Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for the association of triatomic molecules in ultracold 23Na40K + 40K mixtures

Abstract

Ultracold assembly of diatomic molecules has enabled great advances in controlled chemistry, ultracold chemical physics and quantum simulation with molecules1,2,3. Extending the ultracold association to triatomic molecules will offer many new research opportunities and challenges in these fields. A possible approach is to form triatomic molecules in a mixture of ultracold atoms and diatomic molecules by using a Feshbach resonance between them4,5. Although ultracold atom–diatomic-molecule Feshbach resonances have been observed recently6,7, using these resonances to form triatomic molecules remains challenging. Here we report on evidence of the association of triatomic molecules near the Feshbach resonance between 23Na40K molecules in the rovibrational ground state and 40K atoms. We apply a radio-frequency pulse to drive the free-bound transition in ultracold mixtures of 23Na40K and 40K and monitor the loss of 23Na40K molecules. The association of triatomic molecules manifests itself as an additional loss feature in the radio-frequency spectra, which can be distinguished from the atomic loss feature. The observation that the distance between the association feature and the atomic transition changes with the magnetic field provides strong evidence for the formation of triatomic molecules. The binding energy of the triatomic molecules is estimated from the measurements. Our work contributes to the understanding of the complex ultracold atom–molecule Feshbach resonances and may open up an avenue towards the preparation and control of ultracold triatomic molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the rf association of triatomic molecules in the vicinity of a Feshbach resonance between 23Na40K and 40K.
Fig. 2: Rf spectra measured at different magnetic fields near the Feshbach resonance between |0, 0, −3/2, −3 and |9/2, −7/2.
Fig. 3: Binding energies of the triatomic molecules as a function of the magnetic field.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files). Source data are provided with this paper.

References

  1. Krems, R. V. Cold controlled chemistry. Phys. Chem. Chem. Phys. 10, 4079–4092 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Carr, L. D., DeMille, D., Krems, R. V. & Ye, J. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009).

    Article  ADS  Google Scholar 

  3. Quéméner, G. & Julienne, P. S. Ultracold molecules under control. Chem. Rev. 112, 4949–5011 (2012).

    Article  PubMed  Google Scholar 

  4. Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

    Article  ADS  CAS  Google Scholar 

  5. Köhler, T., Góral, K. & Julienne, P. S. Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311–1361 (2006).

    Article  ADS  Google Scholar 

  6. Yang, H. et al. Observation of magnetically tunable Feshbach resonances in ultracold 23Na40K + 40K collisions. Science 363, 261–264 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Wang, X.-Y. et al. Magnetic Feshbach resonances in collisions of 23Na40K with 40K. New J. Phys. 23, 115010 (2021).

    Article  ADS  CAS  Google Scholar 

  8. Shuman, E. S., Barry, J. F. & DeMille, D. Laser cooling of a diatomic molecule. Nature 467, 820–823 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Barry, J. F. et al. Magneto-optical trapping of a diatomic molecule. Nature 512, 286–289 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Cheuk, L. W. et al. Λ-enhanced imaging of molecules in an optical trap. Phys. Rev. Lett. 121, 083201 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Caldwell, L. et al. Deep laser cooling and efficient magnetic compression of molecules. Phys. Rev. Lett. 123, 033202 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Ding, S., Wu, Y., Finneran, I. A., Burau, J. J. & Ye, J. Sub-Doppler cooling and compressed trapping of YO molecules at μK temperatures. Phys. Rev. X 10, 021049 (2020).

    CAS  Google Scholar 

  13. Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Molony, P. K. et al. Creation of ultracold 87Rb133Cs molecules in the rovibrational ground state. Phys. Rev. Lett. 113, 255301 (2014).

    Article  ADS  PubMed  Google Scholar 

  15. Takekoshi, T. et al. Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state. Phys. Rev. Lett. 113, 205301 (2014).

    Article  ADS  PubMed  Google Scholar 

  16. Park, J. W., Will, S. A. & Zwierlein, M. W. Ultracold dipolar gas of fermionic 23Na40K molecules in their absolute ground state. Phys. Rev. Lett. 114, 205302 (2015).

    Article  ADS  PubMed  Google Scholar 

  17. Guo, M. et al. Creation of an ultracold gas of ground-state dipolar 23Na87Rb molecules. Phys. Rev. Lett. 116, 205303 (2016).

    Article  ADS  PubMed  Google Scholar 

  18. Rvachov, T. M. et al. Long-lived ultracold molecules with electric and magnetic dipole moments. Phys. Rev. Lett. 119, 143001 (2017).

    Article  ADS  PubMed  Google Scholar 

  19. Seeßelberg, F. et al. Modeling the adiabatic creation of ultracold polar 23Na40K molecules. Phys. Rev. A 97, 013405 (2018).

    Article  ADS  Google Scholar 

  20. Voges, K. K. et al. Ultracold gas of bosonic 23Na39K ground-state molecules. Phys. Rev. Lett. 125, 083401 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Liu, L. R. et al. Building one molecule from a reservoir of two atoms. Science 360, 900–903 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. He, X. et al. Coherently forming a single molecule in an optical trap. Science 370, 331–335 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Ospelkaus, S. et al. Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science 327, 853–857 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Hu, M.-G. et al. Direct observation of bimolecular reactions of ultracold KRb molecules. Science 366, 1111–1115 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Son, H., Park, J. J., Ketterle, W. & Jamison, A. O. Collisional cooling of ultracold molecules. Nature 580, 197–200 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. DeMarco, L. et al. A degenerate Fermi gas of polar molecules. Science 363, 853–856 (2019).

    Article  ADS  CAS  Google Scholar 

  27. Valtolina, G. et al. Dipolar evaporation of reactive molecules to below the Fermi temperature. Nature 588, 239–243 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kozyryev, I. et al. Sisyphus laser cooling of a polyatomic molecule. Phys. Rev. Lett. 118, 173201 (2017).

    Article  ADS  PubMed  Google Scholar 

  29. Zeppenfeld, M. et al. Sisyphus cooling of electrically trapped polyatomic molecules. Nature 491, 570–573 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Mitra, D. et al. Direct laser cooling of a symmetric top molecule. Science 369, 1366–1369 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Qiu, M. et al. Observation of Feshbach resonances in the F + H2 → HF + H reaction. Science 311, 1440–1443 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Vogels, S. N. et al. Imaging resonances in low-energy NO-He inelastic collisions. Science 350, 787–790 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Chefdeville, S. et al. Observation of partial wave resonances in low-energy O2–H2 inelastic collisions. Science 341, 1094–1096 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Klein, A. et al. Directly probing anisotropy in atom–molecule collisions through quantum scattering resonances. Nat. Phys. 13, 35–38 (2017).

    Article  CAS  Google Scholar 

  35. Regal, C. A., Ticknor, C., Bohn, J. L. & Jin, D. S. Creation of ultracold molecules from a Fermi gas of atoms. Nature 424, 47–50 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Herbig, J. et al. Preparation of a pure molecular quantum gas. Science 301, 1510–1513 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Thompson, S. T., Hodby, E. & Wieman, C. E. Ultracold molecule production via a resonant oscillating magnetic field. Phys. Rev. Lett. 95, 190404 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Ospelkaus, C. et al. Ultracold heteronuclear molecules in a 3D optical lattice. Phys. Rev. Lett. 97, 120402 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Lompe, T. et al. Radio-frequency association of Efimov trimers. Science 330, 940–944 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Nakajima, S., Horikoshi, M., Mukaiyama, T., Naidon, P. & Ueda, M. Measurement of an Efimov trimer binding energy in a three-component mixture of 6Li. Phys. Rev. Lett. 106, 143201 (2011).

    Article  ADS  PubMed  Google Scholar 

  41. Machtey, O., Shotan, Z., Gross, N. & Khaykovich, L. Association of Efimov trimers from a three-atom continuum. Phys. Rev. Lett. 108, 210406 (2012).

    Article  ADS  PubMed  Google Scholar 

  42. Christianen, A., Zwierlein, M. W., Groenenboom, G. C. & Karman, T. Photoinduced two-body loss of ultracold molecules. Phys. Rev. Lett. 123, 123402 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Gregory, P. D., Blackmore, J. A., Bromley, S. L. & Cornish, S. L. Loss of ultracold 87Rb133Cs molecules via optical excitation of long-lived two-body collision complexes. Phys. Rev. Lett. 124, 163402 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Liu, Y. et al. Photo-excitation of long-lived transient intermediates in ultracold reactions. Nat. Phys. 16, 1132–1136 (2020).

    Article  ADS  CAS  Google Scholar 

  45. Nichols, M. A. et al. Detection of long-lived complexes in ultracold atom-molecule collisions. Preprint at https://arxiv.org/abs/2105.14960 (2021).

  46. Balakrishnan, N. On the role of van der Waals interaction in chemical reactions at low temperatures. J. Chem. Phys. 121, 5563–5566 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Krems, R. & Dalgarno, A. Quantum-mechanical theory of atom-molecule and molecular collisions in a magnetic field: spin depolarization. J. Chem. Phys. 120, 2296–2307 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Lepers, M. & Dulieu, O. Long-range interactions between ultracold atoms and molecules including atomic spin–orbit. Phys. Chem. Chem. Phys. 13, 19106–19113 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Żuchowski, P. S., Kosicki, M., Kodrycka, M. & Soldán, P. van der Waals coefficients for systems with ultracold polar alkali-metal molecules. Phys. Rev. A 87, 022706 (2013).

    Article  ADS  Google Scholar 

  50. Gao, B. Angular-momentum-insensitive quantum-defect theory for diatomic systems. Phys. Rev. A 64, 010701 (2001).

    Article  ADS  Google Scholar 

  51. Gao, B., Tiesinga, E., Williams, C. J. & Julienne, P. S. Multichannel quantum-defect theory for slow atomic collisions. Phys. Rev. A 72, 042719 (2005).

    Article  ADS  Google Scholar 

  52. Crubellier, A. & Luc-Koenig, E. Threshold effects in the photoassociation of cold atoms: R−6 model in the Milne formalism. J. Phys. B At. Mol. Opt. Phys. 39, 1417 (2006).

    Article  ADS  CAS  Google Scholar 

  53. Crubellier, A., González-Férez, R., Koch, C. P. & Luc-Koenig, E. Asymptotic model for shape resonance control of diatomics by intense non-resonant light. New J. Phys. 17, 045020 (2015).

    Article  ADS  Google Scholar 

  54. Gao, B. Multichannel quantum-defect theory for anisotropic interactions. Preprint at https://arxiv.org/abs/2008.08018 (2020).

  55. Son, H. et al. Control of reactive collisions by quantum interference. Preprint at https://arxiv.org/abs/2109.03944 (2021).

  56. González-Martnez, M. L. & Hutson, J. M. Effect of hyperfine interactions on ultracold molecular collisions: NH(3) with Mg(1s) in magnetic fields. Phys. Rev. A 84, 052706 (2011).

    Article  ADS  Google Scholar 

  57. Morita, M., Kłos, J. & Tscherbul, T. V. Full-dimensional quantum scattering calculations on ultracold atom-molecule collisions in magnetic fields: the role of molecular vibrations. Phys. Rev. Res. 2, 043294 (2020).

    Article  CAS  Google Scholar 

  58. Hauser, A. W. & Ernst, W. E. Homo- and heteronuclear alkali metal trimers formed on helium nanodroplets. Part I. Vibronic spectra simulations based on ab initio calculations. Phys. Chem. Chem. Phys. 13, 18762–18768 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Schnabel, J., Kampschulte, T., Rupp, S., Hecker Denschlag, J. & Köhn, A. Towards photoassociation processes of ultracold rubidium trimers. Phys. Rev. A 103, 022820 (2021).

    Article  ADS  CAS  Google Scholar 

  60. Pérez-Ros, J., Lepers, M. & Dulieu, O. Theory of long-range ultracold atom-molecule photoassociation. Phys. Rev. Lett. 115, 073201 (2015).

    Article  ADS  Google Scholar 

  61. Park, J. W. et al. Quantum degenerate Bose-Fermi mixture of chemically different atomic species with widely tunable interactions. Phys. Rev. A 85, 051602 (2012).

    Article  ADS  Google Scholar 

  62. Liu, L. et al. Observation of interference between resonant and detuned STIRAP in the adiabatic creation of 23Na40K molecules. Phys. Rev. Lett. 122, 253201 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Julienne, J. Hutson, J. Ye, B. Gao and J. Doyle for helpful discussions. This work was supported by the National Key R&D Program of China (under grant number 2018YFA0306502), the National Natural Science Foundation of China (under grant numbers 11521063 and 11904355), the Chinese Academy of Sciences, the Anhui Initiative in Quantum Information Technologies, the Shanghai Municipal Science and Technology Major Project (grant number 2019SHZDZX01) and the Shanghai Rising-Star Program (grant number 20QA1410000).

Author information

Authors and Affiliations

Authors

Contributions

B.Z., C.-L.B. and J.-W.P. conceived the experiments. H.Y., X.-Y.W., Z.S., J.C., D.-C.Z. and J.R. carried out the experiments. All authors analysed the data and contributed to the writing of the paper. B.Z., C.-L.B. and J.-W.P. supervised the work.

Corresponding authors

Correspondence to Bo Zhao, Chun-Li Bai or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 The magnetic field as a function of the hold time.

After preparation of the 23Na40K molecules, the magnetic field is then ramped to the target value Bt in 3 ms, after which we wait 18 ms for the magnetic field to stabilize. The rf association pulse is applied between 21 ms and 51 ms. The magnetic field is measured by rf spectroscopy. The dashed lines represent the target magnetic field Bt.

Source data

Extended Data Fig. 2 Comparison of the rf spectra in the continuous-wave dipole trap and in the intensity-modulated dipole trap.

a, b, The rf spectra measured in the continuous-wave dipole trap. We use two overlapping Gaussian functions to fit the data (red solid line), where the Gaussian function for the atomic loss feature is centred at the atomic transition. Each point represents the average of 6–10 measurements and error bars represent the standard error of the mean. As a comparison, the rf spectra measured in the intensity-modulated optical dipole trap are shown in c and d. It can be seen that the association feature is better resolved in the modulated dipole trap.

Source data

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Wang, XY., Su, Z. et al. Evidence for the association of triatomic molecules in ultracold 23Na40K + 40K mixtures. Nature 602, 229–233 (2022). https://doi.org/10.1038/s41586-021-04297-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-04297-2

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing