Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autonomous fuelled directional rotation about a covalent single bond

Abstract

Biology operates through autonomous chemically fuelled molecular machinery1, including rotary motors such as adenosine triphosphate synthase2 and the bacterial flagellar motor3. Chemists have long sought to create analogous molecular structures with chemically powered, directionally rotating, components4,5,6,7,8,9,10,11,12,13,14,15,16,17. However, synthetic motor molecules capable of autonomous 360° directional rotation about a single bond have proved elusive, with previous designs lacking either autonomous fuelling7,10,12 or directionality6. Here we show that 1-phenylpyrrole 2,2′-dicarboxylic acid18,19 (1a) is a catalysis-driven20,21 motor that can continuously transduce energy from a chemical fuel9,20,21,22,23,24,25,26,27 to induce repetitive 360° directional rotation of the two aromatic rings around the covalent N–C bond that connects them. On treatment of 1a with a carbodiimide21,25,26,27, intramolecular anhydride formation between the rings and the anhydride’s hydrolysis both occur incessantly. Both reactions are kinetically gated28,29,30 causing directional bias. Accordingly, catalysis of carbodiimide hydration by the motor molecule continuously drives net directional rotation around the N–C bond. The directionality is determined by the handedness of both an additive that accelerates anhydride hydrolysis and that of the fuel, and is easily reversed additive31. More than 97% of fuel molecules are consumed through the chemical engine cycle24 with a directional bias of up to 71:29 with a chirality-matched fuel and additive. In other words, the motor makes a ‘mistake’ in direction every three to four turns. The 26-atom motor molecule’s simplicity augurs well for its structural optimization and the development of derivatives that can be interfaced with other components for the performance of work and tasks32,33,34,35,36.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical engine cycle of an autonomous, continuously operating, chemically fuelled single bond rotary motor.
Fig. 2: Mechanical gating of 1-arylpyrrole 2,2′-dicarboxylic acids (1).
Fig. 3: Chemical transformations of 1-arylpyrrole 2,2′-dicarboxylic acids (1).
Fig. 4: Autonomous chemically fuelled operation of 1-arylpyrrole 2,2′-dicarboxylic acids (1).

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and its Supplementary Information, or are available from the Mendeley data repository (https://data.mendeley.com/) at http://doi.org/10.17632/2zvst4kg2w.1.

References

  1. Schliwa, M. & Woehlke, G. Molecular motors. Nature 422, 759–765 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Boyer, P. D. Energy, life, and ATP (Nobel lecture). Angew. Chem. Int. Ed. 37, 2296–2307 (1998).

    Article  Google Scholar 

  3. Santiveri, M. et al. Structure and function of stator units of the bacterial flagellar motor. Cell 183, 244–257 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Kelly, T. R., Tellitu, I. & Sestelo, J. P. In search of molecular ratchets. Angew. Chem. Int. Ed. Engl. 36, 1866–1868 (1997).

    Article  CAS  Google Scholar 

  5. Kelly, T. R., De Silva, H. & Silva, R. A. Unidirectional rotary motion in a molecular system. Nature 401, 150–152 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Mock, W. L. & Ochwat, K. J. Theory and example of a small-molecule motor. J. Phys. Org. Chem. 16, 175–182 (2003).

    Article  CAS  Google Scholar 

  7. Fletcher, S. P., Dumur, F., Pollard, M. M. & Feringa, B. L. A reversible, unidirectional molecular rotary motor driven by chemical energy. Science 310, 80–82 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Dahl, B. J. & Branchaud, B. P. 180° unidirectional bond rotation in a biaryl lactone artificial molecular motor prototype. Org. Lett. 8, 5841–5844 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Wilson, M. R. et al. An autonomous chemically fuelled small-molecule motor. Nature 534, 235–240 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Collins, B. S. L., Kistemaker, J. C. M., Otten, E. & Feringa, B. L. A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle. Nat. Chem. 8, 860–866 (2016).

    Article  CAS  Google Scholar 

  11. Erbas-Cakmak, S. et al. Rotary and linear molecular motors driven by pulses of a chemical fuel. Science 358, 340–343 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Zhang, Y. et al. A chemically driven rotary molecular motor based on reversible lactone formation with perfect unidirectionality. Chem 6, 2420–2429 (2020).

    Article  CAS  Google Scholar 

  13. Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Pooler, D. R. S., Lubbe, A. S., Crespi, S. & Feringa, B. L. Designing light-driven rotary molecular motors. Chem. Sci. 12, 14964–14986 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kelly, T. R. et al. Progress toward a rationally designed, chemically powered rotary molecular motor. J. Am. Chem. Soc. 129, 376–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Feynman, R. P., Leighton, R. B. & Sands, M. The Feynman Lectures on Physics Vol. 1, Ch. 46 (Addison-Wesley Publishing Company, 1963).

  17. Davis, A. P. Tilting at windmills? The second law survives. Angew. Chem. Int. Ed. 37, 909–910 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Fogassy, K. et al. Efficient synthesis and resolution of (±)-1-[2-carboxy-6-(trifluoromethyl)phenyl]pyrrole-2-carboxylic acid. Tetrahedron Asymmetry 11, 4771–4780 (2000).

    Article  CAS  Google Scholar 

  19. Faigl, F., Tárkányi, G., Fogassy, K., Tepfenhardt, D. & Thurner, A. Synthesis and stereochemical stability of new atropisomeric 1-(substituted phenyl)pyrrole derivatives. Tetrahedron 64, 1371–1377 (2008).

    Article  CAS  Google Scholar 

  20. Amano, S., Fielden, S. D. P. & Leigh, D. A. A catalysis-driven artificial molecular pump. Nature 594, 529–534 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Borsley, S., Leigh, D. A. & Roberts, B. M. W. A doubly kinetically-gated information ratchet autonomously driven by carbodiimide hydration. J. Am. Chem. Soc. 143, 4414–4420 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Kariyawasam, L. S., Hossain, M. M. & Hartley, C. S. The transient covalent bond in abiotic nonequilibrium systems. Angew. Chem. Int. Ed. 60, 12648–12658 (2021).

    Article  CAS  Google Scholar 

  24. Amano, S., Borsley, S., Leigh, D. A. & Sun, Z. Chemical engines: driving systems away from equilibrium through catalyst reaction cycles. Nat. Nanotechnol. 16, 1057–1067 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Tena-Solsona, M. et al. Non-equilibrium dissipative supramolecular materials with a tunable lifetime. Nat. Commun. 8, 15895 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kariyawasam, L. S. & Hartley, C. S. Dissipative assembly of aqueous carboxylic acid anhydrides fueled by carbodiimides. J. Am. Chem. Soc. 139, 11949–11955 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Bal, S., Das, K., Ahmed, S. & Das, D. Chemically fueled dissipative self-assembly that exploits cooperative catalysis. Angew. Chem. Int. Ed. 58, 244–247 (2019).

    Article  CAS  Google Scholar 

  28. Astumian, R. D. Irrelevance of the power stroke for the directionality, stopping force, and optimal efficiency of chemically driven molecular machines. Biophys. J. 108, 291–303 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Astumian, R. D., Mukherjee, S. & Warshel, A. The physics and physical chemistry of molecular machines. ChemPhysChem 17, 1719–1741 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dálaigh, C. Ó. & Connon, S. J. Nonenzymatic acylative kinetic resolution of Baylis-Hillman adducts. J. Org. Chem. 72, 7066–7069 (2007).

    Article  PubMed  Google Scholar 

  32. Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015).

    Article  ADS  PubMed  Google Scholar 

  33. García-López, V. et al. Molecular machines open cell membranes. Nature 548, 567–572 (2017).

    Article  ADS  PubMed  Google Scholar 

  34. Feng, L. et al. Active mechanisorption driven by pumping cassettes. Science 374, 1215–1221 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Thomas, D., et al. Pumping between phases with a pulsed-fuel molecular ratchet. Preprint at https://doi.org/10.33774/chemrxiv-2021-fl7tv (2021).

  36. Zhang, Q. et al. Muscle-like artificial molecular actuators for nanoparticles. Chem 4, 2670–2684 (2018).

    Article  CAS  Google Scholar 

  37. Astumian, R. D. & Bier, M. Mechanochemical coupling of the motion of molecular motors to ATP hydrolysis. Biophys. J. 70, 637–653 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Astumian, R. D. Thermodynamics and kinetics of a Brownian Motor. Science 276, 917–922 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Serreli, V., Lee, C.-F., Kay, E. R. & Leigh, D. A. A molecular information ratchet. Nature 445, 523–527 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Alvarez-Pérez, M., Goldup, S. M., Leigh, D. A. & Slawin, A. M. Z. A chemically-driven molecular information ratchet. J. Am. Chem. Soc. 130, 1836–1838 (2008).

    Article  PubMed  Google Scholar 

  41. Astumian, R. D. Kinetic asymmetry allows macromolecular catalysts to drive an information ratchet. Nat. Commun. 10, 3837 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  42. Jayalath, I. M., Wang, H., Mantel, G., Kariyawasam, L. S. & Hartley, C. S. Chemically fueled transient geometry changes in diphenic acids. Org. Lett. 22, 7567–7571 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Jayalath, I. M., Gerken, M. M., Mantel, G. & Hartley, C. S. Substituent effects on transient, carbodiimide-induced geometry changes in diphenic acids. J. Org. Chem. 86, 12024–12033 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Amano, S. et al. Insights from an information thermodynamics analysis of a synthetic molecular motor. Nat. Chem. (2022) https://doi.org/10.1038/s41557-022-00899-z.

  45. Ma, B. & Nussinov, R. Enzyme dynamics point to stepwise conformational selection in catalysis. Curr. Opin. Chem. Biol. 14, 652–659 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kamerlin, S. C. & Warshel, A. At the dawn of the 21st century: is dynamics the missing link for understanding enzyme catalysis? Proteins 78, 1339–1375 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Krajnik, B. et al. Defocused imaging of UV-driven surface-bound molecular motors. J. Am. Chem. Soc. 139, 7156–7159 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Roke, D., Wezenberg, S. J. & Feringa, B. L. Molecular rotary motors: unidirectional motion around double bonds. Proc. Natl. Acad. Sci. USA 115, 9423–9431 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Engineering and Physical Sciences Research Council (EPSRC; grant number EP/P027067/1), the European Research Council (ERC; Advanced Grant number 786630) and the German Research Foundation (DFG; Individual Postdoctoral Fellowship to E.K.) for funding, the University of Manchester’s Department of Chemistry Services for mass spectrometry, I. J. Vitorica-Yrezabal for X-ray crystallography used to assign atropisomer handedness, S. Amano and J. M. Gallagher for useful discussions, and S. Jantzen of Biocinematics for the rotary motor animation. D.A.L. is a Royal Society Research Professor.

Author information

Authors and Affiliations

Authors

Contributions

S.B., E.K. and B.M.W.R. designed and carried out the experiments. D.A.L. directed the research. All authors contributed to the analysis of the results and the writing of the manuscript.

Corresponding author

Correspondence to David A. Leigh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this article. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary sections 1–7 and Appendix

Supplementary Video 1

Animation of the design and autonomous chemically fuelled rotation of motor molecule 1a. Credit: Stuart Jantzen, Biocinematics.

Peer Review File

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borsley, S., Kreidt, E., Leigh, D.A. et al. Autonomous fuelled directional rotation about a covalent single bond. Nature 604, 80–85 (2022). https://doi.org/10.1038/s41586-022-04450-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04450-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing