62-NRF2
signalling to promote the growth of PDAC, iCol I triggers the degradation of DDR1
andrestrains the growth of PDAC. Patients whose tumours are enriched foriCol land
express low levels of DDR1 and NRF2 have improved median survival compared to
those whose tumours have high levels of cCol I, DDR1and NRF2. Inhibition of

the DDR1-stimulated expression of NF-kB or mitochondrial biogenesis blocks
tumorigenesis in wild-type mice, but not in mice that express MMP-resistant Col I.
The diverse effects of the tumour stroma on the growth and metastasis of PDAC

and on the survival of patients are mediated through the Col I-DDR1-NF-kB-NRF2
mitochondrial biogenesis pathway, and targeting components of this pathway could
provide therapeutic opportunities.

Retrospective clinical studies suggest that patients with PDAC whose
tumours have a fibrogenic but inert stroma (defined by extensive
extracellular matrix (ECM) deposition, low expression of the myofi-
broblast marker a-SMA and low levels of matrix metalloprotease
(MMP) activity) have improved progression-free survival compared to
patients whose tumours are populated by a fibrolytic stroma (defined
by alow content of collagen fibres, high expression of a-SMA and high
levels of MMP activity)®. How the stromal state affects clinical out-
comeis unknown. Moreover, previous investigations of the influence
of the stroma on the growth and progression of PDAC have yielded
conflicting results, assigning stroma and cancer-associated fibro-
blasts (CAFs) as either tumour-supportive® or tumour-restrictive*. It
is likely that the failure of stromal-targeted PDAC therapies’ is due,
in part, to unrecognized pathways that result in tumour-promoting
or tumour-suppressive stromal subgroups; successful treatments
may thus require precision medicine rather than one-size-fits-all
approaches.

cCollandiColldifferentially affect PDAC growth

To investigate how the fibrolytic stroma affects PDAC outcome, we
compared survival between patients with high and low collagenolysis,
using apanel of collagen-cleaving MMPs (MMP1, MMP2, MMP8, MMP9,
MMP13 and MMP14), and found that high mRNA expression of MMPs
correlated with poor survival (Extended Data Fig. 1a). Single-cell RNA
sequencing (scRNA-seq) revealed that MMP1, MMP14 and MMP2 mRNAs
were the most abundant MMP family members, and were expressed
in epithelial-tumour cells, M2-like macrophages and fibroblastic cells
(Extended Data Fig. 1b). The main target of MMPs in desmoplastic
tumoursis Col I, the prevalent ECM protein. Using antibodies that dis-
tinguishiColIfrom cCol I (3/4 Coll; Fig.1a), we stratified acohort of 106
patients with PDAC whose tumours had beenresected (see below), and
correlated the tumour Col I state with survival data. These results also
pointed to Col I remodelling as a strong prognostic factor, as patients
whose tumours were enriched for cCol I had poorer median survival
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(Fig. 1b). To understand the basis for these results and mimica cCol "
inert tumour stroma, we used mice expressing either wild-type Collal"*
(ColI"T), or a MMP-resistant version of Col I generated by two amino
acid substitutions in the 1a1 subunit that block the cleavage of Col I by
MMPs8, Collal™ (Col I""). Col I”" mice develop more-extensive hepatic
fibrosis than Col I'" mice, but despite the hepatocellular carcinoma
(HCC)-supportive functions of hepatic fibrosis’, they poorly accom-
modate HCC growth, through unknown mechanisms™. Col I"" and
ColI”"mice were either orthotopically orintrasplenically (to model liver
metastasis) transplanted withmouse PDAC KPC960 (KPC) or KC6141 (KC)
cells. Col I”" mice poorly supported the growth of primary pancreatic
tumours or hepatic metastases, even thoughtheir pancreatawere more
fibrotic than Col I"" pancreata. These differences persisted inmice that
were pretreated with the pancreatitis inducer caerulein (CAE), which
stimulated liver metastasis in Col I"" pancreata (Fig. 1c,d and Extended
DataFig.1c-f). Afterintrasplenic transplantation, KPC or KC tumoursin
Col T livers were larger in mice pretreated with CCl, toinduceliver fibro-
sis, whereas the number and size of tumours were lower in Col I livers,
regardless of CCl, pretreatment (Fig. 1e,fand Extended DataFig.1g). As
expected, Col " livers were more fibrotic than Col 1" livers, regardless of
CCl, pretreatment (Extended Data Fig. 1h). Primary PDAC and liver metas-
tases were confirmed by staining with ductal (CK19), progenitor (SOX9)
or proliferation (Ki67) markers (Extended Data Fig. 1e,f,i). Enhanced
tumour growth in CAE- or CCl,-pretreated Col "™ mice suggested that
tumour suppressionin Col I mice was not simply due to aspace limita-
tionimposed by abuild-up of Coll. To determine how Col I remodelling
affects human PDAC, we subcutaneously co-transplanted wild-type and
R/R fibroblasts with a patient-derived xenograft cell line (1305) into
immunocompromised Nu/Nu mice. Wild-type fibroblasts enhanced
tumour growth, whereas R/R fibroblasts inhibited tumour growth but
lost theirinhibitory activity after ablation of Collal (Fig.1g) whose loss
did not affect the stimulatory activity of wild-type fibroblasts, suggest-
ing aspecificinhibitory function of noncleaved Col I.

The Collstate controls PDAC metabolism

To determine the basis for reduced tumorigenesis in Col I"" mice, we
plated KPC cells on ECM deposited by wild-type and R/R fibroblasts,
incubated theminlow-glucose (LG) medium (to model nutrient restric-
tion) and performed RNA sequencing (RNA-seq). Bioinformatic analysis
revealed marked differences between cells cultured on wild-type and
cells cultured on R/R ECM, with the former showing an upregulation of
signatures related to sulfur amino acid metabolism, mammary gland
morphogenesis, telomere maintenance and RNA processing, and the
latter showing an upregulation of mRNAs related to innate immunity
andinflammation (Extended Data Fig. 2a). The most notable differences
were in nuclear and mitochondrial genes that encode components of
the mitochondrial electron transfer chain (ETC) and ribosome subu-
nits, and macropinocytosis-related genes, which were upregulated by
wild-type and suppressed by R/RECM (Fig. 2a-c). Consistent with the
upregulation of macropinocytosis-related genes by wild-type ECM,
IKKa-deficient KC cells, which have high macropinocytosis activity",
grew better than parental cells in Col " livers, but grew as poorly as
parental KC cells in Col I”" livers (Extended Data Fig. 1g).

Toassess the effects of Collon metabolism, we labelled wild-type and
R/R fibroblasts with [*H]-proline or [U-*C]-glutamine for five days, dur-
ingwhich period the cells coated the plates with Col I-containing ECM.
After decellularization, KPC or KC cells and variants thereof were plated
and cultured for 24 hin LG medium. The uptake of [*H] in cells plated
on wild-type ECM was dependent on macropinocytosis, as indicated
by sensitivity to macropinocytosis inhibitors (EIPA (an NHE1 inhibi-
tor), IPI549 (a PI3Ky inhibitor) or MBQ-167 (a CDC42 and RAC inhibi-
tor)) and to the knockdown of NHE1 or SDC1, and enhancementby the
ULK1inhibitor MRT68921 (MRT)™. By contrast, cells plated on R/RECM
showed anegligible uptake of [*H] that was unaffected by the inhibition
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Fig.1|ColIcleavage controls PDAC growth.a,Immunoblot showingthe
specificity of antibodies toiColl1and cCol1(3/4 Coll) in ECM produced by the
indicatedfibroblasts. ColI*, Col Iknockout; WT, wild type. b, Overall survival of
patients with resected PDAC stratified according to cCol l expression (shown
inFig. 5a). Significance was determined by log-rank test. ¢, Pancreas weight
relative to body weight (P/B weight) four weeks after orthotopic KPC cell
transplantationinto ColI"or Col I”"mice that were pretreated with CAE or
without CAE. Ctrl, control.d, Liver morphology in CAE-treated mice. Liver
metastases were detected in 33% of Col I""mice. e,f, Liver gross morphology
(e) and tumour numbers (f) two weeks after intrasplenic transplantation of
KPC cellsinto Col I""or Col I”"mice with or without CCl, pretreatment.

g, Representativeimages and sizes of subcutaneous tumours formed by
human1305 cells co-transplanted with WT, R/R or Col I*WT or R/R fibroblasts
into Nu/Numice.Datainf(n =9 mice), g (n=5mice)and caremean +s.e.m.
Statistical significance determined by two-tailed t-test. Exact Pvaluesinc,fare
shownintheSource Data.****P<0.0001.Scalebars(d,e,g),1cm.

of macropinocytosis (Extended Data Fig. 2b-e). Notably, ablation of
Collal or overexpression of cleavable Collin ECM-laying R/R fibroblasts
restored [*H] uptake (Extended Data Fig. 2b). Cells that were cultured on
BC-glutamine-labelled wild-type ECM took up glutamine and metabo-
lized it, but cells that were plated on *C-glutamine-labelled R/R ECM
exhibited minimal glutamine uptake and metabolism (Fig. 2d,e). Con-
gruently, cells that were cultured on wild-type ECM had higher levels of
ATP and a higher amino acid content than cells that were cultured on
R/RECM, and this effect was further increased by treatment with MRT
and reduced by blockade of macropinocytosis; by contrast, cells that
were cultured on R/RECM had low levels of ATP and amino acids, which
were barely affected by the inhibition of macropinocytosis (Fig. 2f
and Extended Data Fig. 2f-j). Ablation of Col I or overexpression of
wild-type Col I prevented the declinein ATP and amino acids (Extended
Data Fig. 2h,j), suggesting that cCol I is a key signalling molecule that
stimulates PDAC metabolism and energy generation.

cColltoiCollratio controls DDR1-NRF2 signalling

KPC or human MIA PaCa-2 cells plated on wild-type ECM or co-cultured
with wild-type fibroblasts in LG or low-glutamine (LQ) medium exhib-
ited high rates of macropinocytosis, as measured by their uptake
of tetramethylrhodamine-labelled high-molecular-mass dextran
(TMR-DEX), whereas cells plated on R/R ECM or co-cultured with
R/R fibroblasts exhibited low rates of macropinocytosis (Fig. 3a and
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Fig.2|ColIcleavage controls PDAC metabolism.a-c, Genes differentially
expressed between KPC cells grown on wild-type or R/RECMin LG (0.5 mM)
medium for 24 h. Blue, replicates with low expression (z-score = -2); red,
replicates with high expression (z-score = 2). Mitochondrial ETC genes (a),
mitochondrial ribosome subunit genes (b) and macropinocytosis-related and
NRF2-targetgenes (c).d,e, Fractional labelling (mole per cent enrichment) of
TCAcycleintermediates (d) and intracellular amino acids (e) in KPC cells
incubated for 24 hin LG medium after plating on [U-*C]-glutamine-labelled
wild-type or R/RECM. a-KG-, a-ketoglutarate. f, KPC cells plated on wild-type
orR/RECM or plasticwereincubated in CM or LG medium with or without EIPA,
MBQ-167 (MBQ), MRT68921 (MRT), EIPA + MRT or MBQ + MRT for 24 h. Total
cellular ATPis presented relative to untreated plastic-plated cells. CM, complete
medium. Dataind,e (n=3 per condition) and f (n =3 independent experiments)
aremean +s.e.m. Statistical significance determined by two-tailed t-test.

Exact Pvalues areshowninthe Source Data.***P< 0.001;****P<0.0001.

Extended Data Fig. 3a). Furthermore, KPC cells cultured on wild-type
ECMshowed amarked upregulation of macropinocytosis-related pro-
teins and NRF2 relative to plastic-cultured cells, but culturing on R/R
ECM had the opposite effect (Fig. 3b). Similar differences in macropi-
nocytosis activity, NRF2 and macropinocytosis-related mRNAs and
proteins were shown by KPC tumoursin Col I"T or Col I"" pancreata or
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Fig.3|Collcleavage controls macropinocytosis and the number of
mitochondriain PDAC. a, Representative images and rates of macropinocytosis
(MP) in TMR-DEX-incubated KPC and MIA PaCa-2 cells grown on plates with or
without wild-type orR/RECM andincubatedin LQ or LG mediumfor24 h.b,
Immunoblot analysis of theindicated proteinsinKPC cellstreated asina.c,
Representative images of mitochondria (TIM23) inKPC cells grown on plates
with or without wild-type or R/RECM and incubated in LG medium for 24 h.
Bottom left, quantification of the number of mitochondria. d, Immunoblot
analysis of theindicated proteinsin KPC cellstreated asin c.Resultsina,c(n=6
fields) are mean + s.e.m. Statistical significance determined by two-tailed
t-test.****P<0.0001.Scalebars(a,c),10 pm.

livers (Extended DataFig. 3b-d). Mitochondria areimportant for cancer
growth in that they generate energy for macromolecular synthesis'.
Consistent with the RNA-seq data, mitochondria and ETC proteins
were decreased in PDAC cells grown on R/RECM orin ColI”" pancreata
(Fig.3c,d and Extended Data Fig. 3e).

The human PDAC stroma consists of intact and cleaved collagens.
To recapitulate this setting and determine how the balance of iCol |
to cCol I affects PDAC metabolism, we mixed R/R fibroblasts with
wild-type (R:W) or Col I* (knockout) (R:KO) fibroblasts to generate
ECM with different amounts of iCol I and cCol I, and confirmed this
with isoform-specific antibodies. KPC cells were plated on the ECM
preparations and keptin LG medium for 24 h, and their rates of macro-
pinocytosis, numbers of mitochondria and levels of nuclear NRF2 were
evaluated. Nondegradable Coll at 6:4 (R:W) or 4:6 (R:KO) ratios and
higher ratios inhibited macropinocytosis and reduced mitochondria
numbers and nuclear NRF2 (Extended DataFig. 3f,g). We conclude that
iCollinhibits macropinocytosis and mitochondrial biogenesis, which
are stimulated by different cleaved collagens, not just cCol I.

Toinvestigate how Col I regulates macropinocytosis and mitochon-
drial biogenesis, we systematically ablated (Extended Data Fig. 4a) all
known collagen receptors expressed by KPC cells—MRC2, DDR1, LAIR1
and Blintegrin (ITGB1). The only receptor whose ablation inhibited
macropinocytosis activity and mitochondrial biogenesis (Fig. 4a) was
DDRI, a collagen-activated receptor tyrosine kinase (RTK)", which
scRNA-seq showed was highly expressed in primary and liver-metastatic
human PDAC epithelial-tumour cells, marked by the mRNA expression
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Fig.4|The ColI-DDR1-NRF2 axis controls macropinocytosis and
mitochondrial biogenesis. a, Representativeimages and quantification of
mitochondriaand macropinocytosisin TMR-DEX-incubated parental and
variant KPC cells grown on wild-type ECM. b, Immunoblot analysis of the
indicated proteins in KPC cells grown on plastic or wild-type or R/RECM and
incubatedin LG or LQ medium for 24 h. The effects of wild-typeand R/RECM on
DDR1signalling are summarized on the right. mito., mitochondria; pDDR1,
phosphorylated DDR1. ¢, Representative images and quantification of
mitochondriaand macropinocytosisin TMR-DEX-incubated parental and
NRF25°2(E79Q) KPC cells plated on wild-type or R/RECMin LG medium with or
without 7rhor ML120B for 24 h.d, Immunoblot analysis of the indicated
proteinsin parental, E79Q, DDR1*and E79Q/DDR1*KPC cells plated with or

of EPCAM and KRT19 (Extended Data Fig.4b). Other collagen receptor
mRNAs were either not expressed in PDAC (LA/RI and MRC2) or had a
broad distribution (/TGBI). Whereas wild-type ECM stimulated the
expression and phosphorylation of DDR1, R/RECM sstrongly downregu-
lated DDR1and its downstream effector NF-kB™, aswell as p62 (Fig. 4b),
an NF-kB target®™. The inhibitory effect of iCol  was not observed in
previous DDR1 signalling studies, which used artificially fragmented
acid-solubilized collagens as ligands'. Consistent with the induction of
p62, wild-type ECM decreased KEAP1and upregulated NRF2, whereas
R/R collagen had the opposite effect (Fig. 4b). We wondered whether
cCollaffects macropinocytosis and mitochondrial biogenesis through
the DDR1-NF-kB-p62-NRF2 cascade. Indeed, R/R ECM and inhibi-
tion or ablation of NRF2, DDR1 or IKKP decreased macropinocytosis
activity, 3/4 Col I fragment uptake, NRF2 nuclear localization, mito-
chondria number and expression of macropinocytosis-related and
mitochondrial ETC proteins (Fig. 4c,d and Extended Data Figs. 4c-g
and 5a-e). Overexpression of an activated NRF2(E79Q) variant reversed
the inhibitory effects of R/R ECM, DDR1 inhibition or IKKf inhibition
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Representative IHC of the indicated proteinsin ColI""and Col I”" pancreata
four weeks after KPC cell transplantation. Boxed areas are further magnified.
Scale bars, 100 um. f,Immunoblot analysis of the indicated proteinsin KPC
cells plated on wild-type or R/RECM and incubated in LG medium with or
without+MG132 or chloroquine (CQ) for 24 h. g, Representative images
showing GFP-DDR1and polyubiquitin (polyub) colocalizationin GFP-
DDR1-expressing 1305 cells co-cultured with wild-type or R/R fibroblasts in LG
medium for 24 h. Boxed areas are further magnified. Dataina,c (n = 6 fields) are
mean +s.e.m. Statistical significance determined by two-tailed ¢-test. Exact P
values are shownin the Source Data. ****P < 0.0001; NS, not significant. Scale
bars(a,c,g), 10 pm.

butdid notrestore or affect DDR1 expression or phosphorylation and
p65 nuclear localization. Consistent with these data, pancreatic and
liver tumours from Col I”"mice showed more-extensive expression of
iColIbutno cColland lower levels of DDR1, p65, p62, NRF2, NHE1 and
SDHB (amitochondrial marker), as compared to tumours from Col I""
mice (Fig. 4e and Extended Data Fig. 5f,g). These results suggest that
Collcontrols macropinocytosis and mitochondrial biogenesis through
the DDR1-NF-kB-p62-NRF2 axis. As myofibroblast-specific ablation
of Collenhancesintrahepatic PDAC growth”, we examined how Col I*
ECM affects macropinocytosis and DDR1 signalling. Notably, Col I*
ECM behaved like wild-type ECM, stimulating macropinocytosis,
mitochondrial biogenesis and DDR1 phosphorylation, which were
blocked by the ablation of DDR1 (Extended Data Fig. 6a—c). However,
collagen-free ECM generated by Col I* fibroblasts and treatment with
bacterial collagenase no longer activated DDR1 and its downstream
effectors (Extended Data Fig. 6d). These results are consistent with
DDR1beingageneral collagenreceptor'®, with other collagens in Col I*
fibroblasts acting as ligands.
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iColltriggers DDRI1 proteasomal degradation

The expression and function of DDR1 vary in different cancer stages
and types'® 2. Levels of mouse Ddr1 mRNA were increased by cultur-
ing KPC cells on R/R ECM (Extended Data Fig. 6e), implying that
the diminished expression of DDR1 protein in these cultures is
post-transcriptional. Indeed, MG132, a proteasome inhibitor, but
not the lysosomalinhibitor chloroquine, rescued DDR1 expression
but not autophosphorylation (Fig. 4f). Notably, GFP-DDR1 showed
cell-surface localization and little polyubiquitin colocalization in
human 1305 cells that were co-cultured with wild-type fibroblasts,
but was cytoplasmic and colocalized with polyubiquitin in R/R
fibroblast cocultures (Fig.4g). Unlike DDR1in triple-negative breast
cancer (TNBC)?°, no shedding of the DDR1 extracellular domain
was detected (Extended Data Fig. 6f). Our results therefore reveal
anew mode of DDR1regulation in PDAC and probably in other des-
moplastic cancers.

NRF2 controls mitochondrial biogenesis

ECM from fibroblasts treated with the FDA-approved MMP inhibitor
llomastat behaved like R/R ECM (Extended Data Fig. 6g,h), indicat-
ing that the results were not unique to the Col I* variant. R/R ECM
also decreased the number of mitochondriain autophagy-deficient
PDAC cells (Extended Data Fig. 6i), which suggests that the reduced
mitochondrial content is not mediated by mitophagy. Moreover,
colocalization of mitochondria and polyubiquitin, which marks
mitophagy, was rarely observed (Extended Data Fig. 6j). Expression
of TFAM, a key activator of mitochondrial DNA transcription, repli-
cation and biogenesis?, was downregulated in PDAC cells cultured
in R/RECM, but NrfI (unrelated to NRF2) mRNA, PGCla protein and
AMPK activity, which also stimulate mitochondrial biogenesis?,
were upregulated (Extended Data Fig. 6e,k). The latter results match
the low ATP content of R/R-ECM-cultured cells. In silico analysis
revealed putative NRF2-binding sites in the Tfam promoter region,
to which NRF2 was recruited in cells plated on wild-type ECM or
in NRF2(E79Q)-expressing cells (Extended Data Fig. 61,m), confirm-
ing that NRF2 mediates cCol I-stimulated macropinocytosis and
mitochondrial biogenesis.

Higher levels of iCol I correlate with improved survival

Immunohistochemistry (IHC) of surgically resected human PDAC
showed that most tumours (77/106) contained high amounts of 3/4
Col I and most of them exhibited higher levels of staining for DDR1
(58/77),NF-kB p65 (55/77), NRF2 (60/77),SDC1(53/77),CDC42 (52/77),
SDHB (62/77), a-SMA (56/77) and MMP1 (52/77) than did cCol '
tumours (Fig. 5aand Extended Data Fig. 7a,b), suggesting that PDAC
tumours with fibrolytic stroma have higher macropinocytosis activ-
ity and mitochondrial content than do tumours with inert stroma.
Moreover, DDR1 and p65, DDR1 and NRF2, p65 and NRF2, NRF2 and
macropinocytosis proteins (NHE1, SDC1 or CDC42), and NRF2 and
SDHB showed strong positive correlations (Extended Data Fig. 7b),
suggesting that the fibrolytic stroma stimulates macropinocytosis
and mitochondrial biogenesis through the DDR1-NF-kB-NRF2 axis
in human PDAC. Increased levels of cCol I also correlated with high
expression of inflammatory markers (Extended Data Fig. 7c), support-
ing the notion thatinflammation may drive Col I remodelling. Notably,
patients with cCol I"&"and DDR1"e", cCol I"" and NRF2"e" or DDR1"e"
and NRF2"¢" tumours had a considerably worse median survival than
did patients with low expression of these markers (Fig. 5b). These
results are consistent with those obtained in our preclinical PDAC
models, suggesting that the fibrolytic stroma may drive the recur-
rence of human PDAC through NRF2-mediated macropinocytosis
and mitochondrial biogenesis.
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b, Comparisons of overall survival between patients stratified according tocColl,
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Targeting the DDR1-NF-kB-NRF2 cascade

IncreasingiCollinthe ECMinhibited cellular DNA synthesis (Extended
Data Fig. 8a). Parental, NRF2¥°? or IKKa-knockdown (IKKo®) PDAC
cells were plated on wild-type or R/R ECM, incubated in LG medium
and treated with inhibitors of DDR1 (7rh), IKKp (ML120B), NRF2
(ML385) or macropinocytosis (NHE1*® or EIPA, IPI549 or MBQ-167).
Whereas wild-type ECM increased and R/R ECM decreased parental
PDAC cell growth, inhibition of macropinocytosis, DDRI, IKK( or
NRF2 decreased growth on wild-type ECM (Fig. 6a and Extended Data
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Fig. 6| Therapeutic targeting of the DDR1-NF-kB-NRF2 axis inhibits PDAC
growthand metabolism. a, Parentaland E79QKPC cells plated on wild-type or
R/RECMwereincubated in LG medium with or without 7rh, ML120B or ML385.
Total viable cells are presented relative to parental cells that were treated with
vehicleand plated on wild-type ECM. b, Oxygen consumption rate (OCR) of
parentaland E79QKPC cells plated on wild-type or R/RECM and incubated in
LG medium for 24 hbefore and after treatment with oligomycin (Omy), FCCP or
rotenone/antimycin A. ¢, Representative images and sizes of parental and
NHEIX® MIA tumours grown with or without wild-type or R/R fibroblastsin
nude mice. Right,immunoblot analysis of NHE1in MIA cells. d,e, Liver and
pancreas morphology (d) and weight (e) four weeks after orthotopic
transplantation of KPC E79Q cells into CAE-pretreated Col 1"Tand Col I"" mice.

Fig.8b-f). NRF2(E79Q)-expressing cells grew faster than parental cells
and wereresistant to R/R ECM, DDR1inhibition or IKKf inhibition but
not NRF2 inhibition. IKKaXP cells with high rates of macropinocytosis
and highlevels of nuclear NRF2 also grew faster than parental cells on
wild-type ECM but were more sensitive to R/RECM and macropinocyto-
sisinhibitors (Extended Data Fig. 8b,c). Inhibition of macropinocytosis,
DDRI], IKK or NRF2 did not decrease the low growth of parental cells
on R/R ECM (Fig. 6a and Extended Data Fig. 8b-f). Moreover, paren-
tal KPC or 1305 cells that were plated on wild-type ECM were more
sensitive to the mitochondrial protein synthesis inhibitor tigecycline
than cells plated on R/R ECM or DDR1*® cells grown on wild-type ECM
(Extended Data Fig. 8g). NRF27°2 cells showed higher rates of oxygen
consumption and mitochondrial ATP production than did parental
cells; these rates were diminished by R/R ECM but only in the parental
cells (Fig. 6b and Extended Data Fig. 8h). Thus, the fibrolytic stroma
may support PDAC cell growth through Col I-stimulated macropinocy-
tosis and mitochondrial biogenesis. R/R fibroblasts inhibited human
PDAC (MIA PaCa-2) tumour growth, but wild-type fibroblasts were
stimulatory. NHE1 ablation or EIPA inhibited tumour growth with or
without co-transplanted wild-type fibroblasts orin wild-type livers, but
had little effect on tumours growing with R/R fibroblasts or in Col I
livers (Fig. 6¢c and Extended Data Fig. 8i). Tumours growing with
wild-type fibroblasts were more fibrotic than tumours without added
fibroblasts, and small tumours growing with R/R fibroblasts had the
highest collagen content (Extended DataFig. 8j), indicating that deposi-
tion of Collenhances the growth of PDAC only when Col lis cleaved by
MMPs. NRF2£°? cells in Col I”" hosts exhibited similar growth, NRF2,

f,IHC of pancreatic sections fromthe miceind,e. Boxed areas are further
magnified. Scale bars, 100 um. g, P/B weight four weeks after orthotopic
transplantation of the indicated KPC cellsinto Col 1" and Col 1" mice
pretreated with or without CAE. Right,immunoblot analysis of DDR1and
Flag-tagged E79Qintheindicated KPCcells plated on wild-type ECM in LG
medium for 24 h. h, Representative images and sizes of MIA tumours grown
withwild-type or R/R fibroblasts in nude mice with or without ML120B or
tigecycline. Dataina (n=3independentexperiments),c,g,h (n=5mice)ande
(n=9mice)are mean +s.e.m. Statistical significance determined by two-tailed
t-test.***P<0.001, ****P < 0.0001; NS, not significant. Exact Pvaluesina,c,gare
showninthe Source Data.Scalebars (c,d,h),1cm.

NHE1 and SDHB expression and liver metastases to cells growing in
Col I*" hosts, despite low expression of DDR1 and p65 (Fig. 6d-f and
Extended Data Fig. 9a).

In TNBC, DDRI1 aligns collagen fibres to exclude immune cells?. By
measuring second-harmonic generation (SHG), we observed no change
in collagen fibre alignment and CD8" T cell content between tumours
from Col I"" and Col I”" pancreata or between parental and DDR1%P
tumours, although CD45-,F4/80- or CD4-expressing cells were reduced
intumours from ColI” pancreata (Extended Data Fig. 9b,c). Accordingly,
ablation of DDR1 inhibited tumour growth, p65, p62, NRF2, NHE1 and
SDHB expression in Col I"" pancreata but did not reduce it further in
Col I"" pancreata (Fig. 6g and Extended Data Figs. 9d,e and 10a).
NRF2(E79Q) rescued tumour growth and the expression of NHE1 and
SDHB—but not pé65 or p62—in DDRI* cells, regardless of Col I status.
Similar results were observed inimmunodeficient mice (Extended Data
Fig.10b), indicating that the effects of Col I-DDR1 interaction differ
between PDAC and TNBC. Notably, inhibition of IKK[3, mitochondrial pro-
teinsynthesis, TFAM or NRF2 decreased the growth of tumours that were
co-transplanted with wild-type fibroblasts or grownin Col " pancreata,
but had no effect on tumours that were co-transplanted with R/R fibro-
blasts or grownin Col " pancreata (Fig. 6h and Extended DataFig.10c,d),
illustrating different ways of targeting PDAC with fibrolytic stroma.

Discussion

We show here that Col I remodelling is a prognostic indicator for the
survival of patients with PDAC. In preclinical models, Col I remodelling
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modulated tumour growth and metabolism through a DDR1-NF-kB-
p62-NRF2 cascade that is activated by cCol I and inhibited by iCol I.
The activation of DDR1 by collagens and downstream activation of
NF-kB have been described before*'®. However, it was previously
unknown—to our knowledge—that iCol I triggers the polyubiquityla-
tion and proteasomal degradation of DDRI. This indicates that DDR1
distinguishes cleaved fromintact collagens, and that the latter are capa-
ble of restraining the metabolism and growth of tumours. Although
inhibition of DDR1reduces the growth of mouse PDAC?, the ability of
DDR1to control tumour metabolism by stimulating macropinocytosis
and mitochondrial biogenesis was unknown. Itis unclear, however, why
DDR1-arather weak RTK"—exerts such profound metabolic effects
on PDAC cells that express more potent RTKs, such as EGFR and MET.
Perhaps thisis due to high concentrations of cCol I in the PDAC tumour
microenvironment and the stronger NF-kB-activating capacity of DDR1
relative to other RTKs. Indeed, IKKf inhibition was as effective as the
blockade of mitochondrial protein synthesis in curtailing the growth
of PDAC with fibrolytic stroma. The differential effects of fibrolytic
and inert tumour stroma on PDAC growth and metabolism explain
much of the controversy that surrounds the effects of CAFs and Col |
on the progression of PDAC in mice®"”. Most notably, our findings
extend to humans and suggest that Col I remodelling is linked to tumour
inflammation. We thus propose that treatments that target DDR1-
IKKB-NF-kB-NRF2 signalling and mitochondrial biogenesis should be
evaluated in prospective clinical trials that include stromal state—an
important modifier of tumour growth—as anintegral biomarker. Given
that three Col I-cleaving MMPs were highly expressed in the human
PDAC samples we analysed, and that this situation may differ from
patient to patient®, specific MMP inhibitors are additional candidates
for precision therapy. A deeper understanding of whether stromal state
is affected by neoadjuvant chemotherapy and how it affects metasta-
sis is another area of priority for further investigation. Although our
results do not apply to TNBC, they provide mechanistic insight into
SPARC-mediated PDAC progression®*?, and may be applicable to other
desmoplastic and fibrolytic cancers.
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Methods

Cell culture

All cells wereincubated at 37 °Cin a humidified chamber with 5% CO,.
MIA PaCa-2 (MIA), UN-KPC-960 (KPC) and UN-KC-6141 (KC) cells,
wild-type and R/R fibroblasts were maintained in Dulbecco’s modi-
fied Eagle’s medium (DMEM) (Invitrogen) supplemented with 10% fetal
bovine serum (FBS) (Gibco). MIA cells were purchased from ATCC.KPC
and KC cells were generated at the laboratory of S. K. Batra®. Wild-type
and R/R fibroblasts were generated at the laboratory of D.B."°. The 1305
primary human PDAC cells were generated by the A.M.L. laboratory
from ahuman PDAC patient-derived xenograft and were maintained in
RPMI (Gibco) supplemented with 20% FBS and 1 mM sodium pyruvate
(Corning). All media were supplemented with penicillin (100 mg ml™)
and streptomycin (100 mg ml™). All cells were partially authenticated
by visual morphology. Wild-type and R/R fibroblasts were partially
authenticated by ECM production and collagentypelalphalcleavage.
KPC and KC cells were partially authenticated by orthotopic tumour
formationin mouse pancreas. MIA and 1305 cells were partially authen-
ticated by subcutaneous tumour formation in nude mice. Cells were
not further authenticated. Cell lines were tested for mycoplasma
contamination. LG medium: glucose-free DMEM medium was sup-
plemented with 0.5 mM glucose in the presence of 10% dialysed FBS
and 25 mM HEPES. LQ medium: glutamine-free DMEM medium was
supplemented with 0.2 mM glutaminein the presence of 10% dialysed
FBS and 25 mM HEPES.

Plasmids

For gene ablations, the target cDNA sequences (Supplementary Table 1)
of mouse Ddr1, Mrc2, Itgbl, Lairl, Nrf2, Collal and human DDRI were
cloned into alentiCRISPR v2-Blast vector or lentiCRISPR v2-puro vec-
tor, respectively using BsmBI. For gene knockdowns, pLKO.1-puro-Ddrl
(TRCN0000023369), pLKO.1-puro-DDR1 (TRCN0O000121163),
pLKO.1-puro-Sdcl (TRCN0000302270), pLKO.1-puro-Nrf2
(TRCNO000054658) and pLKO.1-puro-Tfam (TRCNO000086064) were
ordered from Sigma. pCDH-CMV-MCS-EF1-puro-Collal-6XHis and
pLVX-IRES-Puro-NRF2¥°?-Flag were made by Sangon Biotech (Shang-
hai, China). pLKO.1-blast-Ikka, pLKO.1-puro-Nhel, pLKO.1-puro-NHEI1,
pLKO.1-puro-NRF2, and lentiCRISPR v2-Puro-p62/Sqstm1 have been
described previously". LentiCRISPR v2-Blast-ATG7 (ref.””) was agift from
S.Ghaemmaghami.

Stable cellline construction

Lentiviral particles were generated as before*. MIA, 1305, KPC or
KC cells and fibroblasts were transduced by combining 1 ml of viral
particle-containing mediumwith 8 pug mi™ polybrene. The cells were fed
8 hlater with fresh medium and selection was initiated 48 h after trans-
duction using1.25 pg ml™ puromycin or 10 pg mi™ blasticidin. IKKaXP
KC, NRF2¥° MIA and ATG7" MIA cells have been described previously™.

Mice

Female homozygous Nu/Nu nude mice and C57BL/6 mice were
obtained at six weeks of age from Charles River Laboratories and
The Jackson Laboratory, respectively. Collal** (Col I"T) or Collal”
(Col I”") mice on a C57BL/6 background were obtained from D.B.
at UCSD and were previously described®*. Mice matched for age,
gender and equal average tumour volumes were randomly allocated
to different experimental groups on the basis of their genotypes.
No sample size pre-estimation was performed but as many mice
per group as possible were used to minimize type I/1l errors. Both
male and female mice were used unless otherwise stated. Blinding
of mice was not performed except for IHC analysis. All mice were
maintained in filter-topped cages on autoclaved food and water at
constant temperature and humidity and ina pathogen-free controlled
environment (23 °C + 2 °C, 50-60%) with a standard 12-h light-12-h

dark cycle. Experiments were performed in accordance with UCSD
Institutional Animal Care and Use Committee and NIH guidelines
andregulations. Animal protocol S00218 (M.K.) was approved by the
UCSD Institutional Animal Care and Use Committee. The number of
mice per experimentisindicated inthe figure legends and their age
isindicated in Methods.

Orthotopic PDAC cell implantation

Col I"T or Col I""mice were pretreated with or without 50 pg kg™ CAE
by intraperitoneal injections every hour, six times daily on the first,
fourthand seventh days. On day 11, parental, NRF25°¢, DDR1%°, DDR1*° +
NRF257°? NRF2X° or TFAM*P KPC or KC cells were orthotopically injected
into three-month-old Col I'" or Col I”" mice as described™. After sur-
gery, mice were given buprenorphine subcutaneously at a dose of
0.05-0.1 mg kg™ every 4-6 h for 12 h and then every 6-8 h for 3 addi-
tional days. Mice were analysed after four weeks.

Intrasplenic PDAC cellimplantation

Three-month-old Col I"" or ColI""mice were treated with or withoutan
oral gavage of 25% CCl,in corn oil twice aweek for two weeks. After two
weeks of recovery, parental, NHEI*® or IKKa*® KPC or KC cells (10° cells
in 50 pl phosphate-buffered saline; PBS) were adoptively transferred
into the livers of Col I"T or Col I mice by intrasplenic injection, fol-
lowed by immediate splenectomy'. Mice were analysed 14 days after
treatment with or without 10 mg kg™ EIPA (Sigma) by intraperitoneal
injection every other day.

Subcutaneous PDAC cell implantation

Homozygous BALB/c Nu/Nu female mice were injected subcutane-
ously inasingle flank or in both flanks at 7 weeks of age with 5 x 10°
parental, NHE1*?, DDRI1*" or DDR1*" + NRF2¥°2MIA cells or 1305 cells
mixed with or without 5 x 10°wild-type, R/R, Col I* wild-type or Col I*
R/R fibroblasts diluted 1:1 with BD Matrigel (BD Biosciences) in a
total volume of 100 pl. Tumours were collected after four weeks. To
evaluate the effect of IKKf3 or mitochondrial protein synthesis inhi-
bition on tumour growth, mice were treated with vehicle (dimethyl
sulfoxide in PBS), ML120B (60 mg kg™) twice daily through oral gav-
age or tigecycline (50 mg kg™) twice daily through intraperitoneal
injection for three weeks. Therapy was started one week after tumour
implantation. Volumes (1/2 x (width? x length)) of subcutaneous
tumours were calculated on the basis of digital caliper measure-
ments. Mice were euthanized to avoid discomfort if the tumour
diameter reached 2 cm.

Samples of human PDAC

Survival analysis of patients expressing high and low levels of Col I-
MMP was performed using The Cancer Genome Atlas (TCGA) data
and the GEPIA2 platform. The collagen-cleaving signature consisted
of MMP1, MMP2, MMP8, MMP9, MMP13 and MMP14. Overall survival
was determined in the TCGA cohort of 178 patients with PDAC using
amedian cut-off.

Atotal of 106 specimens of human PDAC were acquired from patients
who were diagnosed with PDAC between January 2017 and May 2021
at The Affiliated Drum Tower Hospital of Nanjing University Medical
School. All patients received standard surgical resection and did not
receive chemotherapy before surgery. Paraffin-embedded tissues
were processed by a pathologist after surgical resection and confirmed
as PDAC before further investigation. Overall survival duration was
defined as the time from the date of diagnosis to that of death or last
known follow-up examination. Survival information was available for 81
ofthe106 patients. The study was approved by the Institutional Ethics
Committee of The Affiliated Drum Tower Hospital with IRB2021-608-
01.Informed consent for tissue analysis was obtained before surgery.
All research was performed in compliance with government policies
and the Helsinki declaration.
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IHC

Pancreataor liver were dissected and fixed in 4% paraformaldehydein
PBS and embedded in paraffin. Five-micrometre sections were prepared
andstained with H&E or sirius red. IHC was performed as before'. Slides
were photographed onanuprightlight/fluorescent Imager A2 micro-
scope with AxioVision Rel. 4.5 software (Zeiss). Antibody information
isshown in Supplementary Table 2.

IHCscoring

IHC scoring was performed as before™. Negative and weak staining was
viewed as alow expression level and intermediate and strong staining
was viewed as a high expression level. For cases with tumours with two
satisfactory cores, the results were averaged; for cases with tumours
with one poor-quality core, results were based on the interpretable
core. On the basis of this evaluation system, a chi-squared test was
used to estimate the association between the staining intensities of
Col I-DDR1-NRF2signalling proteins. The number of evaluated cases
for each different staining in PDAC tissues and the scoring summary
areindicated in Extended Data Fig. 7a.

ECM preparation

Wild-type or R/R fibroblasts were seeded on 6, 12 or 96-well plates.
One day after plating, cells were switched into DMEM (with pyru-
vate) with 10% dialysed FBS supplemented with or without 500 pM
[*H]-proline or [U-*C]-glutamine and 100 uM vitamin C. Cells were
cultured for five days with renewal of the medium every 24 h. Then
fibroblasts were removed by washing in1 ml or 500 pl or 100 pl per
well PBS with 0.5% (v/v) Triton X-100 and 20 mM NH,OH. The ECM
was washed five times with PBS before cancer cell plating. The fol-
lowing day, cancer cells were switched into the indicated medium
for24 or72h.

Cellimaging

Cellswere cultured on coverslips coated with or without ECM and fixed
in4% paraformaldehyde for10 minatroom temperature or methanol
for 10 min at —20 °C. Macropinosome visualization in cell and tissue
andimmunostaining were performed as previously described". Images
were captured and analysed using a TCS SPE Leica confocal microscope
with Leica Application Suite AF 2.6.0.7266 software (Leica). Antibody
information is shown in Supplementary Table 2.

SHG

Mouse pancreatic tumour tissue was fixed in 4% paraformaldehyde in
PBS and embedded in paraffin. Five-micrometre sections were prepared
and deparaffinized in xylene, rehydrated in graded ethanol series as
described®, mounted using an aqueous mounting medium and sealed
with a coverslip. All samples were imaged using a Leica TCS SP5 mul-
tiphoton confocal microscope and an HC APO LC20x 1.00W was used
throughout the experiment. The excitation wavelength was tuned to
840 nm, and a420 + 5-nm narrow bandpass emission controlled by
a prism was used for detecting the SHG signal of collagen. SHG sig-
nal is generated when two photons of incident light interact with the
non-centrosymmetric structure of collagen fibres, which leads to the
resulting photons being half the wavelength of the incident photons.
SHG measurements were performed using CT-Fire software (v.2.0 beta)
(https://loci.wisc.edu/software/ctfire). The tumour area was confirmed
by H&E staining.

Immunoblotting and immunoprecipitation

Preparation of protein samples fromcells and tissues, immunoblotting
and immunoprecipitation were performed as before'®*°. Immunore-
active bands were detected by an automatic X-ray film processor or a
KwikQuantImager. Antibody informationis shown in Supplementary
Table 2.

Chromatinimmunoprecipitation

Cells were cross-linked with 1% formaldehyde for 10 min and the
reaction was stopped with 0.125 M glycine for 5 min. The chromatin
immunoprecipitation assay was performed as described". Cells were
lysed and sonicated on ice to generate DNA fragments with an aver-
age length of 200-800 bp. After pre-clearing, 1% of each sample was
saved as the input fraction. Immunoprecipitation was performed
using antibodies that specifically recognize NRF2 (CST, 12721). DNA
was eluted and purified from complexes, followed by PCR amplifica-
tion of the target promoters or genomic loci using primers for mouse
Tfam:5-GAGGCAGGGTCTCATG-3" and 5-CAAGCTGAGTTCTATC-3’;
5’-TCTGGGCCATCTTGGG-3’ and 5’- CCATGGGCCTGGGCTG-3".

Quantitative PCR analysis

Total RNA and DNA were extracted using the All Prep DNA/RNA Mini
Kit (Qiagen). RNA was reverse-transcribed using a Superscript VILO
cDNA synthesis kit (Invitrogen). Quantitative (q)PCR was performed as
described™. Primers obtained from the NIH Primer-BLAST (https://www.
ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome)
are shown in Supplementary Table 3.

RNA-seq library preparation, processing and analysis
Total RNA was isolated as described above from KPC samples grown
onwild-type (n=3) or R/R (n=3) ECM as indicated. RNA purity was
assessed by an Agilent 2100 Bioanalyzer. Five hundred nanograms
of total RNA was enriched for poly-A-tailed RNA transcripts by dou-
ble incubation with Oligo d(T) Magnetic Beads (NEB, S1419S) and
fragmented for 9 min at 94 °Cin 2x Superscript Il first-strand buffer
containing10 mM DTT (Invitrogen, P2325). The reverse-transcription
reactionwas performed at 25 °C for 10 min followed by 50 °C for 50 min.
The reverse-transcription product was purified with RNAClean XP
(Beckman Coulter, A63987). Libraries were ligated with dual unique
dual index (UDI) (IDT) or single UDI (Bioo Scientific), PCR-amplified
for 11-13 cycles, size-selected using one-sided 0.8x AMPure clean-up
beads, quantified using the Qubit dsDNA HS Assay Kit (Thermo Fisher
Scientific) and sequenced onaHiSeq 4000 or NextSeq 500 (Illumina).
RNA-seqreads were aligned to the mouse genome (GRCm38/mm10)
using STAR. Biological and technical replicates were used in all experi-
ments. Quantification of transcripts was performed using HOMER
(v.4.11). Principal component analysis (PCA) was obtained on the basis
oftranscripts per kilobase million (TPM) on all genes from all samples.
Expressionvalue for each transcript was calculated using the analyzeRe-
peats.pl tool of HOMER. Differential expression analysis was calculated
using getDiffExpression.pl tool of HOMER. Pathway analyses were
performed using the Molecular Signature Database of GSEA.

scRNA-seq analysis

Samples from five primary tumours from patients with PDAC and
one PDAC liver metastasis were obtained® and analysed separately
to better identify cell heterogeneity and clusters. The datasets were
processed in R (v.4.0.2) and Seurat® (v.4.0.5) and cells with at least
200 genes and genes expressed in at least 3 cells were retained for
further quality control analysis for the percentage of mitochondrial
genes expressed, total genes expressed and unique molecular identi-
fier (UMI) counts. The gene-cell barcode matrix obtained after quality
control analysis was log-normalized and 3,000 variable genes were
identified and scaled to perform PCA. The five PDAC primary patient
samples were then batch-corrected and integrated using a reciprocal
PCA (RPCA) pipeline in Seurat using ‘FindIntegrationAnchors’ and
‘IntegrateData’ functions. The ‘integrated’ assay was again scaled to
perform PCA. The top significant principal components of PCA were
identified using ‘EIbowPlot’ in each dataset. To cluster and visualize
the cells, ‘FindNeighbours’, ‘FindClusters’ and ‘RunUMAP’ functions
were used onthetopidentified principal componentsin each dataset.
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The cell types were identified by manual annotation of well-known
makers®, namely: epithelial-tumour cells (EPCAM and KRTS), pancre-
atic epithelial cells (CPAI and CTRBI), T cells (CD3D and /IL7R), myeloid
cells (CD14,CD68, FCGR3A and LYZ), NK cells (NKG7 and GNLY), B cells
(CD79A and MS4A1), dendritic cells (FCGRIA and CPA3), endothelial
cells (PECAM1, KDR and CDHS), fibroblasts (ACTA2, COL1A1, COLECI1
and DCN), vascular smooth muscle cells (MYH11 and ACTA2), hepato-
cytes (ALB,APOE and CPS1), cholangiocytes (ANXA4, KRT7 and SOX9),
plasma cells (J/CHAIN and IGKC) and cycling cells (TOP2A and MKI167).

M1/M2 macrophages were designated as described®: M1-like mac-
rophages (AZIN1, CD38, CXCL10, CXCL9, FPR2,1L18,IL1B, IRFS, NIFKBIZ,
TLR4, TNF and CD80) and M2-like macrophages (ALOXS, ARG1, CHIL3,
CDI163,1L10,IL1I0RA,IL1ORB, IRF4,KIF4, MRCI1,MYC,SOCS2and TGM2).
The mean expression score for the M1 and M2 signatures were com-
puted for each macrophage subcluster using ‘AddModuleScore’ func-
tion and clusters with a higher M1 or M2 signature score were assigned
Mi-like or M2-like annotation, respectively.

Metabolite extraction and analysis

Cells grown on a 12-well plate coated with or without ECM. Metab-
olite extraction and analysis were performed as before'. Gas
chromatography-mass spectrometry (GC-MS) analysis was per-
formed using an Agilent 6890 gas chromatograph equipped with a
30-m DB-35MS capillary column connected to an Agilent 5975B mass
spectrometer operating under electronimpactionizationat 70 eV. For
measurement of amino acids, the gas chromatograph oven tempera-
ture was held at 100 °C for 3 min and increased to 300 °C at 3.5 °C per
min. The mass spectrometer source and quadrupole were held at 23 °C
and 150 °C, respectively, and the detector was run in scanning mode,
recording ion abundance in the range of 100-605 m/z. Mole per cent
enrichments of stable isotopes in metabolite pools were determined
byintegratingthe appropriateion fragments and correcting for natural
isotope abundance as previously described®.

Cell viability assay

Cells were plated in 96-well plates coated with or without ECM at a
density of 3,000 cells (MIA,1305) or 1,500 cells (KPC or KC) per well and
incubated overnight before treatment. 7rh (500 nM), ML120B (10 pM),
EIPA (10.5 uM), IP1549 (600 nM), MBQ-167 (500 nM), MRT68921
(600 nM) or ML385 (10 uM), or their combinations, were added to
the wellsinthe presence of complete medium (CM), LG mediumor LQ
medium for 72 h. Cell viability was determined with a Cell Counting
Kit-8 assay (Glpbio). Optical density was read at 450 nm and analysed
using a microplate reader with SoftMax 6.5 software (FilterMax F5,
Molecular Devices). For all experiments, the medium was replaced
every24 h.

Luminescence ATP detection assay

KPC or KC cells were grown on 96-well plates coated with or without
the indicated ECM in the presence of 100 pl CM or LG medium with
or without EIPA (10.5 pM), MBQ-167 (500 nM), MRT68921 (600 nM)
or their combinations for 24 h. Then the cell number was measured.
Intracellular ATP was determined with aluminescence ATP detection
assay system (PerkinElmer) according to the manufacturer’s protocol.
Finally, luminescence was measured and normalized to cell number.

L-amino acid assay

KPC or KC cells were grown on six-well plates coated with or without
theindicated ECMin the presence 0of 100 pl LG medium with or without
EIPA (10.5 pM), MRT68921 (600 nM) or their combinations for 24 h.
Totalamounts of free L-amino acids (except for glycine) were measured
using an L-Amino Acid Assay Kit (Colorimetric, antibodies) according to
the manufacturer’s protocol. The concentration of L-amino acids was
calculated within samples by comparing the sample optical density to
the standard curve and normalized to cell number.

Statistics and reproducibility

Macropinosomes or mitochondria were quantified by using the ‘Ana-
lyze Particles’ featureinImage] (NIH). Macropinocytotic uptake index®
or mitochondria number was computed by the macropinosome or
mitochondria areain relation to the total cell area for each field and
thenby determining the average across all the fields (six fields). Tumour
area (%) was quantified by using the ‘Polygon’ and ‘Measure’ featurein
FijiImageJ and was computed by tumour areainrelation to total area
foreachfield and then by determining the average across all the fields
(five fields). Positive area of protein expression in tumour (%) was quan-
tified by using ‘Colour Deconvolution’,‘H DAB’, and ‘Analyze Particles’
featureinFijiImage] and was computed by the protein-positive areain
relationto the tumour areaforeach fieldand then by determining the
average across all the fields (5-6 fields). These measurements were done
onrandomly selected fields of view. A two-tailed unpaired Student’s
t-test was performed for statistical analysis using GraphPad Prism
software. Data are presented as mean + s.e.m. Kaplan-Meier survival
curves were analysed by log-rank test. Statistical correlation between
Col I-DDR1-NRF2 signalling proteins in human PDAC specimens was
determined by two-tailed chi-squared test. (****P < 0.0001, ***P< 0.001,
**P < 0.01and*P < 0.05). Allexperiments except the IHC analysis 0f 106
human specimens were repeated at least 3 times.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

RNA-seq data are available at the Gene Expression Omnibus (GEO)
under accession number GSE206218. scRNA-seq data were obtained
from a published GEO dataset (GSE156405). Graph dataand raw images
ofimmunoblot and DNA gels are provided within the Source Data. All
raw image data including immunostaining, immunoblotting, DNA
gels, IHC, H&E and sirius red staining were uploaded to Mendeley Data
(https://doi.org/10.17632/9v2hyb4j7n.1). Source data are provided
with this paper.

Code availability

Custom computer code used in the scRNA-seq analysis is available at
https://github.com/ajynair/Collagen_DDR1_PDACmets.
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test.b, UMAPs showing scRNA-seq datafrom5 primary PDACs, displaying
celltypesand expression of the most abundant MMP mRNAs. ¢, Pancreas
morphology 4 wk after orthotopic KPC cell transplantation into Col YT or
ColI""mice -/+ CAE pretreatment. d, H&E and sirius red (SR) staining of
pancreatic sections from above mice. Boxed areas were further magnified.
Quantification of SR positivity innontumor (NT) areasis shown to the right.

e, IHC of pancreatic sections from above mice. Quantification of tumour areas

olL 2L
CCl, KCe141 Col T Col I
; Ctrl ccl,
Col "7 Col I ol VT ol 17
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CAE-pretreated mice. g, Liver gross morphology and tumour numbers (#) 2wk
afteri.s. transplantation of Paren. or IKKa knockdown (KD) KC cellsinto CCl,
pretreated Col " or Col I”"mice. h, H&E and SR staining of liver sections 2 wk
afteri.s.transplantation of KPC cells into Col I""and Col I""mice -/+ CCl,
pretreatment. Quantification of SR positivityin NTareasisshown at the
bottom. i, IHC of liver sections from above mice. Boxed areas show higher
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mean +s.e.m. Statistical significance determined by two-tailed ¢-test.
***P<0.001,****P<0.0001.Scalebarsin (d-f,and h,i),100 pm, (c,g), 1 cm.



Article

a |ES|

o
o
o
Y

04 06

=]
@
o

regulation of sulfur amino acid metabolic process
mammary gland duct morphogenesis

protein localization to chromosome, telomeric region
liposaccharide metabolic process

glycolipid metabolic process

alternative mRNA splicing, via spliceosome
defense response to bacterium

regulation of MRNA processing

regulation of mRNA splicing, via spliceosome
RNA export from nucleus

regulation of telomere maintenance

telomere maintenance via telomere lengthening
regulation of RNA splicing

protein localization to chromosome

NA 3'-end processing

positive regulation of ERK1 and ERK2 cascade
regulation of inflammatory response

nuclear export

RNA localization

mRNA transport

RNA transport

nucleic acid transport

establishment of RNA localization

protein export from nucleus

rRNA metabolic process

mitotic sister chromatid segregation

rRNA processing

telomere maintenance

histone acetylation

sister chromatid segregation
nucleobase-containing compound transport
cellular amino acid metabolic process

lipid catabolic process

telomere organization

internal protein amino acid acetylation

positive regulation of chromosome organization
internal peptidyl-lysine acetylation

RNA modification

peptidyl-lysine acetylation

DNA biosynthetic process

tRNA metabolic process

t

protein acetylation
RNA catabolic process
negative regulation of cell cycle process

NHE1%0
KPC LG R/R +
b e i+ Col T c KPCLG kDa " ggglm
o S ++Coll® %15 100 -
159 5 gwr kDa ool I o
° s CJRR 100 - C° m 210 [ Paren. 95-® @ SDCT
s10 CIColls | T L ns []SDC1® 0 88 NHE1
8059, [ICal |5 75 tollZ g 05 [ 1 [ JNHE1® )
S 0.0 Col| 47— p-acting & S 0.0 i 47 /== p-actin
Z " Vehicle EIPA g = WT RR
h
d KPCLG e KC6141 LG ¥ .
© o =2 wx . 1.5 wiex
T 20q,,,, = I:I\E/T;:le T 200, s vane [] Vehicle %2-0 s — [ Vehicle & o wes LIWT
515 L] g 15 s Sepa 219 2= OMRT g 10T CIRR
510 ns [ ]IPIs49 & 1.0 <10 CJEPA 8¢ CColl* |5
N 1 [Jvmea © o5 ww—— LIMBQ T 5 CJEIPA+ &2 5 Col1:4+ S
0.5 £ £
E sk £ [IMRT o MRT £ 0.0LLLLLILL ol wT
5 0.0 LIMRT 5 = T S Vehicle EIPA
z WT R/IR kot KPC
3 KPG
9 — oo — ;} !_A 1 ****u**
ey vehicle @ 015
E 15, 2 T [ Vehicle g [ Vehicle 3 o e CWT
EZERN LJEIPA = < C MRT
E 1.0 e seex [ JMRT ® % [JEIPA %
X 3
5 05 = [C]EIPA + MRT - CJ EIPA + 200 aet
£ 00 £ MRT & Vehicle EIPA
Z " Plasc WT RR 3 & KPC
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RNA-seq data for KPC960 cells grown on WT or R/R ECM have been deposited in the Gene Expression Omnibus under the accession code GSE206218, scRNA-seq
dataset for 5 primary PDAC tumors and 1 PDAC liver metastasis were obtained from the published GEO dataset (GSE156405) (Lee et al., Clinical Cancer Research,
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at The Affiliated Drum Tower Hospital of Nanjing University Medical School (Nanjing, Jiangsu, China). All patients received
standard surgical resection and did not receive chemotherapy before surgery. Paraffin embedded tissues were processed by
a pathologist after surgical resection and confirmed as PDAC prior to further investigation. Overall survival duration was
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Recruitment Human PDAC specimens were acquired from patients who were diagnosed with PDAC between January 2017 and May 2021
at The Affiliated Drum Tower Hospital of Nanjing University Medical School (Nanjing, Jiangsu, China). All patients received
standard surgical resection and did not receive chemotherapy before surgery. Paraffin embedded tissues were processed by
a pathologist after surgical resection and confirmed as PDAC prior to further investigation. Informed consent for tissue
analysis was obtained before surgery.

Ethics oversight The study was approved by the Institutional Ethics Committee of The Affiliated Drum Tower Hospital with IRB #2021-608-01.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine samples sizes for in vitro experiments. Sample sizes were chosen in order to be able to
perform statistical analyses, as is standard in the field and based on previous studies (Su et al., Cancer Cell, 2021; Zhong et al., Nature, 2018).
For in vivo experiments, based on their genotypes, gender- and age matched mice were randomly allocated to experimental groups. Because
our mice were inbred and age- and gender-matched, similar variance was assumed between different experimental groups. No sample size
pre-estimation was performed but we used as many mice per group as possible to minimize type I/Il errors.

Data exclusions  No data were excluded for all the analyses described.
Replication All the experiments except IHC analysis of 106 patient samples were repeated for at least three times. However, all the antibodies used in IHC

analysis of 106 patient samples were confirmed their specificity in several patient samples at least three times. Statistical analysis were done
to ensure significance. All attempts of replication were successful.
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Randomization  Age-, gender-, and equal average tumor volumes-matched mice were randomly allocated to different experimental groups based on their
genotypes. For experiments other than mice, we did not carry out randomization because it's either irrelevant or not applicable to these
studies.

Blinding Investigators were not blinded to the group allocations except for microscopic analysis of immunofluorescent or IHC staining results. For other

experiments, the investigators were not blinded since analyses relied on unbiased measurements of quantitative parameters. Standardized
procedures for data collection and analysis were used to prevent bias.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies IZI |:| ChiIP-seq
Eukaryotic cell lines IZI |:| Flow cytometry
Palaeontology and archaeology IZI |:| MRI-based neuroimaging

Animals and other organisms

Clinical data
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Dual use research of concern

Antibodies

Antibodies used Guinea pig anti-p62 polyclonal antibody (GP62-C, Progen), rabbit anti-NRF2 polyclonal antibody (ABclonal, A11159), rabbit anti-
COL1A1 monoclonal antibody (CST, 72026, E8FA4L), mouse anti-COL1A1 monoclonal antibody (Santa Cruz, sc-293182, 3G3), rabbit
anti-3/4 COL1A1 polyclonal antibody (Immunoglobe, 0217-050), mouse anti-TIM23 monoclonal antibody (Santa Cruz, sc-514463,
H-8), rabbit anti-phospho-DDR1 (pTyr513) polyclonal antibody (Sigma, SAB4504671), mouse anti-DDR1 monoclonal antibody (Santa
Cruz, sc-390268, D-10), rabbit anti-KEAP1 monoclonal antibody (CST, 8047, D6B12), rabbit anti-NF-kB p65 monoclonal antibody (CST,
8242, D14E12), rabbit anti-Histone H3 polyclonal antibody (ABclonal, A2348), rat anti-CD326 (EpCAM) monoclonal antibody
(ThermoFisher, 13-5791-80, G8.8), mouse anti-IkKka monoclonal antibody (Invitrogen, MA5-16157, 14A231), mouse anti-Actin
monoclonal antibody (Sigma, A4700, AC-40), rabbit anti-GFP polyclonal antibody (ThermoFisher, A-11122), chicken anti-GFP/YFP/CFP
polyclonal antibody (Abcam ab13970), mouse anti-Flag monoclonal antibody (Sigma, F3165, M2), rabbit anti-Flag polyclonal antibody
(Sigma, F7425), rabbit anti-TFAM polyclonal antibody (Abcam, ab131607), rabbit anti-PGC1 polyclonal antibody (Sigma, ABE868),
rabbit anti-Phospho-AMPKa (Thr172) monoclonal antibody (CST, 2535, 40H9), rabbit anti-AMPKa monoclonal antibody (CST, 5832,
D63G4), mouse anti-6X His tag monoclonal antibody (Abcam, ab18184, HIS.H8), rabbit anti-E-Cadherin monoclonal antibody (CST,
3195, 24E10), rabbit anti-CD138/SDC1 polyclonal antibody (ThermoFisher, 36-2900), mouse anti-NHE-1 monoclonal antibody (Santa
Cruz, sc-136239, 54), rabbit anti-PI3 Kinase p110y monoclonal antibody (CST, 5405, D55D5), mouse anti-ATP5A monoclonal antibody
(Santa Cruz, sc-136178, 51), mouse anti-ATP5B monoclonal antibody (Sigma, MAB3494, 4.3E8.D1), mouse anti-UQCRC2 monoclonal
antibody (Santa Cruz, sc-390378, G-10), mouse anti-SDHB monoclonal antibody (Santa Cruz, sc-271548, G-10), rabbit anti-SDHB
monoclonal antibody (CST, 92649, E3H9Z), mouse anti-NDUFB7 monoclonal antibody (Santa Cruz, sc-365552, F-8), rabbit anti-COX1/
MT-CO1 polyclonal antibody (CST, 62101), rabbit anti- SMA polyclonal antibody (Abcam, ab5694), rabbit anti-MMP1 monoclonal
antibody (Abcam, ab52631, EP1247Y), rabbit anti-Ki67 monoclonal antibody (GeneTex, GTX16667, SP6), rabbit anti-CDC42 polyclonal
antibody (ThermoFisher, PA1-092), mouse anti-HSP90 monoclonal antibody (Santa Cruz, sc-13119, F-8), rabbit anti-a-Amylase
polyclonal antibody (Sigma, A8273), goat anti-cytokeratin 19 polyclonal antibody (Santa Cruz, sc-33111), rabbit anti-SOX9 polyclonal
antibody (Santa Cruz, sc-20095), mouse anti-cytokeratin 18 polyclonal antibody (GeneTex, GTX105624), rabbit anti-LAIR1 polyclonal
antibody (ThermoFisher, HO0003903-DO1P), mouse anti-Endo180/MRC2 monoclonal antibody (Santa Cruz, sc-271148, B-10), mouse
anti-Integrin B1/ITGB1 monoclonal antibody (Santa Cruz, sc-374429, A-4), Rat anti-CD45 monoclonal antibody (ThermoFisher,
14-0451-85, 30-F11), Mouse anti-CD68 monoclonal antibody (ThermoFisher, MA5-13324, KP1), Rabbit anti-CD163 monoclonal
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Validation

antibody (Abcam, ab182422, EPR19518), Rat anti-F4/80 monoclonal antibody (ThermoFisher, MF48000, BM8), Rabbit anti-CD4
monoclonal antibody (Abcam, ab183685, EPR19514), Rabbit anti-Ki67 polyclonal antibody (Abcam, ab15580), Rabbit anti-CD8
monoclonal antibody (Abcam, ab217344, EPR21769), HRP goat anti-chicken IgY antibody (Santa Cruz, sc-2428), HRP goat anti-rabbit
1gG antibody (CST, 7074), HRP horse anti-mouse 1gG antibody (CST, 7076), HRP streptavidin (Pharmingen, 554066), Biotin goat anti-
mouse IgG (Pharmingen, 553999), Biotin goat anti-rabbit IgG (Pharmingen, 550338), Biotin mouse anti-goat IgG (Santa Cruz,
sc-2489). Alexa 594-, Alexa 647-, and Alexa 488-conjugated secondary antibodies were used: donkey anti-mouse IgG, donkey anti-
rabbit IgG, goat anti-chicken IgY (Molecular Probes, Invitrogen).

All the following antibodies have been validated according to manufacturer's manuals and re-validated by immunoblot (IB), or
immunofluorescence staining (IF) or immunohistochemistry (IHC) results from this manuscript:

Guinea pig anti-p62 polyclonal antibody (GP62-C, Progen) (1B, human and mouse): https://us.progen.com/anti-p62-SQSTM1-C-
terminus-guinea-pig-polyclonal-serum/GP62-C

rabbit anti-NRF2 polyclonal antibody (ABclonal, A11159) (IB, IHC, IF, human and mouse): https://abclonal.com/catalog-antibodies/
NRF2RabbitpAb/A11159

rabbit anti-COL1A1 monoclonal antibody (CST, 72026) (IB, human and mouse): https://www.cellsignal.com/products/primary-
antibodies/collal-e8f4l-xp-rabbit-mab/72026

mouse anti-COL1A1 monoclonal antibody (Santa Cruz, sc-293182) (IB, human and mouse): https://www.scbt.com/p/collal-
antibody-3g3

rabbit anti-3/4 COL1A1 polyclonal antibody (Immunoglobe, 0217-050) (IB, IF, IHC, human and mouse): https://
www.immunoglobe.com/antibodies/items/collagen_cleavage_site.html

mouse anti-TIM23 monoclonal antibody (Santa Cruz, sc-514463) (IF, human and mouse): https://www.scbt.com/p/tim23-antibody-
h-8

rabbit anti-phospho-DDR1 (pTyr513) polyclonal antibody (Sigma, SAB4504671) (1B, human and mouse): https://
www.sigmaaldrich.com/US/en/product/sigma/sab4504671

mouse anti-DDR1 monoclonal antibody (Santa Cruz, sc-390268) (IB, human and mouse): https://www.scbt.com/p/ddr1-antibody-
d-10

rabbit anti-KEAP1 monoclonal antibody (CST, 8047) (1B, human and mouse): https://www.cellsignal.com/products/primary-
antibodies/keap1-d6b12-rabbit-mab/8047

rabbit anti-NF-kB p65 monoclonal antibody (CST, 8242) (1B, human and mouse): https://www.cellsignal.com/products/primary-
antibodies/nf-kb-p65-d14e12-xp-rabbit-mab/8242

rabbit anti-Histone H3 polyclonal antibody (ABclonal, A2348) (IB, human and mouse): https://abclonal.com/catalog-antibodies/
HistoneH3RabbitpAb/A2348

rat anti-CD326 (EpCAM) monoclonal antibody (ThermoFisher, 13-5791-80) (IF, IHC, mouse): https://www.thermofisher.com/
antibody/product/CD326-EpCAM-Antibody-clone-G8-8-Monoclonal/13-5791-80

mouse anti-IKKa monoclonal antibody (Invitrogen, MA5-16157) (IB, human and mouse): https://www.thermofisher.com/antibody/
product/IKK-alpha-Antibody-clone-14A231-Monoclonal/MA5-16157

mouse anti-Actin monoclonal antibody (Sigma, A4700) (IB, human and mouse): https://www.sigmaaldrich.com/US/en/product/
sigma/a4700

rabbit anti-GFP polyclonal antibody (ThermoFisher, A-11122) (IB):https://www.thermofisher.com/antibody/product/GFP-Antibody-
Polyclonal/A-11122

chicken anti-GFP/YFP/CFP polyclonal antibody (Abcam ab13970) (IF): https://www.abcam.com/gfp-antibody-ab13970.html

mouse anti-Flag monoclonal antibody (Sigma, F3165) (IB, human and mouse): https://www.sigmaaldrich.com/US/en/product/sigma/
f3165

rabbit anti-Flag polyclonal antibody (Sigma, F7425) (IB, human and mouse): https://www.sigmaaldrich.com/US/en/product/sigma/
7425

rabbit anti-TFAM polyclonal antibody (Abcam, ab131607) (IB, mouse ): https://www.citeab.com/antibodies/754337-ab131607-anti-
mttfa-antibody-mitochondrial-marker

rabbit anti-PGC1a polyclonal antibody (Sigma, ABE868) (1B, human and mouse): https://www.sigmaaldrich.com/US/en/product/mm/
abe868

rabbit anti-Phospho-AMPKa (Thr172) monoclonal antibody (CST, 2535) (IB, human and mouse): https://www.cellsignal.com/
products/primary-antibodies/phospho-ampka-thr172-40h9-rabbit-mab/2535

rabbit anti-AMPKa monoclonal antibody (CST, 5832) (IB, human and mouse): https://www.cellsignal.com/products/primary-
antibodies/ampka-d63g4-rabbit-mab/5832

mouse anti-6X His tag monoclonal antibody (Abcam, ab18184) (1B, mouse): https://www.abcam.com/6x-his-tag-antibody-hish8-
ab18184.html

rabbit anti-E-Cadherin monoclonal antibody (CST, 3195) (IF, human and mouse): https://www.cellsignal.com/products/primary-
antibodies/e-cadherin-24e10-rabbit-mab/3195

rabbit anti-CD138/SDC1 antibody (ThermoFisher, 36-2900) (IB, human and mouse): https://www.thermofisher.com/antibody/
product/CD138-Antibody-Polyclonal/36-2900

mouse anti-NHE-1 monoclonal antibody (Santa Cruz, sc-136239) (IB, human and mouse): https://www.scbt.com/p/nhe-1-antibody-54
rabbit anti-PI3 Kinase p110y monoclonal antibody (CST, 5405) (1B, human and mouse): https://www.cellsignal.com/products/
primary-antibodies/pi3-kinase-p110g-d55d5-rabbit-mab/5405

mouse anti-ATP5A monoclonal antibody (Santa Cruz, sc-136178) (IB, human and mouse): https://www.scbt.com/p/atp5a-
antibody-51

mouse anti-ATP5B monoclonal antibody (Sigma, MAB3494) (IB, human and mouse): https://www.sigmaaldrich.com/deepweb/assets/
sigmaaldrich/product/documents/309/124/mab3494.pdf

mouse anti-UQCRC2 monoclonal antibody (Santa Cruz, sc-390378) (IB, human and mouse): https://www.scht.com/p/uqcrc2-
antibody-g-10

mouse anti-SDHB monoclonal antibody (Santa Cruz, sc-271548) (1B, human and mouse): https://www.scbt.com/p/sdhb-antibody-
g-10

rabbit anti-SDHB monoclonal antibody (CST, 92649) (IHC, human and mouse): https://www.cellsignal.com/products/primary-
antibodies/sdhb-e3h9z-xp-rabbit-mab/92649

mouse anti-NDUFB7 monoclonal antibody (Santa Cruz, sc-365552) (IB, human and mouse): https://www.scbt.com/p/ndufb7-
antibody-f-8

rabbit anti-COX1/MT-CO1 polyclonal antibody (CST, 62101) (1B, human and mouse): https://www.cellsignal.com/products/primary-
antibodies/cox1-mt-col-antibody/62101
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rabbit anti-aSMA polyclonal antibody (Abcam, ab5694) (IHC, mouse and human): https://www.abcam.com/alpha-smooth-muscle-
actin-antibody-ab5694.html

rabbit anti-MMP1 monoclonal antibody (Abcam, ab52631) (IHC, human): https://www.abcam.com/mmp1l-antibody-ep1247y-
ab52631.html

rabbit anti-Ki67 monoclonal antibody (GeneTex, GTX16667) (IHC, human and mouse): https://www.genetex.com/Product/Detail/
Ki67-antibody-SP6/GTX16667

rabbit anti-CDC42 polyclonal antibody (ThermoFisher, PA1-092) (IHC, IB, human and mouse): https://www.thermofisher.com/
antibody/product/Cdc42-Antibody-Polyclonal/PA1-092

mouse anti-HSP90 monoclonal antibody (Santa Cruz, sc-13119) (IB, human and mouse): https://www.scbt.com/p/hsp-90alpha-beta-
antibody-f-8

rabbit anti-a-Amylase polyclonal antibody (Sigma, A8273) (IHC, human): https://www.sigmaaldrich.com/US/en/product/sigma/a8273
mouse anti-cytokeratin 18 monoclonal antibody (GeneTex, GTX105624) (IF, human and mouse): https://www.genetex.com/Product/
Detail/Cytokeratin-18-antibody-N2C2-Internal /GTX105624

rabbit anti-LAIR1 polyclonal antibody (ThermoFisher, HO0003903-D01P) (IB, human and mouse): https://www.thermofisher.com/
antibody/product/LAIR1-Antibody-Polyclonal/HO0003903-DO1P

mouse anti-Endo180/MRC2 monoclonal antibody (Santa Cruz, sc-271148) (IB, human): https://www.scbt.com/p/endo180-antibody-
b-10

mouse anti-Integrin B1/ITGB1 antibody (Santa Cruz, sc-374429) (1B, human and mouse): https://www.scbt.com/p/integrin-betal-
antibody-a-4

Rat anti-CD45 antibody (ThermoFisher, 14-0451-85) (IHC, mouse): https://www.thermofisher.com/antibody/product/CD45-
Antibody-clone-30-F11-Monoclonal/14-0451-85

Mouse anti-CD68 antibody (ThermoFisher, MA5-13324) (IHC, human): https://www.thermofisher.com/antibody/product/CD68-
Antibody-clone-KP1-Monoclonal/MA5-13324

Rabbit anti-CD163 antibody (Abcam, ab182422) (IHC, human and mouse): https://www.abcam.com/cd163-antibody-epr19518-
ab182422.html

Rat anti-F4/80 antibody (ThermoFisher, MF48000) (IHC, mouse): https://www.thermofisher.com/antibody/product/F4-80-Antibody-
clone-BM8-Monoclonal/MF48000

Rabbit anti-CD4 antibody (Abcam, ab183685) (IHC, mouse): https://www.abcam.com/cd4-antibody-epr19514-ab183685.html
Rabbit anti-Ki67 antibody (Abcam, ab15580) (IHC, mouse and human): https://www.abcam.com/ki67-antibody-ab15580.html

Rabbit anti-CD8 antibody (Abcam, ab217344) (IHC, mouse): https://www.abcam.com/cd8-alpha-antibody-epr21769-ab217344.html
HRP goat anti-chicken IgY antibody (Santa Cruz, sc-2428) (IF): https://datasheets.scbt.com/sc-2428.pdf

HRP goat anti-rabbit 1gG antibody (CST, 7074) (IB): https://www.cellsignal.com/products/secondary-antibodies/anti-rabbit-igg-hrp-
linked-antibody/7074

HRP horse anti-mouse IgG antibody (CST, 7076) (IB): https://www.cellsignal.com/products/secondary-antibodies/anti-mouse-igg-hrp-
linked-antibody/7076

HRP streptavidin (Pharmingen, 554066) (IHC): https://www.bdbiosciences.com/content/dam/bdb/products/global/reagents/
immunoassay-reagents/elisa/554066_base/pdf/554066.pdf

Biotin goat anti-mouse IgG (Pharmingen, 553999) (IHC, mouse): https://www.bdbiosciences.com/content/dam/bdb/products/global/
reagents/flow-cytometry-reagents/research-reagents/single-color-antibodies-ruo/553999 base/pdf/553999.pdf

Biotin goat anti-rabbit IgG (Pharmingen, 550338) (IHC): https://www.bdbiosciences.com/content/dam/bdb/products/global/
reagents/flow-cytometry-reagents/research-reagents/single-color-antibodies-ruo/550338_base/pdf/550338.pdf

Biotin mouse anti-goat IgG (Santa Cruz, sc-2489) (IHC): https://www.scbt.com/p/mouse-anti-goat-igg-b

Alexa 594-, Alexa 647-, and Alexa 488-conjugated secondary antibodies were used: donkey anti-mouse 1gG, donkey anti-rabbit 1gG,
goat anti-chicken IgY (Molecular Probes, Invitrogen) (IF): https://www.thermofisher.com/us/en/home/life-science/antibodies/
secondary-antibodies/fluorescent-secondary-antibodies/alexa-fluor-plus-secondary-antibodies.html

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s)

Authentication

MIA PaCa-2 (CRL-1420; RRID: CVCL_0428) cell was obtained from ATCC. UN-KC-6141 (RRID: CVCL_1U11) and UN-KPC-960
(RRID: CVCL_1U12) were obtained from Surinder K. Batra. WT and R/R fibroblasts were generated at Dr. David Brenner lab.
1305 primary human PDAC cells were generated by Dr. Andrew M. Lowy lab from a human PDAC PDX.

MIA Paca-2 has been authenticated by ATCC and UN-KC-6141 and UN-KPC-960 have been authenticated by Surinder K. Batra
lab before delivery to our lab. And cell lines are routinely authenticated in-house by cell morphology.

Mycoplasma contamination All cell lines are routinely tested negative for mycoplasma contamination.

Commonly misidentified lines  No commonly misidentified cell lines were used.

(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research

Laboratory animals

Female homozygous Nu/Nu nude mice and C57BL/6 mice were obtained at 6 weeks of age from Charles River Laboratories and The
Jackson Laboratory, respectively. 3-month-old Collal+/+ (Col IWT) or Collalr/r (Col Ir/r) mice on a C57BL/6 background obtained
from Dr. David Brenner at UCSD were used in this study (indicated in the Methods) and and were previously described. Age- and sex-
matched (except where otherwise indicated) male and female mice of each genotype were generated as littermates for use in
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experiments in which different genotypes were compared. All mice were maintained in filter-topped cages on autoclaved food and
water, and experiments were performed in accordance with UCSD Institutional Animal Care and Use Committee and NIH guidelines
and regulations on age and gender-matched littermates. Dr. Karin’s Animal Protocol S00218 was approved by the UCSD Institutional
Animal Care and Use Committee. Mice were housed in well filter-topped cages in constant temperature, humidity and pathogen-free
controlled environment (23°C + 2°C, 50-60%), with a standard 12 h light/ 12 h dark cycle, plenty of water and food in their cages,
which were described in Methods section.

Wild animals The study did not involve wild animals.

Reporting on sex This study did not involve sex research. But Sex-matched male and female mice of each genotype were generated as littermates for
use in experiments in which different genotypes were compared.

Field-collected samples  The study did not involve field-collected samples.

Ethics oversight Dr. Karin’s Animal Protocol S00218 was approved by the UCSD Institutional Animal Care and Use Committee

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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