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Therates and patterns of somatic mutation in normal tissues are largely unknown
outside of humans'”. Comparative analyses can shed light on the diversity of
mutagenesis across species, and on long-standing hypotheses about the evolution of
somatic mutation rates and their role in cancer and ageing. Here we performed
whole-genome sequencing of 208 intestinal crypts from 56 individuals to study the
landscape of somatic mutation across 16 mammalian species. We found that somatic
mutagenesis was dominated by seemingly endogenous mutational processesin all
species, including 5-methylcytosine deamination and oxidative damage. With some
differences, mutational signatures in other species resembled those described in
humans?, although the relative contribution of each signature varied across species.
Notably, the somatic mutation rate per year varied greatly across species and
exhibited a strong inverse relationship with species lifespan, with no other life-history
trait studied showing a comparable association. Despite widely different life histories

amongthe species we examined—including variation of around 30-fold in lifespan
and around 40,000-fold in body mass—the somatic mutation burden at the end of
lifespan varied only by a factor of around 3. These data unveil common mutational
processes across mammals, and suggest that somatic mutation rates are
evolutionarily constrained and may be a contributing factor in ageing.

Somatic mutations accumulate in healthy cells throughout life. They
underpin the development of cancer® and, for decades, have been
speculated to contribute to ageing'® ™. Directly studying somatic muta-
tionsin normal tissues has been challenging owing to the difficulty of
detecting mutations presentin single cells or small clonesin a tissue.
Onlyrecent technological developments, such as in vitro expansion of
single cells into colonies™, microdissection of histological units®',
single-cell sequencing'®” or single-molecule sequencing'®, are begin-
ning to enable the study of somatic mutationin normal tissues.

Over the last few years, studies in humans have started to provide
adetailed understanding of somatic mutation rates and the contri-
bution of endogenous and exogenous mutational processes across
normal tissues®>*1%2° These studies are also revealing how, as we

age, some human tissues are colonized by mutant cells that contain
cancer-driving mutations, and how this clonal composition changes
withage and disease. With the exception of some initial studies, far less
is known about somatic mutation in other species'”. Yet, comparative
analyses of somatic mutagenesis would shed light on the diversity of
mutagenic processes across species, and on long-standing questions
regarding the evolution of somatic mutation rates and their role in
cancer and ageing.

A decades-long hypothesis on the evolution of somatic mutation
rates pertains to the relationship between body mass and cancer risk.
Some models predict that the risk of cancer should increase propor-
tionally to the number of cells at risk of transformation. However, there
appearstobeno correlation between body mass and cancer risk across
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species®?. This observation, known as Peto’s paradox, suggests that
the evolution of larger body sizes is likely to require the evolution of
stronger cancer suppression mechanisms??*. Whether evolutionary
reductionof cancer risk across species is partly achieved by areduction
of somatic mutation rates remains unknown.

Asecond long-standing hypothesis on the evolution of somatic muta-
tionratesrelatesto the proposed role of somatic mutationsin ageing.
Multiple forms of molecular damage, including somatic mutations,
telomere attrition, epigenetic drift and loss of proteostasis, have been
proposed to contribute to ageing, but their causal roles and relative con-
tributions remain debated®?. Evolutionary theory predicts that species
will evolve protection or repair mechanisms against life-threatening
damage to minimize death from intrinsic causes, but that selection is
too weak to delay ageing far beyond the typical life expectancy of an
organism in the wild (Supplementary Note 1). If somatic mutations
contribute to ageing, theory predicts that somatic mutation rates may
inversely correlate with lifespan across species”?, This prediction has
remained largely untested owing to the difficulty of measuring somatic
mutation rates across species.

Detection of somatic mutations across species

The study of somatic mutations with standard whole-genome sequenc-
ing requires isolating clonal groups of cells recently derived from a
single cell®?™*, To study somatic mutations across a diverse set of
mammals, we isolated 208 individual intestinal crypts from 56 indi-
viduals across16 species withawide range of lifespans and body sizes:
black-and-white colobus monkey, cat, cow, dog, ferret, giraffe, har-
bour porpoise, horse, human, lion, mouse, naked mole-rat, rabbit, rat,
ring-tailed lemur and tiger (Supplementary Table1). We chose intestinal
cryptsfor several reasons. First, they are histologically identifiable units
thatline the epithelium of the colon and smallintestine and are amena-
ble to laser microdissection. Second, human studies have confirmed
thatindividual crypts become clonally derived from asingle stem cell
and show alinear accumulation of mutations with age, which enables
the estimation of somatic mutation rates through genome sequencing
of single crypts®. Third, in most human crypts, most somatic mutations
are caused by endogenous mutational processes common to other
tissues, rather than by environmental mutagens®'®,

A colonsample was collected from each individual, with the excep-
tion of aferret fromwhich only asmallintestine sample was available.
This sample was included because results in humans have shown that
the mutationrates of colorectal and smallintestine epithelial stem cells
aresimilar'*?° (Extended DataFig.1). We then used laser microdissection
onhistological sections toisolate individual crypts for whole-genome
sequencing with a low-input library preparation method® (Fig. 1a,
Extended Data Fig. 2, Supplementary Table 2), with the exception of
human crypts, for which sequencing data were obtained from a pre-
vious study®. A bioinformatic pipeline was developed to call somatic
mutations robustly in all these species despite the variable quality of
their genome assemblies (Methods). The distribution of variant allele
fractions of the mutations detected ineach crypt confirmed that crypts
are clonal units in all species, enabling the study of somatic mutation
rates and signatures (Extended Data Fig. 3).

We found substantial variation in the number of somatic single-base
substitutions across species and across individuals within each species
(Fig.1b).For five species with samples from multiple individuals (dog,
human, mouse, naked mole-rat and rat), linear regression confirmed
aclearaccumulation of somatic mutations with age (Fig. 1c, Extended
DataFig. 4, Supplementary Table 3). Alllinear regressions were also con-
sistent with a non-significant intercept. This resembles observations
in humans® and suggests that the time required for a single stem cell
to drift to fixation within a cryptis a small fraction of the lifespan of a
species. This facilitates the estimation of somatic mutation rates across
species by dividing the number of mutationsina crypt by the age of the
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individual (Supplementary Table 4). The number of somaticinsertions
and deletions (indels) was consistently lower than that of substitutions
inall crypts (Fig. 1b), in agreement with previous findings in humans®.

Mutational signatures across mammals

Somatic mutations can be caused by multiple mutational processes, involv-
ing different forms of DNA damage and repair. Different processes cause
characteristic frequencies of base substitution types andindels at different
sequence contexts, oftenreferred to as mutational signatures, which can
beinferred from mutation data®’. Across species, the mutational spectra
showed clear similarities, withadominance of cytosine-to-thymine (C>T)
substitutions at CpG sites, as observed in human colon, but with consid-
erable variation in the frequency of other substitution types (Fig. 2a).
To quantify the contribution of different mutational processes to the
observed spectra, we applied mutational signature decomposition®3°.
We used a Bayesian model to infer mutational signatures de novo, while
accounting for differences in genome sequence composition across
species, and using the COSMIC human signature SBS1 (C>T substitu-
tionsat CpGsites) as afixed prior to ensure its complete deconvolution®
(Methods). Thisapproachidentified two signatures beyond SBS1, labelled
SBSB and SBSC, which resemble COSMIC human signatures SBS5 and
SBSI8, respectively (cosine similarities 0.93 and 0.91) (Fig. 2b).

This analysis suggests that the same three signatures that dominate
somatic mutagenesisin the human colon are dominantin other mam-
mals: SBS1, whichis believed to result fromthe spontaneous deamina-
tion of 5-methylcytosine®*%; SBSB (SBS5), acommon signature across
human tissues that may result from endogenous damage and repair’®*;
and SBSC (SBS18), whichis dominated by C>A substitutions and attrib-
uted to oxidative DNA damage®. Signature SBSC contains a minor
component of T>A substitutions (resembling COSMIC SBS34), which
appear to bethe result of DNA polymerase slippage at the boundaries
betweenadjacent adenine and thymine homopolymer tracts, but could
also reflect assembly errors at those sites®. Although all of the spe-
cies that we examined shared the three mutational signatures, their
contributions varied substantially across species (Fig. 2c). SBSC was
particularly prominent in mouse and ferret, and the ratio of SBS1 to
SBSB/5 varied from approximately 1.2 in rat or rabbit to 6.4 in tiger.
Inseveral species with data from multiple individuals, separate linear
regressions for each signature confirmed that mutations fromall three
signatures accumulate with age (Fig. 2d, Extended Data Fig. 5).

Although signature deconvolution identified three signatures that
are active across species, we noticed some differences in the muta-
tional profile of signature SBSB among species. To investigate this
further, weinferred independent versions of SBSB from each species,
while accounting for differences in genome sequence composition
(Methods). This revealed inter-species variability in the mutational
profile of this signature, particularly in the C>T component (Extended
Data Fig. 6). Species-specific versions of SBSB showed different simi-
larities to the related human signatures SBS5 and SBS40. For example,
SBSB inferred from the human data showed a stronger similarity with
the reference human signature SBS5 (cosine similarities with SBS5
and SBS40: 0.93 and 0.84), whereas SBSB from rabbit more closely
resembled the reference human signature SBS40 (0.87 and 0.91). These
observations are consistent with the hypothesis that SBS5 and SBS40
result from a combination of correlated mutational processes, with
some variation across human tissues'®* and across species.

Analysis of the indel mutational spectra revealed a dominance of
the human indel signatures ID1 and ID2, which are characterized by
single-nucleotide indels at A/T homopolymers, and probably caused
by strand slippage during DNA replication®® (Extended Data Fig. 7a).
The ratio of insertions (ID1) to deletions (ID2) appears to vary across
species, possibly reflecting a differential propensity for slippage of the
template and nascent DNA strands®. Inaddition, the indel spectrasug-
gest a potential contribution of signature ID9 (the aetiology of which



Rat

a Horse Lion Naked mole-rat
0 ki \" I" N“ - 4 N I ‘l‘l~‘ ’ ) ‘AA
aa et 7~ i et e ;
: : : ,' ‘v N\ ‘; :l &
S \ f S [ W e NG ] S s s e
: i * LSS
b ) e S 30 85
VB3 si- b\
ALY it : I‘-:;f
8.0 = -
b » Substitutions  # Indels
o 4,000
IS
<) -
)
8, 3,000
[0}
o
@ 2,000
K]
=
=] 4
) - mJ ﬂm [ H { H
3 R 3 o PGP K N R P P & & NN
s Q\epo & Q° L@ & O po © 6\8& o QO e
<« \Q‘\‘Q '\\Q
S O S X
@ S i«
O 8 s
oF
2\
¢ Dog Mouse Naked mole-rat
3,000 4,000 2,000- 0 800, P
0
0 «» 3,000 o 1,500 » 6004
£ 2,000 £ 5 o/ 0o &
8 o § 2,000 § 1,000 ° ° g 400
3 1,000 § 3 3 3
' 1,000 5001 200
0 0 0 0
0 2 4 6 8 1012 14 0 20 40 60 80 0 05 1.0 15 20
Age (years) Age (years) Age (years) Age (years)

Fig.1|Somatic mutation burdenin mammalian colorectal crypts.a,
Histology images of colon samples from horse, lion, naked mole-ratandrat,
with onecolorectal crypt markedineach. Scalebars, 250 um. b, Burden of
somatic substitutions and indels per diploid genomein each colorectal crypt
sample (corrected for the size of the analysable genome). Samples are grouped
by individual, with samples from the same individual coloured in the same
shade.Species, and individuals within each species, are sorted by mean

remains unknown) to human, colobus, cow, giraffe and rabbit. Analysis
of indels longer than one base pair also suggested the presence of a
signature of four-base-pair insertions at tetrameric repeats, which was
particularly prevalentin mouse and tiger; a pattern of insertions of five
or more base pairs at repeats in colobus; and a pattern of deletions of
five or more base pairs at repeats, which was prominent in rabbit and
resembles ID8 (a signature possibly caused by double-strand break
repair through non-homologous end joining>’) (Extended Data Fig. 7a).

Other mutational processes and selection

The apparent lack of additional mutational signatures is noteworthy.
Aprevious study of 445 colorectal crypts from 42 human donors found
that many crypts were affected by a signature that was later attrib-
uted to colibactin, a genotoxin produced by pks® strains of Escheri-
chia coli®***, Analysing the original human data and our non-human
data with the same methodology, we found evidence of colibactin

mutation burden.c, Linear regression of somatic substitutionburden
(corrected for analysable genome size) on individual age for dog, human,
mouse and naked mole-rat samples. Samples from the sameindividual are
shownin the same colour. Regression was performed using mean mutation
burdens perindividual. Shaded areasindicate 95% confidence intervals of the

regression line.

mutagenesis in 21% of human crypts, but only uncertain evidence
of colibactin in one non-human crypt (0.6%) (Extended Data Fig. 7b,
Methods). This revealed asignificant depletion of colibactin mutagen-
esisinthe non-human crypts studied (Fisher’s exact test, P=7 x 1074),
The apparent differencein colibactin mutagenesis observed between
species, or between the cohorts studied, might result from a different
prevalence of pks* E. coli strains* or a different expression of colibactin
by pks*E. coli across species™. Finally, we also searched for evidence of
APOBEC signatures (SBS2 and SBS13), which have been reportedin a
smallnumber of human crypts and are believed to be caused by APOBEC
DNA-editing cytidine deaminases. We detected APOBEC signatures in
2% (n=9) of human crypts and found only uncertain evidence in one
non-human crypt (P=0.30).

Beyond substitutions and indels, crypts from the eight species with
chromosome-level genome assemblies were inspected for large-scale
copy number changes (at least 1 Mb) (Methods). Studies in humans
have found that large-scale copy number changes are relatively rarein
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Fig.2|Mutational processes in the mammalian colon. a, Mutational spectra
of somatic substitutionsin each species. The xaxis shows 96 mutation typeson
atrinucleotide context, coloured by base substitution type. b, Mutational
signatures inferred from (SBSB, SBSC) or fitted to (SBS1) the species
mutational spectrashownina, and normalized to the humangenome
trinucleotide frequencies. The y axis shows mutation probability. ¢, Estimated

normal tissues, including colorectal epithelium?®. Consistent with these
results, we only identified 4 large copy number changes across the 162
cryptsincludedinthis analysis: 2 megabase-scale deletionsin 2 crypts
from the same cow; the loss of an X chromosome in a female mouse
crypt; and a 52-Mb segment with copy-neutral loss of heterozygosity
ina human crypt (Extended Data Fig. 8, Methods). These results sug-
gest that large-scale somatic copy number changes in normal tissues
are also rare in other mammalian species.
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contribution of each signature to each sample. Samples are arranged
horizontally asinFig.1b.d, Linear regression of signature-specific mutation
burdens (corrected for analysable genome size) onindividual age for human,
mouse and naked mole-rat samples. Regression was performed using mean
mutation burdens perindividual. Shaded areas indicate 95% confidence
intervals of theregressionline.

Previous analyses in humans have shown that most somatic muta-
tions in colorectal crypts accumulate neutrally, without clear evidence
of negative selection against non-synonymous mutations and with a
low frequency of positively selected cancer-driver mutations®, To study
somatic selection in our data, we calculated the exome-wide ratio of
non-synonymous to synonymous substitution rates (AN/dS) ineach of the
12 species with available genome annotation. Todosoand to detect genes
under positive selection, while accounting for the effects of trinucleotide
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indicated (note that, for simple linear regression, FVE = R?). The dashed line
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mutationrate oninverse lifespan (1/lifespan), presented on the scale of
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free-intercept LME models using1/lifespan or other life-history variables
(alone or combined with1/lifespan) as explanatory variables. Error bars
indicate 95% bootstrap intervals (n=10,000).
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Table 1] Variation in adult body mass, lifespan, somatic
mutation rate and end-of-lifespan mutation burden across
the 16 mammalian species surveyed

Variable Minimum Maximum Fold variation
Adultmass(g) 20.50 800,000.00 39,024.39
Lifespan (years) 275 83.67 30.44
Mutation rate per year 4712 796.42 16.90
(substitutions per genome)

End-of-lifespan burden 1,828.08 5,378.73 2.94

(substitutions per genome)

Species-level estimates are provided in Supplementary Tables 3 and 6.

sequence context and mutation rate variation across genes, we used
the dNdScv model*® (Methods). Although the limited number of coding
somatic mutations observedin most species precluded anin-depthanaly-
sisof selection, exome-wide dN/dS ratios for somatic substitutions were
notsignificantly different from unity in any species, in line with previous
findings in humans® (Extended Data Fig. 9). Gene-level analysis did not
find genes under significant positive selection in any species, although
larger studies are likely to identify rare cancer-driver mutations®.

Correlation with life-history traits

Whereas similar mutational processes operate across the species sur-
veyed, the mutation rate per genome per year varied widely. Across
the 15 species with age information, we found that substitution rates
per genome ranged from 47 substitutions per year in humans to 796
substitutions per yearin mice, and indel rates from2.5to158 indels per
year, respectively (Fig. 3a, Supplementary Table 4, Methods).

To investigate the relationship between somatic mutation rates,
lifespan and other life-history traits, we first estimated the lifespan
of each species using survival curves. We used a large collection of
mortality data from animals in zoos to minimize the effect of extrin-
sic mortality (Extended Data Fig.10). We defined lifespan as the age
atwhich 80% of individuals reaching adulthood have died, toreduce
the effects of outliers and variable cohort sizes that affect maximum
lifespan estimates® (Methods). Notably, we found a tight anticor-
relation between somatic mutation rates per year and lifespan across
species (Fig. 3b). Alog-log allometric regression yielded a strong
linear anticorrelation between mutation rate per year and lifespan
(fraction of inter-species variance explained (FVE) = 0.85,P=1x107°),
withaslope close to and not significantly different from -1. This sup-
ports asimple model in which somatic mutation rates per year are
inversely proportional to the lifespan of a species (rate « 1/lifespan),
suchthat the number of somatic mutations per cell at the end of the
lifespan (the end-of-lifespan burden; ELB) is similar in all species.

To further study the relationship between somatic mutation rates
and life-history variables, we used linear mixed-effects (LME) regres-
sion models. These models account for the hierarchical structure of
the data (with multiple crypts per individual and multiple individuals
per species), as well as the heteroscedasticity of somatic mutation rate
estimates across species (Methods). Using these models, we estimated
thattheinverse of lifespan explained 82% of the inter-species variance
in somatic substitution rates (rate = k/lifespan) (P=2.9 x 10"%; Fig. 3c),
with the slope of this regression (k) representing the mean estimated
ELB across species (3,206.4 substitutions per genome per crypt, 95%
confidence interval 2,683.9-3,728.9). Of note, despite uncertainty
in the estimates of both somatic mutation rates and lifespans, and
despite the diverse life histories of the species surveyed—including
around 30-fold variationinlifespanand around 40,000-fold variationin
body mass—the estimated mutation load per cell at the end of lifespan
varied by only around threefold across species (Table 1). Analogous
results were obtained when repeating the analysis with estimates of
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the protein-coding mutation rate, which may be abetter proxy for the
functional effect of somatic mutations (85% of variance explained; ELB:
31 coding substitutions per crypt) (Extended Data Fig. 11, Methods).

We next examined the association between somatic mutation rates
and adultbody mass, whichis known tobe acommon confounderincor-
relations thatinvolve lifespan*®*!, An anticorrelation between somatic
mutation rates and body mass may be expected if the modulation of
cancer risk across species of vastly different sizes has been a major
factor in the evolution of somatic mutation rates. We observed that
log-transformed adult body mass was less strongly associated with
somaticsubstitutionrates thantheinverse of lifespan (allometric regres-
sion FVE =0.21, Fig. 3d; LME regression FVE = 0.44, Fig. 3e). Given that
lifespanis correlated with body mass, we performed two tests to assess
whether body mass explained any variation in somatic mutation rates
that was not explained by lifespan. First, including both the inverse of
lifespan and log-transformed adult body massin the regression model
suggested that body mass does not explain a significant amount of
variance in somatic mutation rates across species after accounting for
the effect of lifespan (likelihood ratio tests: P= 0.16 for body mass on
amodel with lifespan; P <10™*for lifespan on a model with body mass;
Fig. 3f, Methods). Second, partial correlation analyses using allometric
regressions further confirmed that the association between somatic
mutation rates and lifespan is unlikely to be mediated by the effect of
body mass onbothvariables (lifespanresiduals: P=3.2x 10, FVE=0.82,
Fig. 3b; body mass residuals: P=0.39, FVE = 0.06, Fig. 3d; Methods).

The fact that the variation in somatic mutation rates across species
appearsto be dominated by lifespan rather than body size is also appar-
entwhenlooking at particularly informative species. Giraffe and naked
mole-rat, forinstance, have similar somatic mutation rates (99 and 93
substitutions per year, respectively), in line with their similar lifespans
(80th percentiles: 24 and 25 years, respectively), despite a difference
of around 23,000-fold in adult body mass (Fig. 3¢, e). Similarly, cows,
giraffes and horses weigh much more thananaverage human, and yet
have somatic mutation rates that are several fold higher, in line with
expectation from their lifespan but not their body mass. Altogether, the
weak correlation between body mass and somatic mutation rates after
correction for lifespan suggests that the evolution of larger body sizes
may have relied on alternative or additional strategies to limit cancer
risk, as has been speculated**? (Supplementary Note 2). Of note, the
low somatic mutation rate of naked mole-rats, which is unusual for their
body massbutinline with their longlifespan (Fig. 3c, e), might contrib-
ute to the exceptionally low incidence rates of cancer in this species®.

We found similar results for other life-history variables that have been
proposed to correlate with lifespan, namely basal metabolic rate (BMR)
and litter size** (Fig. 3f). With the caveat that estimates for these variables
varyinquality, they showed weaker correlations with the somatic mutation
rate as single predictors, and small non-significant increases in explana-
tory power when considered together withlifespan (likelihood ratio tests:
P=0.92for litter size; P=0.083 for log-BMR; P=0.79 for allometric BMR
residuals; Fig. 3f, Methods). We note that the results above are robust to
the use of alternative measures of the somatic mutation rate, including
therate per exome or mutations per Mb (Extended Data Fig. 11, Methods);
alternative estimates of lifespan, including maximum lifespan (Extended
DataFig.12, Methods); alternative regression models, including a Bayesian
hierarchical model and a phylogenetic generalised least-squares regres-
sion, whichaccounts for the effect of phylogeneticrelationships (Extended
DataFig.13a, b, Methods); and bootstrapping analyses at the level of indi-
viduals or species (Extended Data Fig.13c, Methods).

Mutational processes and lifespan

Toinvestigate whether asingle biological process could drive the asso-
ciation between somatic mutation rates and lifespan, we analysed each
mutational signature separately. SBS1, SBSB/5and SBSC/18 are believed
to result from different forms of DNA damage and are expected to be
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subject to different DNA repair pathways'®*. They also appear to differ
in their association with the rate of cell division in humans, with SBS1
being more common in fast-proliferating tissues, such as colon and
embryonicor foetal tissues, and SBS5 dominating in post-mitotic cells
in the absence of cell division***#%°, Qverall, we found clear anticor-
relations between mutation rates per year and lifespan for the three
substitution signatures and for indels, suggesting that a single biologi-
cal process or DNA repair pathway is unlikely to be responsible for this
association (Fig.4). The total mutation burden also appears toshowa
closer fit with lifespan than individual mutational processes, as meas-
ured by the range of end-of-lifespan burden for each process across
species (Fig.4). Thismight be expected if the observed anticorrelation
were the result of evolutionary pressure on somatic mutation rates.
DNA damage and somatic mutations in the mitochondrial genome
have also attracted considerable interest in the ageing field*. Our
whole-genome sequencing of individual crypts provided high coverage
of the mitochondrial genome, ranging from 2,188- to 29,691-fold. Nor-
malized against the nuclear coverage, these data suggest that colorectal
cryptscontainonthe order of around 100-2,000 mitochondrial genomes
per cell (Extended Data Fig.14a). Using a mutation-calling algorithm that
issensitive to low-frequency variants, we found a total of 261 mitochon-
drial mutations across 199 crypts (Extended Data Fig.14a, Methods). The
mutational spectraacross species appeared broadly consistent with that
observed in humans, with a dominance of C>T and A>G substitutions

thatarebelieved to result from mitochondrial DNA (mtDNA) replication
errorsrather than DNA damage*® (Extended Data Fig. 14b). Although the
low number of mitochondrial mutations detected per species precludes
adetailed analysis, the estimated number of somatic mutations per copy
of mtDNA also appears to show an anticorrelation with lifespan. Across
species, we obtained an average of 0.23 detectable mutations per copy
ofthe mitochondrial genome by the end of lifespan (Fig. 4, Methods)—a
considerable burden given the coding-sequence density and the func-
tional relevance of the mitochondrial genome.

Discussion

Using whole-genome sequencing of 208 colorectal crypts from 56
individuals, we provide insights into the somatic mutational landscape
of 16 mammalian species. Despite their different diets and life histo-
ries, we found considerable similarities in their mutational spectra.
Three main mutational signatures explain the spectra across species,
albeit with varying contributions and subtle variations in the profile
of signature SBSB. These results suggest that, at leastin the colorectal
epithelium, a conserved set of mutational processes dominate somatic
mutagenesis across mammals.

The most notable finding of this study is the inverse scaling of somatic
mutationrates with lifespan—along-standing prediction of the somatic
mutation theory of ageing™?. Considering evolutionary and mechanis-
ticmodels of ageing together provides aframework for discussing the
possible implications of these results for ageing (see Supplementary
Note1).Jointly, these models predict ageing to be multifactorial, with
multiple forms of molecular and cellular damage contributing to organ-
ismal ageing owing to evolutionary limits toselection actingon therates
ofthese processes. The inverse scaling of somatic mutation rates and
lifespan is consistent with somatic mutations contributing to ageing
and with somatic mutation rates being evolutionarily constrained,
although we discuss alternative explanations below. This interpreta-
tionis also supported by studies reporting more efficient DNA repair
in longer-lived species***%, Somatic mutations could contribute to
ageing in different ways. Traditionally, they have been proposed to
contribute to ageing through deleterious effects on cellular fitness™*°,
but recent findings question this assumption (Supplementary Note 1).
Instead, the discovery of widespread clonal expansionsin ageing human
tissues**° 2 raises the possibility that some somatic mutations con-
tribute to ageing by driving clonal expansions of functionally altered
cellsat a cost to the organism******, Examples include the possible links
between clonal haematopoiesis and cardiovascular disease™; between
mutationsin liver disease and insulin resistance®; and between driver
mutations in cavernomas and brain haemorrhages****. Detailed stud-
ies onthe extent and effect of somatic mutations and clonal expansions
on age-related diseases and ageing phenotypes may help to clarify
the precise role—if any—of somatic mutations in ageing. Evenif clear
causal links between somatic mutations and ageing are established,
ageing s likely to be multifactorial. Other forms of molecular damage
involvedinageing could be expected to show similar anticorrelations
with lifespan and, indeed, such anticorrelations have been reported
for telomere shortening and protein turnover>®,

Alternative non-causal explanations for the observed anticorrelation
between somatic mutation rates and lifespan need to be considered.
One alternative explanation is that cell division rates could scale with
lifespan and explain the observed somatic mutation rates. Available
estimates of cell division rates, although imperfect and limited to afew
species, do not readily support thisargument (Methods). More impor-
tantly, studies in humans have shown that cell division rates are not a
major determinant of somatic mutation rates across human tissues'*'8,
Another alternative explanation for the observed anticorrelation might
be thatselection acts toreduce germline mutation ratesin species with
longer reproductive spans, which in turn causes an anticorrelation of
somatic mutation rates and lifespan. Although selective pressure on
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germline mutation rates could influence somatic mutation rates, it is
unlikely that germline mutation rates tightly determine somatic muta-
tion rates: somatic mutation rates in humans are 10-20 times higher
than germline mutation rates, show variability across cell types and
are influenced by additional mutational processes'®?. Overall, the
strong scaling of somatic mutation rates with lifespan across mammals,
despite the different rates between germline and somaand the variable
contributions of different mutational processes across species, sug-
geststhat somatic mutation rates themselves have been evolutionarily
constrained, possibly through selection on multiple DNA repair path-
ways. Alternative explanations need to be able to explain the strength
of the scaling despite these differences.

Altogether, this study provides a detailed description of somatic
mutation across mammals, identifying common and variable features
andsheddinglight onlong-standing hypotheses. Scaled across the tree
of life and across tissues, in species with markedly different physiolo-
gies, life histories, genome compositions and mutagenic exposures,
similar studies promise to transform our understanding of somatic
mutation and its effects on evolution, ageing and disease.
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Methods

Datareporting

No statistical methods were used to predetermine sample size.
The experiments were not randomized and the investigators were not
blinded to allocation during experiments and outcome assessment.

Ethics statement

Allanimal samples were obtained with the approval of the local ethical
review committee (AWERB) at the Wellcome Sanger Institute and those
at the holding institutions.

Sample collection

We obtained colorectal epithelium and skin samples from a range of
sources (Supplementary Table1). For comparability across species an
approximately 1-cm biopsy of the colorectal epithelium was taken from
the terminal colon during necropsy. All necropsies occurred assoon as
possible post-mortem to minimize tissue and DNA degradation. Tissue
samples taken later than 24 h post-mortem typically showed extensive
degradation of the colorectal epithelium, making the identification of
colorectal crypts challenging. These samples were also associated with
poor DNAYyields and so were notincludedin the study. Sampled tissue
was fixed in PAXgene FIX (PreAnalytiX, Switzerland), acommercially
availablefixative, during the necropsy. After 24 hin the fixative at room
temperature, samples were transferred into the PAXgene STABILIZER
and stored at -20 °C until further processing.

Sample processing

Samples were processed using a workflow designed for detection of
somatic mutations in solid tissues by laser-capture microdissection
(LCM) using low-input DNA sequencing. For a more detailed descrip-
tion see the paraffin workflow described in another study?. In brief,
PAXgene-fixed tissue samples of the colorectal epithelium were
paraffin-embedded using a Sakura Tissue-Tek VIP tissue processor. Sec-
tions of 16 pm were cut using amicrotome, mounted on PEN-membrane
slides and stained with Gill's haematoxylin and eosin by sequential
immersioninthe following: xylene (two minutes, twice), ethanol (100%,
1min, twice), deionized water (1 min, once), Gill’'s haematoxylin (10 s,
once), tap water (20 s, twice), eosin (5 s, once), tap water (20 s, once),
ethanol (70%, 20 s, twice) and xylene or Neo-Clear, a xylene substitute
(20 s, twice).

High-resolution scans were obtained from representative sections
of each species. Example images are shown in Fig. 1a, Extended Data
Fig.2.Individual colorectal crypts wereisolated from sections on poly-
ethylene naphthalate (PEN) membrane slides by LCM witha LeicaLMD7
microscope. Haematoxylin and eosin histology images were reviewed
by aveterinary pathologist. For some samples we also cut asection of
muscle tissue from below the colorectal epithelium of the section to
use as a germline control for variant calling (Supplementary Table 2).
Pre- and post-microdissection images of the tissue were recorded for
each crypt and muscle sample taken. Each microdissection was col-
lected in a separate well of a 96-well plate.

Crypts were lysed using the Arcturus PicoPure Kit (Applied Biosys-
tems) as previously described®”. Each crypt then underwent DNA
library preparation, without a quantification step to avoid loss of
DNA, following a protocol described previouslyl®. For some animals,
aPAXgene fixed bulk skin biopsy was used as the germline control.
For these skin samples, DNA was extracted using the DNeasy Blood &
Tissue Kit (Qiagen).

Library preparation and sequencing

Libraries frommicrodissected samples were prepared using enzymatic
fragmentation, adapter ligation and whole-genome sequencing follow-
ingamethod described previously?. Libraries from skin samples were
prepared using standard lllumina whole-genome library preparation.

Samples were multiplexed and sequenced using lllumina XTEN and
Novaseq 6000 machines to generate 150 base pair (bp) paired-end
reads. Samples were sequenced to around 30x depth (Supplementary
Table2).

Sequence read alignment

For each species, sequences were aligned to a reference assembly
(Supplementary Table 2) using the BWA-MEM algorithm® as imple-
mentedin BWAv.0.7.17-r1188, with options “T 30 -Y -p-t 8. The aligned
reads were sorted using the bamsort tool from the biobambam2
package (v.2.0.86; gitlab.com/german.tischler/biobambam?2), with
options ‘fixmates=1level=1 calmdnm=1calmdnmrecompindetonly=1
calmdnmreference=<reference_fasta>outputthreads=7 sortthreads=7"
Duplicate reads were marked using the bammarkduplicates2 tool from
biobambam2, with option ‘level = 0.

Variant calling

Identification of somatic substitutions and short indels was divided
into two steps: variant calling, and variant filtering to remove spuri-
ous calls (see ‘Variant filtering’ below). For human colorectal crypts,
we obtained previously sequenced and mapped reads from astudyin
which colorectal crypts were isolated by LCM?, and processed them
using the sample variant calling and filtering process that was applied
to the non-human samples.

Substitutions were identified using the cancer variants through
expectation maximization (CaVEMan) algorithm® (v.1.13.15). CaVE-
Man uses a naive Bayesian classifier to perform a comparative analysis
of the sequence data from a target and control sample from the same
individual to derive a probabilistic estimate for putative somatic sub-
stitutions at each site. The copy number options were set to ‘major
copy number =5’ and ‘minor copy number =2’, as in our experience
this maximizes the sensitivity to detect substitutionsin normal tissues.
CaVEManidentifies and excludes germline variants shared in the target
(colorectal crypt) and matched normal (skin or muscle tissue) samples,
and producesallist of putative somatic mutations that are present only
inthe target sample. CaVEMan was run separately for each colorectal
crypt, using either bulk skin or muscle microdissected from the sam-
ple colorectal biopsy as the matched normal control (Supplementary
Table 2). For two human donors for whom an alternative tissue was not
available, a colonic crypt not included as a target sample was used as
the matched normal control.

Indels were identified using the Pindel algorithm®' (v.3.3.0), using
asecond sample from the same individual as a matched control. The
indel calls produced by Pindel were subsequently re-genotyped using
the vafCorrect tool (https://github.com/cancerit/vafCorrect), which
performs alocal sequence assembly to address alignment errors for
indels located at the end of sequence reads, and produces corrected
counts of sequence reads supporting the indel and corrected estimates
of variant allele fraction (VAF; the fraction of reads supporting the
alternate allele at the variant site).

Variant filtering
A number of post-processing filters were applied to the variant calls
to remove false positives (Supplementary Fig. 1a, b).

Quality flag filter. CaVEMan and Pindel annotate variant calls using
aseries of quality flags, with the ‘PASS’ flag denoting no quality issues
affecting the call®®®, Variant calls presenting any flag other than ‘PASS’
were discarded.

Alignment quality filter. Variants were excluded if more than half of the
supporting reads were clipped. Thelibrary preparation methods create
shortinsertsizelibraries that canresultinreads overlapping. To avoid
therisk of double counting mutant reads we used fragment-based sta-
tistics. Variants without at least four high-quality fragments (alignment
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score > 40 and base Phred quality score > 30) were excluded. Variants
were excluded if reads supporting the variant had a secondary align-
ment score that was greater than the primary alignment score. This
filter was not applied toindel calls.

Hairpin filter. To remove variants introduced by erroneous process-
ing of cruciform DNA during the enzymatic digestion, we applied a
custom filter to remove variants in inverted repeats®. This filter was
not applied toindel calls.

Chromosome and contig filter. For species with chromosome-level
assemblies, we discarded variants located innon-chromosomal contigs,
including the mitochondrial genome (calling of mitochondrial variants
isdescribedin the section ‘Mitochondrial variant calling and filtering’).
For males, variants on the Y chromosome were excluded for speciesin
which the Y chromosome was annotated in the assembly.

N-tract and contig-end filter. To reduce artefactual calls due to read
misalignment, we discarded variants located within1 kb of atract of 50
or more consecutive N bases in the reference assembly, as well as vari-
ants within 1 kb of the start or end of a contig (this implies discarding
all variants in contigs shorter than 2 kb).

Sequencing coverage filter. A sample-specific read depth filter was
designed to exclude sites with coverage above the 99th coverage per-
centilein the sample or its matched normal control, as well as sites with
coverage ofless than10x in the sample or its matched normal control.

Allelic strand bias filter. We discarded variants without any supporting
reads on either the forward or the reverse strand.

Indel proximity filter. We discarded variants for which the total num-
ber of reads supporting the presence of an indel within 10 bp of the
variant was more than three times larger than the number of reads
supporting the presence of the variant. This filter was not applied to
indel calls.

Spatial clustering filter. Visual assessment of variant calls and muta-
tional spectra showed spatially clustered variants to be highly enriched
forartefacts. Therefore, we discarded groups of two or more variants
located within1kb of each other.

Beta-binomial filter. For each crypt, an artefact filter based on the
beta-binomial distribution was applied, which exploits read count
informationinother crypts fromthe same individual. More specifically,
for each sample, we fitted a beta-binomial distribution to the variant
allele counts and sequencing depths of somatic variants across samples
from the sameindividual. The beta-binomial distribution was used to
determine whether read support for amutation varies across samples
fromanindividual, as expected for genuine somatic mutations but not
forartefacts. Artefactstend to be randomly distributed across samples
and canbe modelled as drawn fromabinomial or alowly overdispersed
beta-binomial distribution. True somatic variants will be present at a
high VAF in some samples, but absent in others, and are hence best
captured by a highly overdispersed beta-binomial. For each variant site,
the maximum likelihood estimate of the overdispersion factor (p) was
calculated using agrid-based method, with values ranging between 107
and 107°%, Variants with p > 0.3 were considered to be artefactual and
discarded. The code for this filter is based on the Shearwater variant
caller®’. We found this to be one of the most effective filters against
spurious calls (Supplementary Fig. 1b).

Minimum VAF filter. For each sample, we discarded variants for
which the VAF was less than half the median VAF of variants passing
the beta-binomialfilter (see above) in that sample.

Maximum indel VAF filter. For each sample, we discarded indels that
presented a VAF of greater than 0.9, as such indels were found to be
highly enriched in spurious calls in some species. This filter was not
applied to substitution calls.

Tovalidate our variant calling strategy, we used LCM to microdissect
two sections from the same mouse colorectal crypt. We expected to
detectahighfraction of shared somatic variants in these two sections,
astheir cellsshould be derived from the same ancestral epithelial stem
cell. Both sections were submitted forindependent library preparation,
genome sequencing, variant calling and filtering using our pipeline.
The majority of substitution variant calls (2,742 of 2,933, 93.5%) were
shared between both sections (Supplementary Fig. 1c). By contrast,
when comparing five separate crypts fromamouse, amaximum of two
variants were shared between two crypts, and no variants were shared
by three or more crypts (Supplementary Fig. 1d).

Samplefiltering

Our method for estimation of mutation rates assumes monoclonality
of colorectal crypt samples. This assumption can be violated owing to
several causes, including contamination fromother colorectal crypts
during microdissection or library preparation, contamination with
non-epithelial cells located in or near the crypt, insufficient time for
astem cell to drift to clonality within the crypt, or the possibility that
in some species, unlike in humans®, polyclonal crypts are the norm.
Therefore, a truncated binomial mixture model was applied so as to
remove crypts that showed evidence of polyclonality, or for which
the possibility of polyclonality could not be excluded. An expecta-
tion-maximization (EM) algorithm was used to determine the optimal
number of VAF clusters within each crypt sample, as well as each clus-
ter’slocation andrelative contribution to the overall VAF distribution.
The algorithm considered a range of numbers of clusters (1-5), with
the optimal number being that which minimized the Bayesian infor-
mation criterion (BIC). As the minimum number of supporting reads
to call a variant was four, the binomial probability distribution was
truncated to incorporate this minimum requirement for the number of
successes, and subsequently re-normalized. The EM algorithm returned
theinferred optimal number of clusters, the mean VAF (location) and
mixing proportion (contribution) of each clone, and an assignment of
eachinput variant to the most likely cluster. After applying this model
to the somatic substitutions identified in each sample, samplefiltering
was performed on the basis of the following three criteria.

Low mutation burden. We discarded samples that presented fewer
than 50 somatic variants, which was indicative of low DNA quality or
sequencingissues.

High mutation burden. We discarded samples with a number of
somatic variants greater than 3 times the median burden of sam-
ples from the same individual (excluding samples with fewer than
50 variants). This served to exclude a small minority of samples
that presented evident sequencing quality problems (such as low
sequencing coverage), but which did not fulfil the low-VAF criterion
for exclusion (see below).

Low VAF. We discarded samplesin whichless than 70% of the somatic
variants were assigned to clusters with VAF > 0.3. However, this rule
was not applied to those cases in which all the samples from the same
individual had primary clusters with mean VAF < 0.3; this was done
to prevent the removal of samples from individuals presenting high
fractions of non-epithelial cells, but whose crypts were nonetheless
dominated by asingle clone.

These criteria led to the exclusion of 41 out of 249 samples. On the
basis of visual assessment of sequencing coverage and VAF distri-
butions, we decided to preserve three samples (NDO0OO3c_[00004,



NDO0OO0O3c_lo0011, TIGRD0O001b_lo0010) that we considered to be
clonal, but whichwould have been discarded on the basis of the criteria
above.

Mitochondrial variant calling and filtering

For six species whose reference genome assemblies did not include
the mitochondrial sequence, mitochondrial reference sequences were
obtained from the GenBank database (Supplementary Table 5). Foreach
species, alignment to thereference genome was performed using BWA
(v.0.7.17-r1188), as described above (see ‘Sequence read alignment’).
Pileup files were generated for mtDNA genomes using the ‘bam2R’
functioninthe deepSNV (v.1.32.0) R package®*%. The mapping quality
cut-offwas set to O, taking advantage of the fact that the mitochondrial
genome coverage for most samples was more than100-fold higher than
the nuclear genome coverage, and hence most reads with poor mapping
scores should be of mitochondrial origin. Mitochondrial variants were
called using the Shearwater algorithm®? (deepSNV package v.1.32.0).
Multiple rounds of filtering were applied to identify and remove false
positives. The first set of filters removed germline polymorphisms,
applied amaximum false discovery rate (FDR) threshold of g > 0.01,
required that mismatches should be supported by at least oneread on
both the forward and reverse strands, and merged consecutive indel
calls. Further filtering steps were as follows.

Minimum VAF filter. Only variants with VAF > 0.01were considered for
analysis, based on the quality of the mutational spectra.

Sequencing coverage filter. Owing to species-specific mtDNA regions
of poor mappability, we discarded sites with a read coverage of less
than500x.

D-loop filter. Analysis of the distribution of mutations along the mi-
tochondrial genome revealed clusters of mutations within the hyper-
variable region of mtDNA known as the D-loop. To obtain estimates of
the mutation burden in mtDNA unaffected by hypermutation of the
D-loop, mutations in the D-loop region (coordinates MT:1-576 and
MT:16,024-16,569 in human) were excluded from this analysis.

High mutation burden. We discarded samples that had a number of
somatic mtDNA variants greater than four times the mean mtDNA
burden across all samples. This served to exclude a small minority
of samples that were suspected of enrichment in false positive calls.
Visualinspection of these samplesinagenome browser confirmed the
presence of high numbers of variants found on sequence reads with
identical start positions and/or multiple base mismatches, suggestive
of library preparation or sequencing artefacts.

We examined the mutational spectra of somatic mtDNA substitu-
tions on a trinucleotide sequence context (Extended Data Fig. 14b).
The specificity of the filtered variant calls was supported by the obser-
vation that the mutational spectraacross species were broadly consist-
entwith those previously observed in studies of human tissues*®, with
adominance of C>T and T>C transversions and a strong replication
strand bias.

Mitochondrial copy number analysis

Sequence reads from each sample were separately mapped to the
species-specific mtDNA reference sequence to estimate average mtDNA
sequencing coverage. Excluding nuclear reference sequences from
the alignment enabled even coverage to be obtained across the mito-
chondrialgenome by preventing the mismapping of sequence reads to
inherited nuclearinsertions of mitochondrial DNA (known as NuMTs).
Next, coverage information fromindividual mtDNA and whole-genome
alignment (BAM) files was obtained using the genomecov tool in the
bedtools suite (v.2.17.0)¢*. Mitochondrial copy number was calculated
according to the formula

depth x ploidy/depth

mtDNA gDNA’

where depth,, ;v and depth,py, are the mean coverage values for mtDNA
andthenuclear genome, respectively, and ploidy = 2 (assuming normal
somatic cells tobe diploid). For simplicity, the sex chromosomes were
excluded from the calculation of the mean nuclear genome coverage.

Calculation of analysable genome size

Toestimate the somatic mutationrate, it was first necessary to estab-
lish the size of the analysable nuclear genome (that is, the portion
of the genome in which variant calling could be performed reliably)
for each sample (Supplementary Table 4). For both substitutions
and indels, the analysable genome of a sample was defined as the
complement of the union of the following genomic regions: regions
reported as ‘not analysed’ by the CaVEMan variant caller; regions fail-
ingthe ‘chromosome and contig’ filter; regions failing the ‘N-tract and
contig-end’ filter; and regions failing the ‘sequencing coverage’ filter
(see ‘Variant filtering’). For the analysis of mitochondrial variants, the
analysable genome of asample was defined as the portion of mtDNA
that satisfied the ‘sequencing coverage’ filter (see ‘Mitochondrial
variant calling and filtering’), after subtracting the hypervariable
region (D-loop).

Life-history data

Obtaining accurate lifespan estimates is challenging; although point
estimates of maximum lifespan are available for many species, their
veracity is often difficult to assess and estimates can vary widely for
the same species (Supplementary Table 6). There can be many causes
for this variation, including errors in recording and real variation in
longevity between populations (that is, captive versus wild). As we were
interested in whether the somatic mutation burden has an association
with lifespaninthe absence of extrinsic mortality, we sought to obtain
estimates of longevity fromindividuals under human care, to minimize
the effect of external factors such as predation or infection.

Mortality records for 14 species were obtained from the Species360
database, authorized by Species360 research data use agreement no.
60633 (Species360 Zoological Information Management System (ZIMS)
(2020), https://zims.species360.org). This database contains lifespan
data of zoo animals frominternational zoo records. Using records from
1980 to the present, we excluded animals for which the date of birth or
death was unknown or uncertain. To avoid infant mortality influenc-
ingthe longevity estimates for each species, we removed animals that
died before the age of female sexual maturity, as defined by the AnAge
database®. This resulted inamean of 2,681 animallifespan records per
species for the species in the study (minimum 309, maximum 8,403;
Supplementary Table 6). For the domestic dog, we combined records
for domestic dogs (Canis lupus familiaris) and wolves (Canis lupus),
because of the paucity of records for domestic dogs in Species360.
Althoughthe dataare curated, they are still vulnerable to the presence
ofinaccuraterecords, which canbias the lifespan estimates. Toreduce
the effect of these outliers, for each species lifespan was estimated as
the age at which 80% of the adults from that species had died®® (Sup-
plementary Table 6).

Human longevity estimates were obtained using census birth and
deathrecord datafrom Denmark, (1900-2020), Finland (1900-2019)
and France (1900-2018), retrieved from the Human Mortality Database
(University of California, Berkeley (USA), and Max Planck Institute for
Demographic Research (Germany); https://www.mortality.org, https://
www.humanmortality.de). We selected these countries because they
had census records going back at least 100 years. To remove the effect
of infant mortality, we excluded individuals who died before the age
of 13. For each country, we selected the cohort bornin 1900 and cal-
culated the age at which 80% of the individuals had died (Denmark,
87 years; Finland, 83 years; France, 81 years). We then used the mean
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of the three countries as our estimate of the human 80% lifespan (83.7
years) (Supplementary Table 6).

To test the effects of different estimates of lifespan on our results,
we also obtained maximum longevity estimates for each species from
arange of databases® and a survey of the literature (Supplementary
Table 6). Other life-history metrics were obtained from the AnAge data-
base® (Supplementary Table 6).

Mutational signature analysis

Mutational signatures of substitutions on a trinucleotide sequence
context were inferred from sets of somatic mutation counts using the
sigfit (v.2.1.0) R package®. Initially, signature extraction was performed
denovo forarange of numbers of signatures (N =2,...,10), using counts
of mutations grouped per sample, per individual and per species. To
account for differences in sequence composition across samples, and
especially across species, mutational opportunities per sample, per
individual and per species were calculated from the reference trinu-
cleotide frequencies across the analysable genome of each sample
(see ‘Calculation of analysable genome size’), and supplied to the
‘extract_signatures’ functionin sigfit. The ‘convert_signatures’ function
insigfit was subsequently used to transform the extracted signatures
to a human-relative representation (Fig. 2b), by scaling the mutation
probability values using the corresponding human genome trinucleo-
tide frequencies. The best-supported number of signatures, on the
basis of overall goodness-of-fit* and consistency with known COSMIC
signatures (https://cancer.sanger.ac.uk/signatures/), was found to be
N=3.Thecleanest deconvolution of the three signatures was achieved
when using the mutation counts grouped by species, rather than by
sample or individual. The three extracted signatures (labelled SBSA,
SBSB and SBSC) were found to be highly similar to COSMIC signatures
SBS1(cosine similarity 0.96), SBS5(0.89) and SBS18 (0.91), respectively.
These signatures wereindependently validated using the Mutational-
Patterns (v.1.12.0) R package®®, which produced comparable signatures
(respective cosine similarities 0.999, 0.98 and 0.89).

This de novo signature extraction approach, however, failed to
deconvolute signatures SBSA and SBSB entirely from each other, result-
ing in a general overestimation of the exposure to SBSA (Extended
DataFig.15). To obtain more accurate estimates of signature exposure,
the deconvolution was repeated using an alternative approach that
combines signature fitting and extraction in a single inference pro-
cess’.. More specifically, the ‘fit_extract_signatures’ function in sigfit
was used to fit COSMIC signature SBSI1 (retrieved from the COSMIC
v,3.0 signature catalogue; https://cancer.sanger.ac.uk/signatures/) to
the mutation counts grouped by species (with species-specific muta-
tional opportunities), while simultaneously extracting two additional
signatures de novo (SBSB and SBSC). Before this operation, COSMIC
SBS1 was transformed from its human-relative representation to a
genome-independent representation using the ‘convert_signatures’
function in sigfit. By completely deconvoluting SBS1 and SBSB, this
approachyielded a version of SBSB that was more similar to COSMIC
SBS5 (cosine similarity 0.93); the similarity of SBSC to COSMIC SBS18
was the same under both approaches (0.91).

Finally, theinferred signatures were re-fitted to the mutational spec-
tra of mutations in each sample (using the ‘fit_signatures’ function in
sigfit with sample-specific mutational opportunities) to estimate the
exposure of each sample to each signature. Thefitting of the three sig-
natures yielded spectrum reconstruction similarity values (measured
asthe cosine similarity between the observed mutational spectrumand
aspectrumreconstructed from the inferred signatures and exposures)
withmedian 0.98 andinterquartile range 0.96-0.99. Although the purely
denovo extractionapproach and the ‘fitting and extraction’ approach
yielded comparable versions of signatures SBSB and SBSC, the fixing
of COSMIC SBS1in the latter approach resulted in lower SBS1 expo-
sures and higher SBSB exposures in most samples, owing to the cleaner
deconvolution of these two signatures (Fig. 2, Extended Data Fig. 15).

To examine potential variation in the spectrum of signature SBS5
across species, the following procedure was conducted for each spe-
cies: individual-specific mutation counts and mutational opportunities
were calculated for eachindividual in the species, and the ‘fit_extract_
signatures’ function was used to fit COSMIC signatures SBS1, SBS18
and SBS34 (transformed to a genome-independent representation
using the ‘convert_signatures’ function) to the mutational spectra of
each individual, while simultaneously inferring one additional signa-
ture (corresponding to signature SBS5 as manifested in that species;
Extended Data Fig. 6).

Toassess the presenceinnon-human colorectal crypts of mutational
signatures caused by APOBEC or colibactin, which have been previ-
ously observed in human crypts®, we used an expectation-maximiza-
tion algorithm for signature fitting, in combination with likelihood
ratio tests (LRTs). More specifically, for each non-human sample, we
tested for exposure to colibactin (signature SBS88, COSMIC v.3.2) by
comparingthelog-likelihoods of (i) amodel fitting COSMIC signatures
SBS1, SBS5, SBS18, SBS34 and SBS88, and (ii) a reduced model fitting
only the first four signatures. Benjamini-Hochberg multiple-testing
correction was applied to the P values that resulted from the LRTs,
and colibactin exposure was considered significant in asample if the
corresponding corrected g-value was less than 0.05. We followed the
same approachto assess exposure to APOBEC (SBS2 and SBS13), using
two separate sets of LRTs for models including either SBS2 or SBS13,in
addition to SBS1, SBS5, SBS18 and SBS34. APOBEC exposure was con-
sidered significant in a sample if its g-values for the models including
SBS2 and SBS13 were both less than 0.05. This analysis identified 1/180
crypts with significant exposure to each of colibactin and APOBEC
(although the evidence for the presence of the relevant signatures in
these two crypts was not conclusive). To test for depletion of colibactin
or APOBEC exposure in non-human crypts relative to human crypts,
we firstapplied the LRT-based method described above to a published
set of 445 human colorectal crypts®, identifying 92 colibactin-positive
and 9 APOBEC-positive crypts. We then compared the numbers of
colibactin-and APOBEC-positive cryptsin the human and non-human
sets using two separate Fisher’s exact tests (‘fisher.test’ functioninR).
Thisrevealed the differencein colibactin exposure to be highly signifi-
cant (P=7 x10™), unlike the differencein APOBEC exposure (P=0.30).

Mutational spectra of somaticindels identified in each species were
generated using the ‘indel.spectrum’ functionin the Indelwald tool for
R (24/09/2021 version; https://github.com/MaximilianStammnitz/
Indelwald).

Selection analysis

Evidence of selection was assessed using the ratio of nonsynonymous
to synonymous substitution rates (dN/dS) in the somatic mutations
called in each species. The dNdScv (v.0.0.1.0) R package® was used
to estimate dN/dS ratios for missense and truncating substitutions
in each species separately. Reference CDS databases for the dNdScv
package were built for those species with available genome annota-
tion in Ensembl (https://www.ensembl.org; Supplementary Table 2),
using the ‘buildref” function in dNdScv. For each species, the ‘dndscv’
function was applied to the list of somatic substitutions called in sam-
ples of that species, after de-duplicating any substitutions that were
shared between samples from the same individual to avoid counting
shared somatic mutations multiple times. In addition, the analysis was
restricted to genes that were fully contained in the analysable genomes
of allsamples from the species (a condition satisfied by the vast major-
ity of protein-coding genes). Genome-wide and gene-specific dN/dS
ratios were obtained for missense and truncating substitutionsineach
species; no genes with statistically significant dN/dS # 1were observed.

Copy number analysis
For species with chromosome-level assemblies (cat, cow, dog, horse,
human, mouse, rabbit and rat), the total and the allele-specific copy
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number (CN) was assessed in each sample, adapting a likelihood model
that was previously applied to the detection of subclonal CN changes
in healthy human skin®. This method exploits two sources of evidence:
relative sequencing coverage and B-allele fraction (BAF; the fraction
of reads covering a heterozygous single-nucleotide polymorphism
(SNP) that support one of the alleles). Human samples PD36813x15
and PD36813x16 were excluded from this analysis owing to the poor
quality of their SNP data.

For each sample, sequencing coverage was measured in
non-overlapping100-kb bins along the reference genome of the species,
using the coverageBed tool in the bedtools suite (v.2.17.0)%. For each
bin, the coverage per base pair was calculated by dividing the number of
reads mappingto thebinby the binlength, and multiplying the result by
theread length (150 bp). Anormalized sample-normal coverage ratio
was then calculated for each bin by dividing the bin coverage in the
sample by the corresponding coverage in its matched normal control
(see ‘Sample processing’). Heterozygous SNPs were isolated for each
sample by selecting germline SNPs with a BAF between 0.4 and 0.6 in
the matched normal sample, and acoverage of atleast 15 reads inboth
the target sample and its matched normal sample. After assigning each
SNP to its corresponding 100-kb genome bin, the bins in each sample
were divided into two sets: (i) bins with coverage > 10 inboth the target
sampleandits matched normal, and at least one heterozygous SNP; and
(ii) bins with coverage > 10 in both the target sample and its matched
normal, and no heterozygous SNPs. For the first set, estimates of total
and allele-specific CN were inferred by maximizing the joint likelihood of
abeta-binomial modelfor BAF and anegative binomial model for relative
coverage, as previously described”. The most likely combination of allele
CNvalues was obtained for each binby conducting an exhaustive search
of CNvalues between 0 and 4, and selecting the combination maximiz-
ing the joint likelihood (calculated on the basis of expected BAF and
relative coverage values). A penalty matrix was used to penalize more
complex solutions over simpler ones, as previously described®. For the
second set of bins (bins without SNPs), only estimates of total CN were
inferred, by maximizing the likelihood of a negative binomial model
for relative coverage. The most substantial differences between these
methods and the one previously published are: (i) SNPs were obtained
from the variant calling output, instead of from a public database; (ii)
relative coverage was calculated per 100-kb bin, rather than per SNP;
(iii) SNPs were not phased within each gene, but withineach bin; (iv) no
reference bias was assumed (thatis, the underlying BAF of heterozygous
SNPs was assumed to be 0.5); (v) the minimum sample purity was raised
to 0.85; (vi) putative CN changes were not subjected to significance
testing, but selected according to their likelihood, and subsequently
filtered by means of a segmentation algorithm (see below).

Estimates of total and allele-specific CN per bin were merged into CN
segments, which were defined as contiguous segments composed of
five or morebins withidentical CN states. Segmentation was performed
separately for total and allele-specific CN estimates in each sample.
After this process, any pair of adjacent segments with the same CN
assignment, and separated by a distance shorter than five bins, was
merged into a single segment. Finally, within each species, segments
presenting CN values other than 2 (or 1/1 for allele-specific CN), and
beingeither shorter than 10 bins (1 Mb), or shared among two or more
samples, were discarded, resulting in the removal of nearly all spuri-
ous CN changes.

Estimation of mutationrate

For each sample, the somatic mutation density (mutations per bp) was
calculated by dividing the somatic mutation burden (total number
of mutations called) by the analysable genome size for the sample
(see ‘Calculation of analysable genome size’). The adjusted somatic
mutation burden (number of mutations per whole genome) was then
calculated by multiplying the mutation density by the total genome
size of the species (see below). The somatic mutation rate per year

(mutations per genome per year) was obtained by dividing this adjusted
mutation burden by the age of theindividual, expressed inyears (Sup-
plementary Table 2). The expected ELB for each sample was calculated
by multiplying the somatic mutation rate by the estimated lifespan of
the species (see ‘Life-history data’).

The total genome size of a species was estimated as the total size
of its reference genome assembly. Across species, the mean genome
sizewas 2.67 Gb, ranging between 2.41 Gb and 3.15 Gb and with astand-
ard deviation of 221 Mb (Supplementary Table 4). This suggests that
inter-species variation in genome size should not have a substantial
influence on the somatic mutation rate estimates. For an assessment
of alternative measures of mutation rate, see ‘Association of mutation
rate and end-of-lifespan burden with lifespan’.

Association of mutation rate with life-history traits

The association of the somatic mutation rate with different life-history
traits was assessed using LME models. In particular, associations with
the following traits were examined: lifespan (in years), adult mass (or
adult weight, ingrams), BMR (in watts), and litter size (see ‘Life-history
data’). Associations for lifespan, adult mass and BMR were assessed
using the following transformed variables:1/lifespan, log;,(adult mass)
andlog,,(BMR). To account for the potentially confounding effect of the
correlation between metabolic rate and body mass, the residuals of a fit-
ted allometric regression model of BMR on adult mass (equivalent to a
simplelinear regression of log;,(BMR) on log,,(adult mass)) were used as
amass-adjusted measure of metabolicrate, referred to as‘BMRresiduals’.

Foreachvariable,an LME model wasimplemented for the regression
of somatic mutation rates per sample on the variable of interest, using
the ‘Ime’ functionin the nlme R package (v.3.1-137; https://cran.r-project.
org/web/packages/nlme). To account for non-independence of the
samples, bothat theindividual level and at the species level, the model
included fixed effects (intercept and slope parameters) for the variable
of interest, and random effects (slope parameters) at the individual
and species levels. In addition, to account for the heteroscedasticity
of mutation rate estimates across species, the usual assumption of
constantresponse variance was replaced with explicit species-specific
variances, to be estimated within the model.

Todetermine the fraction of inter-species variance in mutation rate
explained by each life-history variable individually, the LME model
described above was used to produce predictions of the mean muta-
tionrate per species; only fixed effects were used when obtaining these
predictions, random effects beingignored. The variance of these pre-
dictions was then compared to the variance in observed mean mutation
rates; the latter were calculated for each species as the mean of the
observed mean rates per individual, to avoid individuals with larger
numbers of samples exerting astronger influence on the species mean.
Thefraction of inter-species variance explained by the model was calcu-
lated using the standard formulafor the coefficient of determination,

R?=ESS/(ESS +RSS),

where ESSis the explained sum of squares, and RSSis the residual sum
of squares:

ESS=), (0, -¥)%RSS=). (0 -J).

Inthis formulation, y,and y,denote the observed and predicted muta-
tionratesfor speciesi, respectively, and y is the overallmeanrate. This
definition of R coincides with the fraction of variance explained (FVE),
defined as 1 minus the fraction of variance unexplained (FVU):

FVE=1- FVU=1-[RSS/(ESS + RSS)]=ESS/(ESS + RSS) = R2.

Asthe predicted and observed values correspond to mean mutation
rates per species, rather than mutation rates per sample, FVE providesa
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measure of the fraction of inter-species variance explained by the fixed
effects of the LME model. Among the variables considered, 1/lifespan
was found to have the greatest explanatory power (FVE = 0.84, using
afree-intercept model).

To compare the explanatory power of variables other than 1/lifespan
when considered either individually or in combination with1/lifespan,
the method described above was also applied to two-variable combina-
tions of 1/lifespan and each of the remaining variables, using an LME
model with fixed effects for both variables and random effects for
1/lifespan only. The R*formula above was used to measure the fraction
ofinter-species variance explained by each model. Inaddition, to test
whether theinclusion of asecond explanatory variable was justified by
the increase in model fit, LRTs between each two-variable LME model
and areduced LME model including only 1/lifespan were performed
using the “anova’ function in the nlme R package.

To further assess the potential effects of body mass and lifespan on
each other’s association with the somatic mutation rate, allometric
regression models (equivalent to simple linear models under logarith-
mic transformation of both variables) were fitted to the mean somatic
mutation rate per species, using either adult mass or lifespan as the
explanatoryvariable.In addition, the ‘allometric residuals’ of mutation
rate, adult mass and lifespan (that is, the residuals of pairwise allometric
regressions among these three variables) were used to examine the
associations between somatic mutation rate and either body mass or
lifespan, after accounting for the effect of the third variable (partial
correlation analysis). For example, to account for the potential influ-
ence of body mass ontherelationship between somatic mutation rate
and lifespan, the residuals of an allometric regression between muta-
tionrate and adult mass, and the residuals of an allometric regression
between lifespan and adult mass, were analysed using simple linear
regression. This analysis supported a strong association between
somatic mutation rate and lifespan (independently of the effect of
mass; FVE = 0.82, P=3.2x10°%; Fig. 3c), and a non-significant associa-
tion between somatic mutation rate and body mass (independently
ofthe effect of lifespan). Therefore, the relationship between somatic
mutationrate and lifespan does not appear to be mediated by the effect
of body mass onbothvariables. Of note, this result remains after exclud-
ing naked mole-rat: after removing this species, partial correlation
analysis still reveals a strong association between somatic mutation
rateand lifespan (FVE=0.77,P=4.1x107°), and anon-significant asso-
ciation between somatic mutation rate and body mass (P = 0.84). This
demonstrates that the observed relationships are not dependent on
the presence of naked mole-ratin the study.

To assess the robustness of the LME regression analyses described
above, we performed bootstrap analysis on each LME model, at the level
ofbothindividuals and species. More specifically, for each level we used
each of the LME models to perform regression on 10,000 bootstrap
replicates, produced by resampling either species or individuals with
replacement. We then assessed the distributions of FVE across boot-
strap replicates (Extended Data Fig. 13c). In addition, we performed a
similar bootstrap analysis using a collection of maximum longevity esti-
mates obtained fromthe literature (see ‘Life-history data’). We applied
thezero-intercept LME model described above (for regressing mutation
rate oninverse lifespan) onaset of 5,000 bootstrap replicates, each of
whichused aset of species lifespan estimates randomly sampled from
the collection of literature-derived estimates (Extended Data Fig. 12).

Theresults obtained with the LME models were additionally validated
using an independent hierarchical Bayesian model, in which the mean
somatic mutation burden of eachindividual was modelled as following
anormal distribution with mean defined asalinear predictor containing
aspecies-specific slope parameter and a multiplicative offset (corre-
sponding to the individual’s age; inclusion of this offset minimizes the
heteroscedasticity of the mutationrate across species, which results from
dividing mutation burdens by age). Species-specific slope parameters
were in turn modelled as normally distributed around a global slope

parameter, equivalent to the fixed-effect slope estimated by the LME
model. This hierarchical model produced very similar results to those
of the LME model for all life-history variables (Extended Data Fig. 13a).

We note that samples CATD0002b_100003 and MD6267ab_lo0003
were excluded from all regression analyses, owing to the fact thateach
shared the most of its somatic variants with another sample from the
sameindividual (indicating, ineach case, that both samples were closely
related), hence violating the assumption of independence among sam-
ples. Theinclusion of these two samples, however, had no effect onthe
outcome of the analyses.

Association of mutation rate and end-of-lifespan burden with
lifespan

The relationship between somatic mutation rate and species lifespan
was further explored by adapting the LME model described in the previ-
ous section to perform constrained (zero-intercept) regression of the
adjusted mutation rate per year on the inverse of lifespan, 1/lifespan
(see ‘Life-history data’, ‘Estimation of mutation rate” and ‘Association
of mutation rate with life-history traits’). The use of zero-intercept
regression was motivated by the prediction that, if somatic mutation
isadeterminant of maximum lifespan, then it would be expectedfor all
speciestoendtheir lifespans with asimilar somatic mutation burden.
Indeed, this was confirmed by simple linear regression of the species
mean end-of-lifespan mutation burden against species lifespan (slope
P=0.39). Thus, if mis the mutation rate per year, and L is the species’
lifespan, the expected relationship is of the form.

m L=k,

where kis aconstant representing the typical end-of-lifespan mutation
burden across species. According to this relationship, the mutation
rate per year is linearly related to the inverse of lifespan,

m=k(1/L).

Therefore, the cross-species average end-of-lifespan burden (k), can
be estimated as the slope parameter of a zero-intercept linear regres-
sion model with the mutation rate per year (m) as the dependent vari-
able, and theinverse of lifespan (1/L) as the explanatory variable. To this
purpose, the LME model described inthe previous section was altered
by removing the fixed-effectintercept parameter, thus considering only
fixed- and random-effect slope parameters for 1/Lifespan.

The zero-intercept LME model estimated a value of k= 3,210.52 (95%
confidence interval 2,686.89-3,734.15). The fraction of inter-species
variance explained by the zero-intercept model (FVE) was 0.82, whereas
the LME model described in the previous section (which estimated
k=2,869.98,and anintercept of 14.76) achieved FVE = 0.84 (see ‘Asso-
ciation of mutation rate with life-history traits’). To test whether the
increase in model fitjustifies the inclusion of an intercept, both models
were compared using a LRT (as implemented by the ‘anova’ function
inthe nlmeR package (v.3.1-137)). This yielded P= 0.23, indicating that
the free-intercept model does not achieve a significantly better fit than
the zero-intercept model. Similarly, the zero-intercept model yielded
lower values for both the Bayesian information criterion (BIC) and the
Akaike information criterion (AIC). Notably, equivalent analyses using
somatic mutation rates per megabase and per protein-coding exome
(instead of per whole genome) yielded comparable results (Extended
DataFig.11).

Toinvestigate the possibility of phylogenetic relationships between
the species sampled confounding the analysis, a phylogenetic gen-
eralized linear model was used to regress the mean mutation rate of
each species on the inverse of its lifespan (1/L), while accounting for
the phylogenetic relationships among species. A phylogenetic tree of
the 15 species examined was obtained from the TimeTree resource®,
and the phylogenetic linear model was fitted using the ‘pgls’ function



in the caper R package (v.1.0.1; https://cran.r-project.org/web/pack-
ages/caper). The estimates produced by zero-intercept regression of
mean mutationrates per species on1/lifespan were compared between
this phylogenetic generalized linear model and a simple linear model
(‘Im’ function in R). The use of this simple model, as well as the use
of mean mutation rates per species (rather than mutation rates per
sample), was necessary owing to the impossibility of replicating the
heteroscedastic mixed-effects structure of the LME model used for
the main association analyses (see ‘Association of mutation rate with
life-history traits’) within the phylogenetic linear model. Both the phy-
logenetic linear model and the simple linear model produced simi-
lar estimates (Extended Data Fig. 13b), suggesting that phylogenetic
non-independence of the samples does not have a substantial effect
on the association analyses.

Cell division analysis

Toinvestigate the extent to which differences in cell division rate could
explain differences in mutation rate and burden across species, we
obtained estimates of intestinal crypt cell division rates from mouse’,
rat’” and human’>”® (Supplementary Table 7). Using these cell division
rates, our lifespan estimates and the observed substitution rates, we
calculated the number of cell divisions at the end of lifespan and the
corresponding number of mutations per cell division expected under
asimple model assuming that all mutations occur during cell division
(Supplementary Table 7).

We investigated whether differences in the number of cell divisions
among species could explain the observed differences in mutation
burden. Although colorectal cell division rate estimates are lacking for
most species, existing estimates from mouse, ratand humanindicate
that the total number of stem cell divisions per cryptin a lifetime var-
ies greatly across species—for example, there are around 6- to 31-fold
moredivisions perintestinal stem cellinahumanthaninarat over their
respectivelifetimes, depending onthe estimate of cell division rate used
(Supplementary Table 7). Mouse intestinal stem cells are estimated to
divide once every 24 h (ref.”®), whereas estimates of the human intesti-
nalstem cell division rate vary fromonce every 48 h (ref.”) to once every
264 h (ref.”). Thus, mouse intestinal stem cells divide 2-11 times faster
than human intestinal stem cells. By the end of lifespan, an intestinal
stem cell is predicted to have divided around 1,351 times in a mouse,
around 486 timesinaratand 2,774-15,257 times in a human (depending
onthe estimate of cell division rate used). Applying our somatic muta-
tion burden and lifespan data, this implies that the somatic mutation
rate per cell divisioninamouseis around1.5- to 8.4-fold higher thanin
ahuman. However, the observed fold difference in somatic mutation
rate between these two speciesis16.9 (Table 1). Therefore, differences
in cell division rate appear unable to fully account for the observed
differencesin mutationrate across species. Nevertheless, we note that
accurate cell division rate estimates for basal intestinal stem cells are
lacking for most species.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

DNA sequence data have been deposited in the European
Genome-Phenome Archive (EGA; https://ega-archive.org) under
overarching accession EGAD0O0001008032. Human DNA sequence
data from a previous study® are deposited in the EGA (accession
EGAD00001004192). Processed mutation calls and other data
used in the analyses have been deposited in Zenodo (https://doi.
org/10.5281/zenod0.5554777). Raw mortality data used to estimate

lifespan (Species360 Data Use Approval Number 60633) cannot be
publicly shared, as Species360 is the custodian (not the owner) of their
members’ data. Raw data are accessible through Research Request
applications to Species360. Once Species360 grants access to data,
they areintended only for and restricted to usein the project they were
approved for and for asingle publication. Any email communications
should be directed to support@species360.org.

Code availability

The computer code used in the analyses has been depositedin Zenodo
(https://doi.org/10.5281/zenod0.5554801) and GitHub (https://github.
com/baezortega/CrossSpecies2021).
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Extended DataFig.1|Somatic mutational spectraof human colonand smallintestine. Trinucleotide-context mutational spectra of somatic substitutions
from human adult stem cells in colon (top) and small intestine, using mutation calls obtained froma previous study™.



Extended DataFig.2|Histology images of intestinal crypts across species. Histologicalimages of the colorectal or intestinal (ferret) epithelium for each
non-human species. Scale bars are provided at the bottom of each image.
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Extended DataFig.10|Kaplan-Meier curves of longevity in captivity.
Kaplan-Meier survival curves for each species, calculated using captive
lifespan datafrom Species360 for non-human species and censusrecord data
for humans (Methods). The shaded areas represent 95% confidence intervals of

thesurvival curves. Ahorizontal grey bar indicates the age at which 80% of
individuals had already died (80th percentile), which was adopted as arobust
estimate of specieslifespan.
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Extended DataFig.11|Associations between life-history variables and
alternative measures of somatic mutationrate.a, b, Same analyses as
Fig.3c, f,but using somatic mutation rates per megabase (a), or per
protein-coding exome (b), rather than per genome (Methods). Leftmost panels
show zero-intercept LME regressions of somatic mutation rates oninverse
lifespan (1/lifespan), presented on the scale of untransformed lifespan (x axis).
Theyaxes present mean mutationrates per species, although mutation rates
percryptwereusedintheregressions. Darker shaded areasindicate 95%

W

confidenceintervals (Cl) of theregression lines; lighter shaded areas mark a
two-fold deviation from the regression lines. Point estimate and 95% Cl of the
regressionslope (k), fraction of inter-species variance explained (FVE), and
range of ELB are provided. Rightmost panels show comparisons of FVE values
achieved by free-intercept LME models using inverse lifespanand other
life-history variables (alone or in combination withinverse lifespan) as
explanatory variables. BW, black-and-white; N, naked; RT, ring-tailed.



a
- @Mouse 5000 bootstrap samples
5 Rat k: Min =3405.21 Median =4130.07 Max =4895.53
Q FVE: Min=0.53 Median = 0.76 Max = 0.93
8 8-
o ©
e Ferret
5 -
c
[}
o o
g 9
Q.
12}
c
k<]
s
3 &1
N mole-rat Hugan
RT lemur BW colobus
°© T T T T T T
0 20 40 60 80 100 120
Maximum lifespan (years)
b
[=3
8-
3
§ 8-
g =
o
o
[
o _|
wn
o4
0.5 0.6 0.7 0.8 0.9 1

Fraction of inter-species variance explained (FVE)

Extended DataFig.12|Bootstrapped regression of somatic mutationrates
on published lifespan estimates. a, Bootstrapped regression of somatic
substitution rates on the inverse of lifespan (1/lifespan), using azero-intercept
LME model (Methods). For each of 5,000 bootstrap samples (replicates),
lifespanvalues per species were randomly chosen from aset of published
maximum longevity estimates (Supplementary Table 6). The bluelineindicates
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Extended DataFig.13 | Comparison of regressionmodels for somatic
mutationrates. a, Zero-interceptregression of somatic substitution rates on
inverse lifespan (1/lifespan), using aLME model applied to mutation rates per
crypt (left) and a Bayesian hierarchical normal regression model applied to
mean mutation rates per individual (Methods). For simplicity, black dots
present mean mutationrates per species. Darker shaded areasindicate 95%
confidence/credibleintervals (Cl) of the regression lines; lighter shaded areas
mark atwo-fold deviation from the regression lines. Point estimates and 95% ClI
oftheregressionslopes (k) and fraction of inter-species variance explained
(FVE) are provided. b, Comparison of regression lines for the regression of
somatic substitution rates on1/lifespan (left; zero intercept) and log-

transformed adult body mass (right; free intercept), using simple linear models
(darkand lightblue), phylogenetic generalized least-squares models (orange
and yellow), Bayesian hierarchical normal models (green) and LME models
(red) (Methods). Point estimates of the regression coefficients for each model
areprovided. ¢, Distributions of regression FVE under individual- and species-
level bootstrapping. For the LME models regressing somatic mutation rateson
inverse lifespan (zero intercept; left) and log-transformed mass (free
intercept), the curves present distributions of FVE from 10,000 bootstrap
replicates, obtained through randomresampling of either individuals (blue) or
species (orange) (Methods). Vertical lines indicate the FVE values obtained
using the entire dataset.
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Extended DataFig.14 | mtDNA mutationburden and spectrum. a, Total
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b, Mutational spectraof mtDNA substitutionsin each species. The x axis shows
96 mutationtypesonatrinucleotide context, coloured by base substitution
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ofthespectrumrepresent substitutions with the pyrimidine base located onthe
heavy and light strands of mtDNA, respectively.



B SBSA [1SBSB M SBSC

a

o
a © -
I SBSA SBSB | o SBSC
g- S | (de novo) (de novo) (de novo)
ER O 1 | | ]

o o
b

1.

Exposure

BT e

it~ e L ] { |

AT

X N
0‘(\0“ < \,\0‘; &
QX
2
C
g Mouse o Naked mole-rat :
N L]
1] o
S s
s
=}
=
o
S
o
Age (years)
Extended DataFig.15| Mutational signatures and exposures asinferred Fig.1b.c, Regression of signature-specific mutation burdens onindividual age
denovo.a, Mutational signatures inferred de novo from the species for human, mouse and naked mole-rat samples. Regression was performed
mutational spectrashowninFig.2a.Signaturesareshownina using mean mutationburden perindividual. Shaded areasindicate 95%
human-genome-relative representation. SBSA is the de novo equivalent of confidenceintervals of the regression lines. BW, black-and-white; H, harbour;
COSMIC signature SBSI1 (Fig. 2b). b, Exposure of each sample to each of the N, naked; RT, ring-tailed.

mutational signatures shownina.Samplesare arranged horizontally asin



nature research

Alex Cagan, Ifiigo Martincorena

Last updated by author(s): Jan 11, 2022

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|Z| The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

|Z| For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|Z| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used

Data analysis Most analyses have been done with bespoke pipelines, deposited in Zenodo (https://doi.org/10.5281/zenodo.5554801) and GitHub (https://
github.com/baezortega/CrossSpecies2021). Analyses in R were done with R v3.6.2. R packages used include: caper (v1.0.1), deepSNV
(v1.32.0), dNdScv (v0.0.1.0), MutationalPatterns (v1.12.0), nime (v3.1-137), sigfit (v2.1.0). Our pipeline makes use of the software BWA
(v0.7.17-r1188), CaVEMan (v1.13.15), Pindel (v3.3.0), bedtools (v2.17.0), biobambam?2 (v2.0.86), Indelwald (v24/09/2021).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

DNA sequence data have been deposited in the European Genome-Phenome Archive (EGA; https://ega-archive.org) under overarching accession
EGAD00001008032. Preprocessed data files used in the analyses have been deposited in Zenodo (https://doi.org/10.5281/zenodo.5554777). Human DNA sequence
data from a previous study (Lee-Six et al., 2019) are deposited in EGA (accession EGADO0001004192).
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Information on sample sizes is provided for all analyses. We selected samples from available individuals attempting to span a wide range of
ages. The requested sequencing coverage (40x) was chosen to achieve high sensitivity and specificity for clonal somatic variants.

Data exclusions  We excluded 41 samples due to evidence of polyclonality or poor sequencing quality. The criteria used to assess sample clonality and quality
are explained in the Methods, 'Sample filtering' section.

Replication To confirm the reproducibility of somatic variant calls we used laser capture microdissection to microdissect and sequence two sections from
the same mouse colorectal crypt. Both sections were submitted for independent library preparation, genome sequencing, variant calling and
filtering using our pipeline. The vast majority of somatic substitution calls were shared between both sections (see Methods & Supplementary
Figure 1c), confirming the replicability of our somatic variant calls.

Mutation signature extraction was performed with two different methods that gave broadly consistent results (Methods).
The main regression results were replicated using a number of different regression models (Methods).

Randomization  Our study design did not involve experimental groups. Covariates were controlled for by including them in our regression models (Methods).

Blinding We did not apply randomization because we did not have a case/control study design or treatment groups. While sample metadata (such as
animal age) did not inform the variant calling process, which was applied in an identical manner for all samples, there was no enforced
blinding procedure.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants
Clinical data

Dual use research of concern
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Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals We did not maintain laboratory animals specifically for this study. Tissue samples of rabbit were purchased from a commercial
provider. Samples from mouse, rat and naked mole rat were obtained from collaborators maintaining these lines for other research
projects. Samples from other species were collected opportunistically at necropsy. The species, strains, individuals, age and source
are reported in extended data tables 1 and 4.

Wild animals Sample materials were collected from a stranded wild harbour porpoise by the UK Cetacean Strandings Investigation Program (CSIP).
The individual was deceased at the time of sample collection. CSIP is funded by Defra and the devolved administration to investigate
and document strandings of cetaceans and other marine life around the UK coastline.

Field-collected samples  The study did not involve animals collected from the field.

Ethics oversight All animal samples were obtained with the approval of the local ethical review committee (AWERB) at the Wellcome Sanger Institute
and those at the holding institutions.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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