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            Abstract
Two-dimensional transition-metal dichalcogenides (TMDs) are of interest for beyond-silicon electronics1,2. It has been suggested that bilayer TMDs, which combine good electrostatic control, smaller bandgap and higher mobility than monolayers, could potentially provide improvements in the energy-delay product of transistors3,4,5. However, despite advances in the growth of monolayer TMDs6,7,8,9,10,11,12,13,14, the controlled epitaxial growth of multilayers remains a challenge15. Here we report the uniform nucleation (>99%) of bilayer molybdenum disulfide (MoS2) on c-plane sapphire. In particular, we engineer the atomic terrace height on c-plane sapphire to enable an edge-nucleation mechanism and the coalescence of MoS2 domains into continuous, centimetre-scale films. Fabricated field-effect transistor (FET) devices based on bilayer MoS2 channels show substantial improvements in mobility (up to 122.6â€‰cm2â€‰Vâˆ’1â€‰sâˆ’1) and variation compared with FETs based on monolayer films. Furthermore, short-channel FETs exhibit an on-state current of 1.27â€‰mAâ€‰Î¼mâˆ’1, which exceeds the 2028 roadmap target for high-performance FETs16.
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                    Fig. 1: Thermodynamic analysis on the monolayer versus bilayer MoS2 growth on c-plane sapphire.[image: ]


Fig. 2: Step-edge nucleation of bilayer MoS2 on c-plane sapphire.[image: ]


Fig. 3: Uniform growth of bilayer MoS2 domains and continuous films.[image: ]


Fig. 4: The epitaxial relationship between bilayer MoS2 and c-plane sapphire.[image: ]


Fig. 5: The interlayer stacking of bilayer MoS2.[image: ]


Fig. 6: FET performance of bilayer MoS2.[image: ]
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Extended data figures and tables

Extended Data Fig. 1 Schematic of monolayer versus bilayer MoS2 flakes on c-plane sapphire.
a, 3R configuration. b, 2H configuration. c, The DFT calculated free energy variation of monolayer versus 2H bilayer MoS2 triangle domains presented in b. d, The calculated step-height-dependent formation energy between 2H bilayer MoS2 and sapphire terraces. Note 1: extra S atoms were introduced to passivate the edged Mo atoms. Note 2: the free energies are normalized by the number of Mo atoms with the consideration of the chemical potential of extra S atoms.


Extended Data Fig. 2 Edge-aligned bilayer MoS2 is energetically more preferable than the edge-misaligned bilayers.
aâ€“c, The top and side views of atomic structures of 3R bilayer MoS2 with different edge misalignment distance (Î”L) on c-plane sapphire. The edge-aligned case (a) corresponds to Î”Lâ€‰=â€‰0. d, The formation energy difference (Î”Ef) as the function of Î”L for 3R bilayers, in which the edge-aligned case is the most energetically preferred one. This is attributed to the fact that the aligned edge can enhance the interaction of the edged S atoms between two neighbouring sides from two individual layers and, thereby, relieve the strained bonds of the edged and self-passivated S2 dimers of the top layer. e, Atomic-resolved HAADF-STEM image of edge alignment of bilayer MoS2 domain. Scale bar, 2â€‰nm. f, The formation energy difference (Î”Ef) as the function of Î”L, in which the edge-aligned case is the most energetically preferred for the 2H configuration.


Extended Data Fig. 3 Nucleation of monolayer and bilayer MoS2 and EELS characterization at the MoS2/sapphire interface.
a, AFM image of monolayer MoS2 at the initial growth stage on sapphire annealed at 1,000â€‰Â°C. Scale bar, 1â€‰Î¼m. b, c, Atomic-resolved HAADF-STEM image of the cross section of monolayer MoS2 at the bistep nucleation point (b) and on the sapphire surface (c). Scale bars, 1â€‰nm in b, 2â€‰nm in c. d, Optical image of uniform continuous film on sapphire. Scale bar, 10â€‰Î¼m. e, f, AFM height and phase images showing the nucleation of bilayer MoS2 along the high steps. Scale bars, 500â€‰nm. g, h, Annular dark-field images and EELS characterization of the bilayer MoS2/sapphire cross section, suggesting a S-passivation layer at the MoS2/sapphire interface.


Extended Data Fig. 4 Optical microscope images show the uniform growth of bilayer MoS2 domains on the substrate with high steps.
All domains with recognized orientation exhibit unidirectional alignment. The images aâ€“c are from different samples. The substrate was annealed at 1,350â€‰Â°C for 4â€‰h. Scale bars, 10â€‰Î¼m.


Extended Data Fig. 5 Uniformity of continuous bilayer MoS2 film.
a, Optical microscope images from the same sample in different areas shows excellent uniformity in thickness and continuity of bilayer film. bâ€“d, Raman mapping of the peak difference Î”(A1g-E12g) (b), E12g intensity (c) and A1g intensity (d). e, f, Distribution statistics of peak position and full width at half maximum of E12g (e) and A1g (f). Scale bar, 10â€‰Î¼m in aâ€“d. h, STEM-HAADF characterization of the coalescence region near the steps. Scale bars, 5â€‰nm. i, Scanning electron microscopy images showing the uniformity of the fully covered bilayer MoS2 films.


Extended Data Fig. 6 The epitaxial relationship between bilayer MoS2 and sapphire.
a, Cross-sectional HAADF-STEM image viewed in the sapphire <\(11\bar{2}0\)> direction. Scale bar, 1â€‰nm. The measured lattice constant ratio between MoS2 and sapphire is 0.158â€‰nm/0.412â€‰nmâ€‰=â€‰0.38, which closely matches the R30Â° epitaxy relationship viewed along the sapphire <\(11\bar{2}0\)> direction. b, RHEED pattern obtained along the sapphire <\(11\bar{2}0\)> direction. The spots and the stripes, as marked in orange and white lines, respectively, stand for signals from MoS2 and sapphire. The RHEED intensity spectrum is overlapped on the top of the diffraction pattern. c, Schematic of the epitaxial relationship of bilayer MoS2 on sapphire (0001) viewed along the sapphire <\(11\bar{2}0\)> direction.


Extended Data Fig. 7 DFT calculations on the stacking order of bilayer MoS2 and the epitaxial relationship between bilayer MoS2 and c-plane sapphire.
a, The formation energy of 3R bilayer MoS2 on c-plane sapphire as a function of the angle between the <\(11\bar{2}0\)> orientations of MoS2 and sapphire, in which the R30Â° epitaxial configuration is the most energetically preferred. b, c, The atomic illustrations of the R0Â° and R30Â° epitaxial configurations of 3R bilayer MoS2 on c-plane sapphire. d, The formation energy of bilayer MoS2 as a function of the twist angle, which is defined as the angle between the <\(11\bar{2}0\)> orientations of the two individual layers. The 3R (0Â°) and 2H (60Â°) stacking orders are the two energetically degenerate and most stable configurations of bilayer MoS2. e, f, The atomic illustrations of the 3R and 2H stacking orders of bilayer MoS2. g, The epitaxial relationship between bilayer MoS2/sapphire with S-passivation, in which the R30Â° configuration is still the most energetically preferred. h, Free energy of monolayer versus bilayer MoS2 growth on S-passivated c-plane sapphire. A similar dependence on step height as without S-passivation was observed.


Extended Data Fig. 8 Spectral, structural and electrical characterization of grain boundary between 2H and 3R domains.
a, b, Optical microscope and SHG mapping showing the coalescence of the 3R and 2H domains. c, d, Atomic-resolved HAADF-STEM characterization of GBs between the 2H and 3R domains. The left 3R bilayer domain and the right 2H bilayer domain merge with shared atoms, and the boundaries exist in the form of four-membered rings. Scale bars, 5â€‰nm in c, 1â€‰nm in d. e, f, Electrical characteristics of FETs across a GB. e, Optical image and SHG mapping of a typical device. D1 and D3 are 2H and 3R phases, and D2 is across the GB. f, Transfer characteristics of the three devices. The mobilities of D1, D2 and D3 are 93, 74 and 102â€‰cm2â€‰Vâˆ’1â€‰sâˆ’1, respectively.


Extended Data Fig. 9 Electronic performance of bilayer MoS2 FETs.
a, Typical Idsâ€“Vgs curves of a bilayer MoS2 FET at various temperatures from 45â€‰K to 300â€‰K. Vdsâ€‰=â€‰0.5â€‰V. Inset, the intrinsic field-effect mobility of the bilayer MoS2 FET as a function of temperature. b, Arrhenius plot at different Vgs of the same device as in a. c, Vgs dependence of the Schottky barrier height for a bilayer MoS2 FET with Bi/Au contact, showing a negligible contact barrier. Inset shows the linear output curves of the bilayer MoS2 FET at a low temperature of 45â€‰K, exhibiting the ideal ohmic contact behaviour between bilayer MoS2 and Bi/Au electrodes. d, Transfer characteristics of Bi-contacted bilayer MoS2 FETs with various Lch at Vdsâ€‰=â€‰0.1â€‰V for the TLM study. e, Plots of total device resistance Rtot versus Lch for the bilayer MoS2 FETs at Vgsâ€‰=â€‰10â€‰V, from which the total contact resistance (2Rc) can be extracted from the y-axis intercepts. Black symbols are experimental data and the red line is linear fits in i. f, Output characteristics of a 40-nm-channel-length bilayer MoS2 FET. From bottom to up, Vgsâ€‰=â€‰âˆ’15 to 19â€‰V with a step of 4â€‰V. Inset shows the scanning electron microscopy image of the device. Scale bar, 200â€‰nm. gâ€“i, High-performance bilayer MoS2 top-gate transistor on sapphire. g, Cross-sectional schematic of a self-aligned top-gate bilayer MoS2 FET. h, Transfer characteristics of a top-gate bilayer MoS2 FET with a short gate length of 80â€‰nm at Vdsâ€‰=â€‰10, 50 and 100â€‰mV, respectively. Inset is the scanning electron microscopy image of the device. Scale bar, 1â€‰Î¼m. i, Output characteristics of the same top-gate bilayer MoS2 FET with a short Lg of 80â€‰nm at Vtg from âˆ’2â€‰V to 5â€‰V with a step of 0.5â€‰V. The maximum Ion reaches 760â€‰Î¼Aâ€‰Î¼mâˆ’1 at Vtgâ€‰=â€‰5â€‰V and Vdsâ€‰=â€‰2â€‰V.


Extended Data Fig. 10 Uniform growth of bilayer WS2.
a, b, Optical microscopy images of the as-grown bilayer WS2 domains on sapphire substrate. Scale bars, 15â€‰Î¼m. c, d, PL and Raman spectra of bilayer WS2, respectively. e, AFM image of the bilayer WS2 domains. The height of 1.26â€‰nm was shown, corresponding to the thickness of bilayer WS2. f, g, Optical microscope and SHG mapping at the same zone shows the existence of 2H and 3R stacking. The domains marked by the dashed line are of the 2H configuration, which shows extinction of SHG. Scale bars, 5â€‰Î¼m. h, SHG spectra of the 2H and 3R stacking domains.
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