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            Abstract
The brain is the seat of body weight homeostasis. However, our inability to control the increasing prevalence of obesity highlights a need to look beyond canonical feeding pathways to broaden our understanding of body weight control1,2,3. Here we used a reverse-translational approach to identify and anatomically, molecularly and functionally characterize a neural ensemble that promotes satiation. Unbiased, task-based functional magnetic resonance imaging revealed marked differences in cerebellar responses to food in people with a genetic disorder characterized by insatiable appetite. Transcriptomic analyses in mice revealed molecularly and topographically -distinct neurons in the anterior deep cerebellar nuclei (aDCN) that are activated by feeding or nutrient infusion in the gut. Selective activation of aDCN neurons substantially decreased food intake by reducing meal size without compensatory changes to metabolic rate. We found that aDCN activity terminates food intake by increasing striatal dopamine levels and attenuating the phasic dopamine response to subsequent food consumption. Our study defines a conserved satiation centre that may represent a novel therapeutic target for the management of excessive eating, and underscores the utility of a ‘bedside-to-bench’ approach for the identification of neural circuits that influence behaviour.
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                    Fig. 1: The deep cerebellum is activated by food.[image: ]


Fig. 2: Activation of aDCN suppresses food intake without metabolic compensation.[image: ]


Fig. 3: Molecular and topographical organization of nutrient-sensing DCN neurons.[image: ]


Fig. 4: aDCN suppresses food intake via hedonic, but not homeostatic, signaling.[image: ]
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                Materials availability

              
              This study did not generate any new unique reagents. Mouse lines used in this study are on deposit at Jackson Laboratories and are listed under ‘Mice’.

            

Data and code availability

              
              The sequencing datasets generated in this study are accessible at Gene Expression Omnibus under accession GSE184385. This manuscript contains all other datasets except the processed sequencing data, raw fibre photometry datasets and codes for analysis which have been uploaded to Mendeley Data (https://data.mendeley.com//datasets/j2mgy5486k/2). Source data are provided with this paper.
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Extended data figures and tables

Extended Data Fig. 1 fMRI paradigm for response to food cue.
Subjects with Prader-Willi syndrome (PWS) and controls underwent two separate scanning sessions (top left, group): either during fasting or post-meal (bottom left, session). During each scanning session, participants were presented with visual cues that alternate between food (muffin) and non-food (dog) categories (right, stimulus)8.


Extended Data Fig. 2 Neural activation pattern following food infusion and refeeding in mice.
(a-c) Experimental design for Targeted Recombination of Activated Populations (TRAP) labelling of neurons activated by water infusion (IG water), Ensure infusion (IG Ensure) or refeeding (Refed) in Fos2A::iCreER; Ai9 mice. (d-i) tdTomato expression in the DCN after water infusion (d; e, magnified of box in d), 1 kcal Ensure infusion (f; g, magnified of box in f), and chow refeeding (h; i, magnified of box in h). Scale bar, 500 µm (d, f, h), 100 µm (e, g, i). (j) Heatmap depicting the activated cells recombined in DCN subregions following infusion and refeeding (n = 9). (k-m) tdTomato expression in the nucleus tractus solitarius (NTS) 3 weeks after water infusion (k), 1 kcal Ensure infusion (l), and chow refeeding (m). Scale bar, 500 µm. (n-p) tdTomato expression in the paraventricular hypothalamic nucleus (PVH) 3 weeks after water infusion (n), 1 kcal Ensure infusion (o), and chow refeeding (p). Scale bar, 250 µm. (q-s) tdTomato expression in the arcuate hypothalamic nuclei (ARC) 3 weeks after water infusion (q), 1 kcal Ensure infusion (r), and chow refeeding (s). Scale bar, 250 µm. (t-v) tdTomato expression in the lateral parabrachial nucleus (LPBN) 3 weeks after water infusion (t), 1 kcal Ensure infusion (u), and chow refeeding (v). Scale bar, 250 µm. (w-y) tdTomato expression in the central amygdaloid nucleus (CEA) 3 weeks after water infusion (w), 1 kcal Ensure infusion (x), and chow refeeding (y). Scale bar, 500 µm. (z-bb) tdTomato expression in the bed nucleus of the stria terminalis (BNST) 3 weeks after water infusion (z), 1 kcal Ensure infusion (aa), and chow refeeding (bb). Scale bar, 250 μm. (cc) Heatmap depicting relative density of cells recombined following water and calorie intake (top), and 1 kcal Ensure infusion and refeeding (bottom, n = 9). (dd) Schematic depicting the DCN and key feeding brain regions that sense food cues and nutrients62. Statistical analysis in Supplementary Table 1
Source data.


Extended Data Fig. 3 Mapping the DCN subregions that suppress food intake.
(a) Schematic of the deep cerebellar nuclei. The lateral subnuclei of the anterior deep cerebellar nuclei (aDCN) are depicted in maroon (aDCN-LAT, consisting of Lat and LatPC, bregma -5.68 to -5.88 mm), interposed subnuclei of the aDCN are depicted in pink (aDCN-INT, consisting of IntA, IntDL, IntP, and IntPPC, bregma -6.00 to -6.35 mm). The posterior DCN is in grey (pDCN, consisting of IntP, IntPPC, Med, MedDL, and MedL, bregma -6.36 to -6.64 mm, see also e and g). (b) Distribution of cells expressing hM3D(Gq) across 9 DCN subnuclei in mice with hM3D(Gq) targeted to the lateral nucleus (aDCN-LAT) and mice with hM3D(Gq) targeted to the interposed nucleus (aDCN-INT). Mice with targeting to the LAT show a reduction in food intake following DREADD activation (aDCN-LAT in maroon, n = 5 mice, and aDCN-INT in pink, n=3 mice). (c) Schematised serial coronal sections depicting regions where hM3D expression results in food intake reduction (magenta). (d) Representative images of the entire DCN in a aDCN-LAT hM3D(Gq) mouse with hM3D(Gq) expression in the lateral nucleus. Scale bar, 2000 µm. (e) Expression of mCherry (as control viral vector) in the aDCN (red: mCherry). Scale bar, 500 µm. (f) Chow intake in mice with mCherry expression in the aDCN following vehicle or CNO treatment (n = 8, paired t-test, P = 0.539). (g) hM3D(Gq) expression in the pDCN (red: hM3D(Gq)). Scale bar, 500 µm. (h) Chow intake in mice with hM3D(Gq) expression in the pDCN following vehicle or CNO treatment (n = 12, paired t-test, P = 0.548). (i) Chow intake in mice with mCherry expression in the pDCN following vehicle or CNO treatment (n=8, paired t-test, P = 0.722). Data are expressed as mean ± SEM. Lat, lateral; LatPC, lateral parvicellular; IntDL, interposed dorsolateral; IntA, interposed anterior nucleus; IntP, interposed posterior; IntPPC, interposed posterior parvicellular; MedDL, medial dorsolateral; Med, medial; MedL, medial lateral. Statistical analysis in Supplementary Table 1
Source data.


Extended Data Fig. 4 Neural activity in the aDCN suppresses food intake independent of hunger state with no compensatory metabolic changes.
(a) Experimental design: meal pattern measurements of 24-h food-deprived mice following vehicle or CNO i.p. administration. (b) Latency to first bite in food-deprived mice with hM3D(Gq) expression in the aDCN-LAT (n = 9), aDCN-INT (n = 16) or mCherry control in the aDCN (n = 8) following vehicle or CNO treatment (two-way ANOVA interaction P < 0.001, main effect P = 0.005; Holm-Sidak’s, P < 0.001). (c) Average meal duration during a 1-h chow intake assay following 24-h food deprivation in mice with hM3D(Gq) expression in the aDCN-LAT (n = 9), aDCN-INT (n = 16 mice), or control mCherry expression in the aDCN (n = 8) following vehicle or CNO treatment (two-way ANOVA interaction P = 0.005, main effect P < 0.001; Holm-Sidak’s, P < 0.001). (d) Rate of food intake during a 1-h chow intake assay following 24-h food deprivation in mice with hM3D expression in the aDCN-LAT (n = 9), aDCN-INT (n = 16), or control mCherry expression in the aDCN (n = 8) following vehicle or CNO treatment (two-way ANOVA interaction P = 0.748). (e) Experimental design: meal pattern measurements of ad libitum fed mice following vehicle or CNO i.p. administration. (f) Chow intake in ad libitum fed mice with hM3D(Gq) expression following vehicle or CNO treatment (aDCN-LAT: n = 9, aDCN-INT: n = 16, mCherry control: n = 8; two-way ANOVA, interaction P = 0.001, main effect P = 0.006; Holm-Sidak’s, P < 0.001). (g) Latency to first bite in ad libitum fed mice with hM3D(Gq) expression following vehicle or CNO treatment (aDCN-LAT: n = 9, aDCN-INT: n = 16, mCherry control: n = 8; two-way ANOVA interaction P < 0.001, main effect P < 0.001; Holm-Sidak’s, P<0.001). (h) Chow intake in ad libitum fed mice with mCherry control or hM3D(Gq) expression in the pDCN following vehicle or CNO treatment (pDCN mCherry: n = 8, pDCN hM3D(Gq): n = 12; two-way ANOVA interaction P=0.358). (i) Schematic of the metabolic monitoring experiment. (j) Energy expenditure (kcal) over a 48-h period in mice with mCherry control (n = 8) or hM3D(Gq) (n = 7) expression in the aDCN-LAT (unpaired t-test, P = 0.004). (k) Energy intake (EI) and energy expenditure (EE) over 48-h period in mice with mCherry control or hM3D(Gq) expression in the aDCN-LAT following CNO treatment normalized to vehicle treatment (n = 7 control, 8 aDCN-LAT-hM3D(Gq), repeated measures two-way ANOVA interaction P < 0.001, main effect P<0.001; Holm-Sidak’s, P < 0.001, P = 0.009 (EE); P<0.001, P < 0.001, P < 0.001, P = 0.006 (EI)). Data are expressed as mean ± SEM, two-sided P values, t-tests and post-hoc comparisons: **P<0.01, ***P < 0.001, ANOVA interaction: ∞∞∞P < 0.01, ∞∞∞P<0.001; ANOVA main effect of group: ¤¤P < 0.01, ¤¤¤P<0.001. Statistical analysis in Supplementary Table 1
Source data.


Extended Data Fig. 5 aDCN activity suppresses food intake regardless of hedonic value of food.
(a) Experimental timeline: 24-h food deprivation followed by measurements of chow intake over 12-h (top). Cumulative kcal of chow intake in food-deprived mice with hM3D(Gq) expression in the aDCN-LAT following vehicle or CNO treatment (bottom; n = 9 hM3D(Gq); repeated measures two-way ANOVA interaction P < 0.001, main effect P < 0.001; Holm-Sidak’s, P = 0.094 (30 min), P=0.008 (1 h), P < 0.001 (2 h), P < 0.001 (4h), P < 0.001 (6h), P < 0.001 (8 h), P<0.001 (10 h), P < 0.001 (12 h)). (b) 12-h food intake in food-deprived mice expressing hM3D(Gq) in the aDCN-LAT (n = 9 mice, paired t-test, P = 0.008). (c) 12-h food intake in food-deprived mice expressing mCherry in the aDCN-LAT (n = 8 mice, paired t-test, P = 0.391). (d) Food intake during the first 2-h of refeeding in food-deprived mice expressing hM3D(Gq) in the aDCN-LAT (n = 9 mice, paired t-test, P < 0.001). (e) Food intake during the first 2-h of refeeding in food-deprived mice expressing mCherry in the aDCN-LAT (n = 8 mice, paired t-test, P = 0.223). (f) Experimental timeline: 24-h food deprivation followed by measurement of high fat high sugar (HFHS) diet intake over 12 h (top). Cumulative kcal of HFHS diet intake in food-deprived mice with hM3D(Gq) expression in the aDCN-LAT following vehicle or CNO treatment (bottom; n =  9 hM3D(Gq) mice; two-way repeated measures ANOVA interaction P < 0.001, main effect P<0.001; Holm-Sidak’s, P < 0.001 (30-min), P < 0.001 (1-h), P<0.001 (2-h), P < 0.001 (4-h), P<0.001 (6-h), P < 0.001 (8-h), P<0.001 (10-h), P < 0.001 (12-h)). (g) 12-h HFHS diet intake in food-deprived mice expressing hM3D(Gq) in the aDCN-LAT (n = 9 mice, paired t-test, P < 0.001). (h) 12-h HFHS diet intake in food-deprived mice expressing mCherry in the aDCN-LAT (n = 8 mice, paired t-test, P = 0.527). (i) Calorie intake during the first 2-h of HFHS diet refeeding in food-deprived mice expressing hM3D(Gq) in the aDCN-LAT (n = 9 mice, paired t-test, P < 0.001). (j) Calorie intake during the first 2-h of HFHS diet refeeding in food-deprived mice expressing mCherry in the aDCN-LAT (n=9 mice, paired t-test, P = 0.686). Data are expressed as mean ± SEM, two-sided P values, t-tests and post-hoc comparisons: **P<0.01, ***P < 0.001, ANOVA interaction: ∞∞∞P<0.001; ANOVA main effect of group: ¤¤¤P < 0.001. Statistical analysis in Supplementary Table 1
Source data.


Extended Data Fig. 6 Glutamatergic neurons in the DCN are activated by food intake.
(a-h) Fluorescent In Situ Hybridization (FISH) histochemistry in the lateral nucleus of the DCN in food-deprived (a, b, e, f) and chow-refed mice (c, d, g, h) (red, Homer1a; green, vGluT2; blue, vGAT in b and d, GlyT2 in f and h). Scale bars, 20 µm. (i) Homer1a expression in excitatory (vGluT2+) and inhibitory (vGAT+ or GlyT2+) DCN neurons following food deprivation or refeeding (n = 3 mice per group, two-way ANOVA main effect P < 0.001; Holm-Sidak’s, P = 0.034). (j) Number of excitatory (vGluT2+) and inhibitory (vGAT+ or GlyT2+) DCN neurons that express Homer1a following food deprivation or refeeding (n = 3 mice per group, two-way ANOVA main effect P = 0.009; Holm-Sidak’s, P = 0.023). (k, l) Expression level (k) and number (l) of Homer1a+ vGluT2+ neurons within the 3 major cerebellar nuclei following food deprivation or refeeding (n = 3 mice per group, two-way ANOVA, expression level main effect P = 0.013, number main effect P = 0.010; Holm-Sidak’s, expression level, P = 0.006, number, P = 0.025). Data are expressed as mean ± SEM, two-sided P values, t-tests and post-hoc comparisons: *P < 0.05, **P<0.01, ANOVA interaction: ∞∞∞P < 0.001; ANOVA main effect of group: ¤P < 0.05, ¤¤¤P < 0.001. Statistical analysis in Supplementary Table 1
Source data.


Extended Data Fig. 7 Gene expression gradient along the anterior-posterior axis of the DCN.
(a) Experimental design of single nucleus RNA sequencing of DCN neurons. (b) Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) plot of cerebellar cell types derived from microdissection of the DCN and surrounding tissues. (c) Principal component (PC) 1 loadings of select class I and class II defining genes expressed by vGluT2+ DCN neurons. (d) Celf4 (red) and Spp1 (blue) expression level in vGluT2+ neurons in the DCN, 492 neurons (two-way ANOVA interaction P < 0.001; Holm-Sidak’s, P<0.001, P < 0.001, P < 0.001, P < 0.001). (e, f) vGluT2 (red, e, f), Spp1 (green, e) and Celf4 (green, f) expression in the aDCN. Scale bar, 25 μm. (g) PC embedding of Miat expression, fluorescent in situ hybridization (FISH) and quantification of Miat levels in vGluT2+ neurons in the three major cerebellar nuclei (n = 1,434 neurons, one-way ANOVA P < 0.001; Holm-Sidak’s, P = 0.165, P < 0.001, P < 0.001). (h) PC embedding of Crhr1 expression, FISH, and quantification of Crhr1 levels in Miat+ neurons in the three major cerebellar nuclei (n = 1,434 neurons, one-way ANOVA P < 0.001; Holm-Sidak’s, P = 0.003, P=0.006, P < 0.001). (i) PC embedding of Dpp10 expression, FISH, and quantification of Dpp10 levels in Celf4+ neurons in the three major cerebellar nuclei (n = 2,261 neurons, one-way ANOVA P<0.001; Holm-Sidak’s, P < 0.001, P<0.001, P < 0.001). (j) PC embedding of Unc5d expression, FISH, and quantification of Unc5d levels in Celf4+ neurons in the three major cerebellar nuclei (n = 2,261 neurons, one-way ANOVA P < 0.001; Holm-Sidak’s, P<0.001, P < 0.001, P < 0.001). Scale bar, 100 µm. (k) FISH of Spp1 and Celf4 expression in vGluT2+ neurons of the interposed nucleus (left image: red, vGluT2; green, Spp1; right image: red, vGluT2; green, Celf4; n = 3, unpaired t-test, P < 0.001). Scale bar,100 µm. (l) FISH of Spp1 and Celf4 expression in vGluT2+ neurons in the medial nucleus (left image: red, vGluT2; green, Spp1; right image: red, vGluT2; green, Celf4; n = 3, unpaired t-test, P < 0.001). Scale bar, 100 µm. (m) Spp1 expression levels in vGluT2+ neurons across the three major cerebellar nuclei (n = 3, one-way ANOVA P < 0.001; Holm-Sidak’s, P = 0.946, P < 0.001, P < 0.001). (n) Celf4 expression levels in vGluT2+ neurons across the three major cerebellar nuclei (n=3, one-way ANOVA P < 0.001; Holm-Sidak’s, P = 0.026, P<0.001, P < 0.001). (o-r) Quantification of Spp1+ (o), Celf4+ (p), Spp1+Celf4+ (q) and Spp1–Celf4– (r) vGluT2+ neurons across the three major cerebellar nuclei (n = 3, one-way ANOVA (o) P = 0.002, (p) P<0.001; Holm-Sidak’s, (o) P = 0.190, P = 0.005, P = 0.002, (p) P = 0.982, P < 0.001, P<0.001, lateral versus interposed, lateral versus medial, and interposed versus medial, respectively). Data are expressed as mean ± SEM, two-sided P values, post-hoc comparisons: *P < 0.05, **P<0.01, ***P < 0.001; ANOVA interaction: ∞∞∞P < 0.001. Statistical analysis in Supplementary Table 1
Source data.


Extended Data Fig. 8 Molecular and topographical distinctions of DCN neurons that respond to food intake.
(a-f) Expression of activity-regulated transcript Homer1a63 (red) in the three major cerebellar nuclei following food deprivation (a, c, e) or refeeding (b, d, f). (g-l) Spp1 expression (green) in vGluT2+ neurons (blue) (g, i, k), and colocalised Spp1 (cyan, Spp1+vGluT2+ neurons) (h, j, l) in the three major cerebellar nuclei. (m-r) Celf4 expression (blue) in vGluT2+ neurons (red) (m, o, q), and colocalised Celf4 (magenta, Celf4+vGluT2+ neurons) (n, p, r) in the three major cerebellar nuclei. Scale bar, 100 µm. (s) Summary of the expression of Spp1 and Celf4 and the distribution of Homer1a+ DCN neurons. (t) Schematic of fibre photometry system. (u-w) Fibre targeting aDCN-LAT glutamatergic neurons in vGluT2::Cre mouse (u), expression of GCaMP6s (green) and vGluT2 (red) (v, w). Scale bar, 20 µm. (x-z) Heatmaps depicting ∆F/F of GCaMP6 signals in the aDCN-LAT glutamatergic neurons of ad libitum fed (x) and food-deprived (y) mice response to chow, and ad libitum fed mice response to non-food object (z, marble). Signals are aligned to the introduction of chow or non-food object (red line) (n = 7 mice). (aa) Average ∆F/F of GCaMP6 signals in the aDCN-LAT glutamatergic neurons (490 nm, green, and control 405 nm, magenta). Signals are aligned to the introduction of non-food object (red line). Dark line represents the mean and lighter shaded area represents SEMs (n = 7). (bb-cc) Mean (bb) and max (cc) ∆F/F GCaMP6s signals of aDCN-LAT glutamatergic neurons in response to chow, in ad libitum fed (grey) and food-deprived (red) mice, and response to non-food object in ad libitum fed mice (n=7, one-way ANOVA (bb) P < 0.001, (cc) P < 0.001; Holm-Sidak’s, (bb) P < 0.006, P = 0.475, P < 0.003, (cc) P<0.009, P=0.651, P = 0.011, ad libitum fed chow versus food deprivation chow, ad libitum fed chow versus non-food, food deprivation chow versus non-food, respectively). Data are expressed as mean ± SEM, two-sided P values, post-hoc comparisons: *P < 0.05, **P < 0.01. Statistical analysis in Supplementary Table 1
Source data.


Extended Data Fig. 9 Activation of arcuate AgRP neurons does not fully restore food intake suppression mediated by aDCN-LAT activation.
(a) Schematic depicting hM3D(Gq) expression in the aDCN-LAT, ChR2 expression and fibre implant in the arcuate nucleus (ARC) of a AgRP::Cre; Ai32 mouse for either individual or simultaneous activation.(b, c) ChR2-eYFP expression in AgRP ARC neurons (b) and hM3d(Gq) expression in the aDCN (c). Scale bar, 500 µm in b, 1000 µm in c. (d) Chow intake following AgRP neuron activation in ad libitum state (blue), aDCN neuron activation in food-deprived state (red), or AgRP and aDCN neuron activation in food-deprived state (pink) (n = 11, repeated measures one-way ANOVA, P = 0.001; Holm-Sidak’s, P < 0.001, P < 0.001, P = 0.024). Data are expressed as mean ± SEM, two-sided P values, post-hoc comparisons: *P < 0.05, **P < 0.01, ***P < 0.001. Statistical analysis in Supplementary Table 1
Source data.


Extended Data Fig. 10 Activation of aDCN neurons robustly increases striatal dopamine signalling that correlates with reduced food intake.
(a) Schematic depicting hM3D(Gq) expression in the DCN combined with GRABDA expression41 and fibre implant in the ventral striatum which receives projections from the ventral tegmental area (VTA) dopamine (DA) neurons64,65. (b) GRABDA expression and fibre placement in the ventral striatum. Scale bar, 1000 µm. (c, d) Average ∆F/F of GRABDA signals in the ventral striatum of food-deprived mCherry control (c) or aDCN-LAT hM3D(Gq) (d) mice treated with vehicle or CNO. Signals are aligned to the vehicle or CNO injection (red line). Dark line represents the mean and lighter shaded area represents SEMs. Corresponding heatmaps (right) depict ∆F/F of GRABDA signals in each mouse (n = 6 control mice, grey; n = 6 hM3D(Gq) aDCN-LAT mice, green). (e) Average ∆F/F of GRABDA signals in 3-min bins (n = 6 control mice, grey; n = 6 hM3D(Gq) aDCN-LAT mice, repeated measures two-way ANOVA interaction P < 0.001, main effect P < 0.001; Holm-Sidak’s, P = 0.027/ = 0.397/=0.625 (12-15 min), P < 0.001/<0.001/ < 0.001 (15-18 min), P < 0.001/<0.001/ < 0.001 (18-21 min), P<0.001/ < 0.001/ < 0.001 (21-24 min), P < 0.001/ < 0.001/ < 0.001 (24-27 min), P < 0.001/ < 0.001/ < 0.001 (27-30 min), hM3D(Gq) CNO to hM3D(Gq) vehicle/control CNO/control vehicle respectively). (f) Maximum ∆F/F of GRABDA signals in the ventral striatum of vehicle or CNO treated food-deprived mice with aDCN-LAT hM3D(Gq) (n = 6, paired t-test, P = 0.011). (g) Mean ∆F/F of GRABDA signals in the ventral striatum (n = 6, paired t-test, P = 0.002). (h) Maximum ∆F/F of GRABDA signals in the ventral striatum of vehicle or CNO treated food-deprived mice with aDCN mCherry control mice (n = 6, paired t-test, P = 0.242). (i) Mean ∆F/F of GRABDA signals in the ventral striatum of vehicle or CNO treated food-deprived mice with aDCN mCherry control mice (n = 6, paired t-test, P = 0.418). (j) Scatter plot comparing changes in GRABDA signals to amount of chow consumed in 1 h following activation of the aDCN in hM3D(Gq)-expressing mice treated with CNO (n = 13, Pearson correlation). (k) Average ∆F/F of GRABDA signals in the ventral striatum of food-deprived aDCN-INT hM3D(Gq) mice treated with vehicle or CNO. Signals are aligned to the vehicle or CNO injection (red line). Dark line represents the mean and lighter shaded area represents SEMs. Corresponding heatmaps (right) depict ∆F/F of GRABDA signals in each mouse (n = 7). (l) Average ∆F/F of GRABDA signals in 3-min bins following vehicle or CNO treatment of the aDCN-INT with hM3D(Gq) (n = 7, repeated measures two-way ANOVA interaction P = 0.301). (m) Maximum ∆F/F of GRABDA signals in the ventral striatum of vehicle or CNO treated food-deprived mice with aDCN-INT hM3D(Gq) mice (n = 7, paired t-test, P = 0.410). (n) Mean ∆F/F of GRABDA signals in the ventral striatum of vehicle or CNO treated food-deprived mice with aDCN-INT hM3D(Gq) mice (n = 7, paired t-test, P = 0.367). Data are expressed as mean ± SEM, two-sided P values, t-tests and post-hoc comparisons: *P < 0.05, **P < 0.01, ***P < 0.001; ANOVA interaction: ∞∞∞P < 0.001; ANOVA main effect of group: ¤¤¤P < 0.001. Statistical analysis in Supplementary Table 1
Source data.


Extended Data Fig. 11 Selective activation of glutamatergic aDCN neurons is sufficient to induce striatal dopamine surge and suppression of food intake.
(a) Schematic depicting hM3D(Gq) expression in the DCN combined with GRABDA expression and fibre implant in the striatum of a vGluT2::Cre mouse. (b-d) IHC analysis of Cre dependent hM3D(Gq) expression in the DCN of vGluT2::Cre mouse (green, vGluT2, red, hM3D(Gq), blue, DAPI). Scale bar, 25 µm in b-d. (e) Average ∆F/F of GRABDA signals in the ventral striatum of food-deprived mice expressing hM3D(Gq) in glutamatergic neurons of the aDCN-LAT following vehicle or CNO injection. Signals are aligned to the vehicle or CNO injection (red line). Dark line represents the mean and lighter shaded area represents SEMs. Corresponding heatmaps (right) depict ∆F/F of GRABDA signals in each mouse (n = 7). (f) Average ∆F/F of GRABDA signals in the ventral striatum of food-deprived mice expressing hM3D(Gq) in glutamatergic neurons of the aDCN-INT following vehicle or CNO injection. Signals are aligned to the vehicle or CNO injection (red line). Dark line represents the mean and lighter shaded area represents SEMs. Corresponding heatmaps (right) depict ∆F/F of GRABDA signals in each mouse (n = 6). (g) Average ∆F/F of GRABDA signals in 3-min bins of food-deprived mice expressing hM3D(Gq) in glutamatergic neurons of the aDCN-INT or aDCN-LAT (n = 7 vGluT2 aDCN-LAT mice, green, n = 6 vGluT2 aDCN-INT mice, grey, two-way ANOVA, interaction P < 0.001, main effect P < 0.001; Holm-Sidak’s, P = 0.001/ = 0.001/ < 0.001 (9-12 min), P < 0.001/ < 0.001/ < 0.001 (12-15 min), P < 0.001/ < 0.001/ < 0.001 (15-18 min), P < 0.001/ < 0.001/ < 0.001 (18-21 min), P < 0.001/ < 0.001/ < 0.001 (21-24 min), P<0.001/ < 0.001/ < 0.001 (24-27 min), P < 0.001/  < 0.001/ <0.001 (27-30 min), aDCN-LAT CNO to vehicle/aDCN-INT CNO/aDCN-INT vehicle respectively). (h) Maximum ∆F/F GRABDA signals in the ventral striatum of food-deprived mice expressing hM3D(Gq) in glutamatergic neurons of the aDCN-LAT following vehicle or CNO treatment (n = 7, paired t-test, P < 0.001). (i) Mean ∆F/F GRABDA signals in the ventral striatum of food-deprived mice expressing hM3D(Gq) in glutamatergic neurons of the aDCN-LAT following vehicle or CNO treatment (n = 7, paired t-test, P = 0.001). (j) Maximum ∆F/F GRABDA signals in the ventral striatum of food-deprived mice expressing hM3D(Gq) in glutamatergic neurons of the aDCN-INT following vehicle or CNO treatment (n = 6, paired t-test, P = 0.644). (k) Mean ∆F/F GRABDA signals in the ventral striatum of food-deprived mice expressing hM3D(Gq) in glutamatergic neurons of the aDCN-INT following vehicle or CNO treatment (n = 6, paired t-test, P = 0.367). (l) Maximum ∆F/F GRABDA signals in the striatum following non-specific aDCN-LAT activation or vGluT2+ aDCN-LAT neuron activation (aDCN-LAT: n = 6 mice, vGluT2 aDCN-LAT: n = 7, unpaired t-test, P = 0.250). (m) Mean ∆F/F GRABDA signals in the striatum of following non-specific aDCN-LAT activation or vGluT2+ aDCN-LAT neuron activation (aDCN-LAT: n = 6 mice, vGluT2 aDCN-LAT: n = 7, unpaired t-test, P = 0.323). (n) Plot of GRABDA signals and corresponding food intake in food-deprived mice treated following glutamatergic aDCN activation (n = 13, Pearson correlation). Solid line indicates the linear trend line fit to the data. Data are expressed as mean ± SEM, two-sided P values, t-tests and post-hoc comparisons: **P < 0.01, ***P < 0.001; ANOVA interaction: ∞∞∞P < 0.001; ANOVA main effect of group: ¤¤¤P < 0.001. Statistical analysis in Supplementary Table 1.
Source data


Extended Data Fig. 12 Increased striatal dopamine suppresses food intake.
(a) Schematic depicting hM3D(Gq) expression in the VTA of a DAT::Cre mouse, and GRABDA expression and fibre implant in the ventral striatum. (b-c) Representative images of hM3D(Gq) expression in the VTA (b), and GRABDA expression and fibre track in the ventral striatum (c) of a DAT::Cre mouse. Scale bar, 500 µm in B, 200 µm in C. (d) Average ∆F/F of GRABDA signals in 3-min bins following VTA neuron activation with vehicle and varying concentrations of CNO (0.025 mg/Kg, 0.25 mg/Kg, 1 mg/Kg and 2.5 mg/Kg; n = 8 per group, repeated measures two-way ANOVA interaction P < 0.001, main effect P < 0.001; Holm-Sidak’s). (e) Net area under curve ∆F/F of GRABDA signals following VTA neuron activation with vehicle and varying concentrations of CNO (0.025 mg/Kg, 0.25 mg/Kg, 1 mg/Kg and 2.5 mg/Kg; n = 8 per group, repeated measures one-way ANOVA P < 0.001; Holm-Sidak’s, P = 0.012 (vehicle versus 0.025 mg/Kg), P=0.010 (vehicle versus 0.25 mg/Kg), P = 0.023 (vehicle versus 1.0 mg/Kg), P = 0.010 (vehicle versus 2.5 mg/Kg)). (f) Food intake of food-deprived mice following VTA neuron activation with vehicle and varying concentrations of CNO (0.025 mg/Kg, 0.25 mg/Kg, 1 mg/Kg and 2.5 mg/Kg; n = 8 per group, repeated measures one-way ANOVA P<0.001; Holm-Sidak’s, P < 0.001 (vehicle versus 0.025 mg/Kg), P < 0.001 (vehicle versus 0.25 mg/Kg), P < 0.001 (vehicle versus 1.0 mg/Kg), P < 0.001 (vehicle versus 2.5 mg/Kg)). (g) Plot of GRABDA signals and corresponding food intake in food-deprived mice treated following VTA neuron activation (n = 8 per group, Pearson correlation). Solid line indicates the linear trend line fit to the data. (h) Average ∆F/F of GRABDA signals from 0 to 30 min following treatment with vehicle and varying concentrations of CNO (n = 8 per group, repeated measures one-way ANOVA P < 0.001; Holm-Sidak’s, P = 0.004 (vehicle versus 0.025 mg/Kg), P = 0.004 (vehicle versus 0.25 mg/Kg), P = 0.004 (vehicle versus 1.0 mg/Kg), P = 0.004 (vehicle versus 2.5 mg/Kg)). (i) Maximum ∆F/F of GRABDA signals following treatment with vehicle and varying concentrations of CNO (n = 8 per group, repeated measures one-way ANOVA P=0.023; Holm-Sidak’s, P = 0.034 (vehicle versus 2.5 mg/Kg)). (j) Average ∆F/F of GRABDA signals during presentation of food in fasted mice following treatment with vehicle and varying concentrations of CNO (0.025, 0.25, 1.0 and 2.5 mg/Kg). Signals are aligned to food presentation. Dark lines represent mean values and lighter shaded areas represent SEM (n = 8). (k) Heatmaps reporting ∆F/F of GRABDA signals in individual mice in (j) (n = 8). (l) Maximum ∆F/F of GRABDA signals during food presentation in mice following treatment with vehicle and varying concentrations of CNO (n = 8 per group, one-way ANOVA P = 0.0117; Holm-Sidak’s, P = 0.0389 (vehicle versus 0.25 mg/Kg), P = 0.0056 (vehicle versus 1.0 mg/Kg), P=0.0121 (vehicle versus 2.5 mg/Kg)). (m) Scatter plot depicting the maximal ∆F/F GRABDA response to food following pre-stimulation of VTA DA neurons and the associated amount of food intake following pre-stimulation of VTA DA neurons (n = 8 per group, Pearson correlation, P < 0.01). Solid line shows the linear trend line fit to the data. (n-p) Images of hM4D(Gi) expression (red) in TH+, VTA neurons (green) of a DAT::Cre mouse (n). Higher magnification of white box (o-p). Scale bar, 500 µm (n), 50 µm (p). (q) Neurons transduced with hM4D(Gi) in the VTA and SNC (n = 3, 1047, 2745, 2710 neurons each mouse, unpaired t-test, P = 0.02). (r) Average ∆F/F of DA signals in aDCN-LAT hM3D(Gq) mice and aDCN-LAT hM3D(Gq); VTA hM4D(Gi) mice (n = 6 per group, unpaired t-test, P = 0.003). (g) Distance travelled by aDCN-LAT hM3D(Gq) mice and aDCN-LAT hM3D(Gq); VTA hM4D(Gi) mice during a 10-min open field session (n = 6 and 7, respectively, unpaired t-test, P = 0.382). Data are expressed as mean ± SEM, two-sided P values, t-tests and post-hoc comparisons: *P < 0.05, **P<0.01, ***P < 0.001; ANOVA interaction: ∞∞∞P < 0.001; ANOVA main effect of group: ¤¤¤P < 0.001. SNC, substantia nigra pars compacta; TH, tyrosine hydroxylase; VTA, ventral tegmental area. Statistical analysis in Supplementary Table 1.
Source data


Extended Data Fig. 13 Proposed role of the cerebellum in feeding control.
The cerebellum is well-positioned to integrate homeostatic satiation signals and is capable of orchestrating adaptive feeding responses by modulating motor, cognitive, affective and endocrine functions20,66,67,68,69,70,71,72,73,74,75. Visual, gustatory and olfactory inputs are all known to activate the cerebellum76,77,78 which could provide salience update to control appetitive drive. It functions as a comparator of physiological nutrient state (interoception) and post-ingestion nutritional outcome (nutrient feedback) to fine-tune predictive reward signals (reward network)79 and ultimately influence meal size (feeding network). While cerebellar output has been shown to influence VTA neuron activity12,80, our observed changes in DA signalling are tightly associated with decreases in food intake, suggesting a dedicated role of the cerebellum in regulating DA circuits that influence feeding that is distinct from motor80 or social12 behaviours. Based on our mechanistic studies into the changes in the reward system mediated by the cerebellum, it is possible that previously discovered differences between PWS and control subjects arise because of cerebellar alterations8,81,82. In response to a predicted meal size (predicted nutritional reward outcome) by either food cues or food, cerebellar activity increases dopamine efflux that blunts dopamine transients. Consequently, the reward value of consuming food reduces and meals are terminated. In PWS patients8,81,82, food-dependent cerebellar activity is absent and thus, dopamine transients remain regardless of amount of food consumed, leading to excessive eating. Conversely, in dopamine-deficient animals, there is a complete absence of drive to eat14. A better understanding of the mechanisms and circuits underlying cerebellar-mediated behaviours can guide brain stimulation strategies to control food intake recently shown to have the capability of ameliorating symptoms for disorders associated with the cerebellum83,84,85,86.





Supplementary information
Supplementary Table 1
Details of statistics used and statistical results. Related to Figs. 1–4, and Extended Data Figs. 2–12.


Reporting Summary

Peer Review File




Source data
Source Data Fig. 1

Source Data Fig. 2

Source Data Fig. 3

Source Data Fig. 4

Source Data Extended Data Fig. 2

Source Data Extended Data Fig. 3

Source Data Extended Data Fig. 4

Source Data Extended Data Fig. 5

Source Data Extended Data Fig. 6

Source Data Extended Data Fig. 7

Source Data Extended Data Fig. 8

Source Data Extended Data Fig. 9

Source Data Extended Data Fig. 10

Source Data Extended Data Fig. 11

Source Data Extended Data Fig. 12




Rights and permissions
Reprints and permissions


About this article
[image: Check for updates. Verify currency and authenticity via CrossMark]       



Cite this article
Low, A.Y.T., Goldstein, N., Gaunt, J.R. et al. Reverse-translational identification of a cerebellar satiation network.
                    Nature 600, 269–273 (2021). https://doi.org/10.1038/s41586-021-04143-5
Download citation
	Received: 14 March 2021

	Accepted: 14 October 2021

	Published: 17 November 2021

	Issue Date: 09 December 2021

	DOI: https://doi.org/10.1038/s41586-021-04143-5


Share this article
Anyone you share the following link with will be able to read this content:
Get shareable linkSorry, a shareable link is not currently available for this article.


Copy to clipboard

                            Provided by the Springer Nature SharedIt content-sharing initiative
                        








            


            
        
            
                This article is cited by

                
                    	
                            
                                
                                    
                                        Cytokine enrichment in deep cerebellar nuclei is contributed by multiple glial populations and linked to reduced amyloid plaque pathology
                                    
                                

                            
                                
                                    	Jessica R. Gaunt
	Norliyana Zainolabidin
	Toh Hean Ch’ng


                                
                                Journal of Neuroinflammation (2023)

                            
	
                            
                                
                                    
                                        Modeling tissue co-regulation estimates tissue-specific contributions to disease
                                    
                                

                            
                                
                                    	Tiffany Amariuta
	Katherine Siewert-Rocks
	Alkes L. Price


                                
                                Nature Genetics (2023)

                            
	
                            
                                
                                    
                                        Purkinje cell dopaminergic inputs to astrocytes regulate cerebellar-dependent behavior
                                    
                                

                            
                                
                                    	Chang Li
	Natalie B. Saliba
	Wei Li


                                
                                Nature Communications (2023)

                            
	
                            
                                
                                    
                                        Ghrelin signaling in the cerebellar cortex enhances GABAergic transmission onto Purkinje cells
                                    
                                

                            
                                
                                    	Moritoshi Hirono
	Masanori Nakata


                                
                                Scientific Reports (2023)

                            
	
                            
                                
                                    
                                        Linking the cerebellum to Parkinson disease: an update
                                    
                                

                            
                                
                                    	Tianbai Li
	Weidong Le
	Joseph Jankovic


                                
                                Nature Reviews Neurology (2023)

                            


                

            

        
    

            
                Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.



                
                    
                    

                

            
        





    
        

        
            
                

    
        
            
                
                Access through your institution
            
        

        
            
                
                    Buy or subscribe
                
            

        
    



            

            
                

    
        
        

        
        
            
                
                Access through your institution
            
        

        
            
                Change institution
            
        

        
        
            
                Buy or subscribe
            
        

        
    



            

        
    


    
        
    

    
    
        
            
                Associated content

                
                    
                    
                        
                            
    
        
            
                
                    Cerebellar neurons that curb food consumption
                

                
	Richard Simerly
	Ralph DiLeone



                
    
        
            Nature
        
        News & Views
        
        
            17 Nov 2021
        
    


            

        

    


                        

                    
                
            
        

        
    

    

    
        
            
                
                    
                        
                            Advertisement

                            
    
        
            
                [image: Advertisement]
        

    


                        

                    

                

            

            

            

        

    






    
        
            
                Explore content

                	
                                
                                    Research articles
                                
                            
	
                                
                                    News
                                
                            
	
                                
                                    Opinion
                                
                            
	
                                
                                    Research Analysis
                                
                            
	
                                
                                    Careers
                                
                            
	
                                
                                    Books & Culture
                                
                            
	
                                
                                    Podcasts
                                
                            
	
                                
                                    Videos
                                
                            
	
                                
                                    Current issue
                                
                            
	
                                
                                    Browse issues
                                
                            
	
                                
                                    Collections
                                
                            
	
                                
                                    Subjects
                                
                            


                	
                            Follow us on Facebook
                            
                        
	
                            Follow us on Twitter
                            
                        
	
                            
                                Subscribe
                            
                        
	
                            Sign up for alerts
                            
                        
	
                            
                                RSS feed
                            
                        


            

        
    
    
        
            
                
                    About the journal

                    	
                                
                                    Journal Staff
                                
                            
	
                                
                                    About the Editors
                                
                            
	
                                
                                    Journal Information
                                
                            
	
                                
                                    Our publishing models
                                
                            
	
                                
                                    Editorial Values Statement
                                
                            
	
                                
                                    Journal Metrics
                                
                            
	
                                
                                    Awards
                                
                            
	
                                
                                    Contact
                                
                            
	
                                
                                    Editorial policies
                                
                            
	
                                
                                    History of Nature
                                
                            
	
                                
                                    Send a news tip
                                
                            


                

            
        

        
            
                
                    Publish with us

                    	
                                
                                    For Authors
                                
                            
	
                                
                                    For Referees
                                
                            
	
                                
                                    Language editing services
                                
                            
	
                                Submit manuscript
                                
                            


                

            
        
    



    
        Search

        
            Search articles by subject, keyword or author
            
                
                    
                

                
                    
                        Show results from
                        All journals
This journal


                    

                    
                        Search
                    

                


            

        


        
            
                Advanced search
            
        


        Quick links

        	Explore articles by subject
	Find a job
	Guide to authors
	Editorial policies


    





        
    
        
            

            
                
                    Nature (Nature)
                
                
    
    
        ISSN 1476-4687 (online)
    
    


                
    
    
        ISSN 0028-0836 (print)
    
    

            

        

    




    
        
    nature.com sitemap

    
        
            
                About Nature Portfolio

                	About us
	Press releases
	Press office
	Contact us


            


            
                Discover content

                	Journals A-Z
	Articles by subject
	Protocol Exchange
	Nature Index


            


            
                Publishing policies

                	Nature portfolio policies
	Open access


            


            
                Author & Researcher services

                	Reprints & permissions
	Research data
	Language editing
	Scientific editing
	Nature Masterclasses
	Research Solutions


            


            
                Libraries & institutions

                	Librarian service & tools
	Librarian portal
	Open research
	Recommend to library


            


            
                Advertising & partnerships

                	Advertising
	Partnerships & Services
	Media kits
                    
	Branded
                        content


            


            
                Professional development

                	Nature Careers
	Nature 
                        Conferences


            


            
                Regional websites

                	Nature Africa
	Nature China
	Nature India
	Nature Italy
	Nature Japan
	Nature Korea
	Nature Middle East


            


        

    

    
        	Privacy
                Policy
	Use
                of cookies
	
                Your privacy choices/Manage cookies
                
            
	Legal
                notice
	Accessibility
                statement
	Terms & Conditions
	Your US state privacy rights


    





        
    
        [image: Springer Nature]
    
    © 2024 Springer Nature Limited




    

    
    
    







    

    



    
    

        

    
        
            


Close
    



        

            
                
                    [image: Nature Briefing]
                    Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

                

                
                    
                        
                        

                        
                        
                        
                        

                        Email address

                        
                            
                            
                            
                            Sign up
                        


                        
                            
                            I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.
                        

                    

                

            


        


    

    
    

        

    
        
            

Close
    



        
            Get the most important science stories of the day, free in your inbox.
            Sign up for Nature Briefing
            
        


    









    [image: ]







[image: ]
