Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intelligent infrared sensing enabled by tunable moiré quantum geometry

Abstract

Quantum geometric properties of Bloch wave functions in solids, that is, Berry curvature and the quantum metric, are known to significantly influence the ground- and excited-state behaviour of electrons1,2,3,4,5. The bulk photovoltaic effect (BPVE), a nonlinear phenomenon depending on the polarization of excitation light, is largely governed by the quantum geometric properties in optical transitions6,7,8,9,10. Infrared BPVE has yet to be observed in graphene or moiré systems, although exciting strongly correlated phenomena related to quantum geometry have been reported in this emergent platform11,12,13,14. Here we report the observation of tunable mid-infrared BPVE at 5 µm and 7.7 µm in twisted double bilayer graphene (TDBG), arising from the moiré-induced strong symmetry breaking and quantum geometric contribution. The photoresponse depends substantially on the polarization state of the excitation light and is highly tunable by external electric fields. This wide tunability in quantum geometric properties enables us to use a convolutional neural network15,16 to achieve full-Stokes polarimetry together with wavelength detection simultaneously, using only one single TDBG device with a subwavelength footprint of merely 3 × 3 µm2. Our work not only reveals the unique role of moiré engineered quantum geometry in tunable nonlinear light–matter interactions but also identifies a pathway for future intelligent sensing technologies in an extremely compact, on-chip manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transport properties of the TDBG photodetector.
Fig. 2: Tunable linear BPVE in TDBG.
Fig. 3: Tunable circular BPVE in TDBG.
Fig. 4: Principles of the neural network infrared polarimetry and wavelength detection.
Fig. 5: Intelligent light sensing by leveraging a CNN.

Similar content being viewed by others

Data availability

The data that support the plots within this paper are available from the corresponding authors upon request. Source data are provided with this paper.

Code availability

The code and CNN used in this paper are available from the corresponding authors upon request.

References

  1. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  2. Ma, Q., Grushin, A. G. & Burch, K. S. Topology and geometry under the nonlinear electromagnetic spotlight. Nat. Mater. 20, 1601–1614 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Cook, A. M., Fregoso, B. M., De Juan, F., Coh, S. & Moore, J. E. Design principles for shift current photovoltaics. Nat. Commun. 8, 14176 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, e1501524 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. Sipe, J. & Shkrebtii, A. Second-order optical response in semiconductors. Phys. Rev. B 61, 5337–5352 (2000).

    Article  ADS  CAS  Google Scholar 

  6. Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017).

    Article  CAS  Google Scholar 

  7. Xu, S.-Y. et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2. Nat. Phys. 14, 900–906 (2018).

    Article  CAS  Google Scholar 

  8. Osterhoudt, G. B. et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 18, 471–475 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Ma, J. et al. Nonlinear photoresponse of type-II Weyl semimetals. Nat. Mater. 18, 476–481 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Akamatsu, T. et al. A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect. Science 372, 68–72 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 602, 41–50 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

    Article  Google Scholar 

  17. King-Smith, R. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Thonhauser, T., Ceresoli, D., Vanderbilt, D. & Resta, R. Orbital magnetization in periodic insulators. Phys. Rev. Lett. 95, 137205 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Xiao, D., Shi, J. & Niu, Q. Berry phase correction to electron density of states in solids. Phys. Rev. Lett. 95, 137204 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  ADS  Google Scholar 

  22. Wei, J., Xu, C., Dong, B., Qiu, C.-W. & Lee, C. Mid-infrared semimetal polarization detectors with configurable polarity transition. Nat. Photonics 15, 614–621 (2021).

    Article  ADS  CAS  Google Scholar 

  23. Maguid, E. et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 352, 1202–1206 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Tong, L. et al. Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat. Commun. 11, 2308 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, C. et al. Circularly polarized light detection using chiral hybrid perovskite. Nat. Commun. 10, 1927 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ishii, A. & Miyasaka, T. Direct detection of circular polarized light in helical 1D perovskite-based photodiode. Sci. Adv. 6, eabd3274 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shen, C. et al. Correlated states in twisted double bilayer graphene. Nat. Phys. 16, 520–525 (2020).

    Article  CAS  Google Scholar 

  29. Liu, X. et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 583, 221–225 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. He, M. et al. Symmetry breaking in twisted double bilayer graphene. Nat. Phys. 17, 26–30 (2021).

    Article  CAS  Google Scholar 

  31. Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 583, 215–220 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Burg, G. W. et al. Correlated insulating states in twisted double bilayer graphene. Phys. Rev. Lett. 123, 197702 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Arora, A., Kong, J. F. & Song, J. C. Strain-induced large injection current in twisted bilayer graphene. Phys. Rev. B 104, L241404 (2021).

  36. Rubio-Verdú, C. et al. Moiré nematic phase in twisted double bilayer graphene. Nat. Phys. 18, 196–202 (2022).

  37. Abadi, M. et al. TensorFlow: a system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI '16) 265–283 (USENIX Association, 2016).

  38. Chollet, F. et al. Keras. GitHub https://github.com/fchollet/keras (2015).

  39. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2014).

  40. Wilson, N. P., Yao, W., Shan, J. & Xu, X. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature 599, 383–392 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Kim, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Shorten, C. & Khoshgoftaar, T. M. A survey on image data augmentation for deep learning. J. Big Data 6, 60 (2019).

    Article  Google Scholar 

  45. Chebrolu, N. R., Chittari, B. L. & Jung, J. Flat bands in twisted double bilayer graphene. Phys. Rev. B 99, 235417 (2019).

    Article  ADS  CAS  Google Scholar 

  46. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hosur, P. Circular photogalvanic effect on topological insulator surfaces: Berry-curvature-dependent response. Phys. Rev. B 83, 035309 (2011).

    Article  ADS  CAS  Google Scholar 

  48. von Baltz, R. & Kraut, W. Theory of the bulk photovoltaic effect in pure crystals. Phys. Rev. B 23, 5590–5596 (1981).

    Article  ADS  Google Scholar 

  49. Bi, Z., Yuan, N. F. Q. & Fu, L. Designing flat bands by strain. Phys. Rev. B 100, 035448 (2019).

    Article  ADS  CAS  Google Scholar 

  50. Yates, J. R., Wang, X., Vanderbilt, D. & Souza, I. Spectral and Fermi surface properties from Wannier interpolation. Phys. Rev. B 75, 195121 (2007).

    Article  ADS  CAS  Google Scholar 

  51. Samuel, A. L. Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 3, 210–229 (1959).

    Article  MathSciNet  Google Scholar 

  52. Genty, G. et al. Machine learning and applications in ultrafast photonics. Nat. Photon. 15, 91–101 (2021).

    Article  ADS  CAS  Google Scholar 

  53. Giordani, T. et al. Machine learning-based classification of vector vortex beams. Phys. Rev. Lett. 124, 160401 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Gabor, N. M. et al. Hot carrier–assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Xu, X., Gabor, N. M., Alden, J. S., Van Der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Song, J. C. W., Rudner, M. S., Marcus, C. M. & Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Frenzel, A. J., Lui, C. H., Shin, Y. C., Kong, J. & Gedik, N. Semiconducting-to-metallic photoconductivity crossover and temperature-dependent Drude weight in graphene. Phys. Rev. Lett. 113, 056602 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Yuan, S. et al. Room temperature graphene mid-infrared bolometer with a broad operational wavelength range. ACS Photon. 7, 1206–1215 (2020).

    Article  CAS  Google Scholar 

  60. Kaplan, D., Holder, T. & Yan, B. Momentum shift current at terahertz frequencies in twisted bilayer graphene. Preprint at https://arxiv.org/abs/2101.07539 (2021).

  61. Chaudhary, S., Lewandowski, C. & Refael, G. Shift-current response as a probe of quantum geometry and electron-electron interactions in twisted bilayer graphene. Preprint at https://arxiv.org/abs/2107.09090 (2021).

Download references

Acknowledgements

F.X., S.Y. and C.M. acknowledge support by the National Science Foundation EFRI NewLAW programme under grant number 1741693 and the Yale Raymond John Wean Foundation. F.Z. and P.C. acknowledge the Texas Advanced Computing Center (TACC) for providing resources that have contributed to the research results reported in this work. F.Z. and P.C. acknowledge support by the Army Research Office under grant number W911NF-18-1-0416 and by the National Science Foundation under grant numbers DMR-1945351 through the CAREER program, DMR-1921581 through the DMREF program and DMR-2105139 through the CMP program. Growth of hBN crystals by K.W. and T.T. was supported by the Elemental Strategy Initiative conducted by the Japan Ministry of Education, Culture, Sports, Science and Technology (MEXT; grant number JPMXP0112101001), the Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (JSPS KAKENHI; grant number JP20H00354) and the Japan Science and Technology Agency Core Research for Evolutional Science and Technology (CREST; grant number JPMJCR15F3).

Author information

Authors and Affiliations

Authors

Contributions

C.M., S.Y., F.Z. and F.X. conceived the project. C.M. and S.Y. fabricated the devices, performed the measurements and developed the program for applying CNN. P.C. and F.Z. performed the theoretical analysis and calculations. K.W. and T.T. synthesized the hBN crystals. F.Z. and F.X. supervised the project. C.M., S.Y., P.C., F.Z. and F.X. analysed the results and wrote the manuscript.

Corresponding authors

Correspondence to Shaofan Yuan, Fan Zhang or Fengnian Xia.

Ethics declarations

Competing interests

C.M., S.Y., P.C., F.Z. and F.X. are evaluating the feasibility of a patent application based on the concepts and results in this work with their intellectual property offices.

Peer review

Peer review information

Nature thanks Chengkuo Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Temperature dependence of the resistance of TDBG D1.

a, Temperature coefficient of resistance mapping (the same as Fig. 1d) with the selected gate biases measured in b highlighted. b, Logarithmic values of the resistance R as a function of 100/T, measured at different sets of n and D highlighted in a.

Extended Data Fig. 2 Polarization dependence of Vph versus Ψ under 5 μm linearly polarized light in TDBG D1.

Measured photovoltage Vph as a function of the orientation angle \(\psi \) under 5 μm linearly polarized light at different sets of gate voltages. Inset: extracted amplitudes of Vc and Vs.

Extended Data Fig. 3 Power dependence of the photovoltage Vph.

a, Selected Vph oscillations as a function of Ψ, under different excitation powers. b, Amplitudes of the Vph oscillation curves, \({({V}_{{\rm{c}}}^{2}+{V}_{{\rm{s}}}^{2})}^{1/2}\), versus power on device at different sets of (VBG, VTG) combinations. The polarization-dependent components scale linearly with the power, confirming the second-order nature of the photoresponse. c and d, The overall photoresponse Vph, including both the polarization-dependent and -independent components, exhibiting a linear dependence on the power. The curves are measured at two selected polarization angles Ψ=45° and 135° with two sets of gate voltages (0V, −7.6V) and (14V, −7.6V).

Extended Data Fig. 4 Spatial dependence of the photovoltage Vph.

a, Spatial dependence of Vph as a function of the beam spot position x under linear polarized, 7.7 μm light excitation with Ψ = 135° and (VBG, VTG) = (0 V, −7.6 V). Blue, black, and red curves represent the photo-thermal effect, linear BPVE, and their summation, respectively. Inset: Optical image of the TDBG photodetector with the x- and y- axes. The device center is defined to be the origin (x, y = 0). b, Spatial dependence of the Vph along the y-axis (perpendicular to the Vph collection path) measured at (VBG, VTG) = (0 V, −7.6 V) under linearly polarized light with Ψ = 135° in TDBG D1, which can be fitted by a Gaussian peak function \({A}^{{\prime} }{e}^{-\frac{{y}^{2}}{2{{w}^{{\prime} }}^{2}}}\) (black curve).

Extended Data Fig. 5 Temperature dependence of the photovoltage Vph.

a, Temperature dependence of Vph oscillation curves at different sets of gate voltage combinations under the excitation of 7.7 μm linearly polarized light. b, Extracted oscillation amplitudes, \({({V}_{{\rm{c}}}^{2}+{V}_{{\rm{s}}}^{2})}^{1/2}\), versus temperature at different sets of gate voltage combinations.

Extended Data Fig. 6 Linear BPVE in TDBG D2.

a-d, Photovoltage Vph mappings as functions of top- (VTG) and back- (VBG) gate biases under the excitation of 5 μm linearly polarized light with orientation angles Ψ = 40°, 130°, 0° and 90°, measured at T = 79 K. Inset: optical image of D2 and schematic of the orientation angle Ψ of the incident light. D2 has a dimension of 2.2 μm \(\times \) 2 μm. e, Polarization dependence of Vph at different gate biases. Insets: extracted polarization-dependent components Vs and Vc. f, Linear dependence of the Vph amplitudes on the power at selected gate biases. g, Temperature dependence of the amplitudes of Vph.

Extended Data Fig. 7 Twist angle-dependence of the linear bulk photovoltaic effect in TDBG.

a-d, Nonlinear conductivity elements σxxx (red) and σyyy (blue) as functions of the incident photon energy ħω when the Fermi level is placed in the CNP gap (top) and the electron-side superlattice gap (bottom) in TDBG with ΔV = 50 meV and the twist angle of 1.2°, 1.4°, 1.6° and 1.8°. Extracted σxxx and σyyy at e, ħω = 161 meV and f, 248 meV, corresponding to the wavelengths of 7.7 μm and 5 μm used in our experiments, respectively.

Extended Data Fig. 8 Complete plots of the polarization outputs from the total 91 training and 12 test data sets.

Complete polarization outputs from the total 103 CNN data sets projected to a, \({S}_{1}\)-\({S}_{2}\) and b, \({S}_{2}\)-\({S}_{3}\) planes. Blue circles are measured values with error bars determined by the errors in measuring the orientation angle Ψ and the ellipticity angle χ (Methods). Red (Orange) spheres are corresponding outputs from CNN training (test) data sets.

Extended Data Fig. 9 Speed and noise characterizations of the TDBG as a photodetector.

a, Photovoltage Vph as a function of the chopping frequency measured under the excitation of 7.7 μm linearly polarized light with Ψ = 45°. b, Voltage noise spectral density measured with zero in-plane electric bias without light illumination. Noise density spikes at multiples of 60 Hz are caused by the power line “hums” in the ground loop. Both measurements were taken at T = 79 K and (VBG, VTG) = (2 V, −7.6 V) in TDBG D1.

Supplementary information

Supplementary Information

Supplementary text, figures, equations and references.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Yuan, S., Cheung, P. et al. Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature 604, 266–272 (2022). https://doi.org/10.1038/s41586-022-04548-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04548-w

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing