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            Abstract
The Paris Agreement aims to limit global mean warming in the twenty-first century to less than 2 degrees Celsius above preindustrial levels, and to promote further efforts to limit warming to 1.5 degrees Celsius1. The amount of greenhouse gas emissions in coming decades will be consequential for global mean sea level (GMSL) on century and longer timescales through a combination of ocean thermal expansion and loss of land ice2. The Antarctic Ice Sheet (AIS) is Earthâ€™s largest land ice reservoir (equivalent to 57.9 metres of GMSL)3, and its ice loss is accelerating4. Extensive regions of the AIS are grounded below sea level and susceptible to dynamical instabilities5,6,7,8 that are capable of producing very rapid retreat8. Yet the potential for the implementation of the Paris Agreement temperature targets to slow or stop the onset of these instabilities has not been directly tested with physics-based models. Here we use an observationally calibrated ice sheetâ€“shelf model to show that with global warming limited to 2 degrees Celsius or less, Antarctic ice loss will continue at a pace similar to todayâ€™s throughout the twenty-first century. However, scenarios more consistent with current policies (allowing 3 degrees Celsius of warming) give an abrupt jump in the pace of Antarctic ice loss after around 2060, contributing about 0.5 centimetres GMSL rise per year by 2100â€”an order of magnitude faster than today4. More fossil-fuel-intensive scenarios9 result in even greater acceleration. Ice-sheet retreat initiated by the thinning and loss of buttressing ice shelves continues for centuries, regardless of bedrock and sea-level feedback mechanisms10,11,12 or geoengineered carbon dioxide reduction. These results demonstrate the possibility that rapid and unstoppable sea-level rise from Antarctica will be triggered if Paris Agreement targets are exceeded.
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                    Fig. 1: Antarctic contribution to future GMSL rise.


Fig. 2: Ice-sheet evolution following the +3â€‰Â°C global warming emissions trajectory.


Fig. 3: AIS thresholds and commitments to GMSL rise with delayed mitigation.



                


                
                    
                
            

            
                Data availability

              
              Model-generated data associated with this work are available with this paper. Three-dimensional ice-sheet model output associated with Fig. 2 and Extended Data Figs. 3, 5 are available at the ScholarWorks@UMASS Amherst repository (https://doi.org/10.7275/j005-r778). Climate model forcing used in our main ensembles and meltwater-feedback simulations (Fig. 1) are reported in refs. 46,80.Â Source data are provided with this paper.

            

Code availability

              
              The modified ice-sheet model codes based on ref. 51 are available from the corresponding author. CESM1.2.2 GCM87 is available from NCAR (https://www.cesm.ucar.edu/models/cesm1.2/) and the RCM is reported in ref. 79. The Earthâ€“sea level model is described in refs. 12,49.
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Extended data figures and tables

Extended Data Fig. 1 Ensemble observational targets.
196 simulations (grey lines), each using a unique combination of hydrofracturing and ice-cliff calving parameters (Extended Data Table 1) compared with observations (blue dashed boxes). Solid blue lines show simulations without hydrofracturing and ice-cliff calving. Red lines show simulations with maximum parameter values in our main ensemble. Additional simulations (black lines) allow ice-cliff calving rates of up to 26Â kmÂ yrâˆ’1, twice the maximum value used in our main ensembles. The vertical heights of the blue boxes represent the likely range of observations. Changes in ice mass above floatation are shown in equivalent GMSL. a, Simulated annual contributions to GMSL in the RCP8.5 ensemble compared with the 1992â€“2017 IMBIE4 observational average (0.15â€“0.46Â mmÂ yrâˆ’1; dashed blue box). b, LIG ensemble simulations from 130 to 125Â kyr ago. The height of the dashed blue box shows the LIG target range (3.1â€“6.1Â m), the width represents ~1,000-yr age uncertainty34. c, The same LIG simulations as in b, showing the rate of GMSL change contributed by Antarctica, smoothed over a 25-yr window. The peak in the early LIG is mainly caused by marine-based ice loss in West Antarctica. d, The same as b, except for warmer mid-Pliocene conditions. Maximum ice loss is compared with observational estimates of 11â€“21Â m (refs. 35,36; blue dashed lines). Note the saturation of the simulated GMSL values near the top of the LIG and Pliocene ensemble range, and the failure of the model to produce realistic LIG or Pliocene sea levels without hydrofracturing and ice-cliff calving enabled (blue lines).
Source data


Extended Data Fig. 2 RCP8.5 ensembles calibrated with alternative GRACE estimates.
a, b, The fan charts show the time-evolving uncertainty and range around the median ensemble value (black line) in 10% increments. RCP8.5 ice-sheet model ensembles calibrated with GRACE estimates of annual mass change averaged from 2002â€“2017 using alternative GIA corrections (Methods). Use of GIA corrections produces estimates of mass loss between 2002 and 2017 of 0.2â€“0.54Â mmÂ yrâˆ’1 (a) and 0.39â€“0.53Â mmÂ yrâˆ’1 (b). The more restrictive and higher range of GRACE estimates in b skews the distribution and shifts the ensemble median values of GMSL upwards from 27Â cm to 30Â cm in 2100 and from 4.44Â m to 4.94Â m in 2200.


Extended Data Fig. 3 Last Interglacial and Pliocene ice-sheet simulations.
aâ€“e, Ice-sheet simulations with the updated model physics used in our future ensembles and driven with the same LIG and Pliocene climate forcing used in ref. 8. Simulations without hydrofracturing and ice-cliff calving (a, b, d) correspond to blue lines in Extended Data Fig. 1. Simulations using maximum hydrofracturing and ice-cliff calving parameters (c, e) correspond to red lines in Extended Data Fig. 1. a, Modern (1950) ice-sheet simulation. b, c, LIG simulations run from 130 to 125Â kyr ago are shown at 125Â kyr ago. Values at the top of each panel are the maximum GMSL contribution between 129 and 128Â kyr ago. Values in parentheses are the GMSL contribution at 125Â kyr ago. d, e, Warm Pliocene simulations. Values shown are the maximum GMSL achieved during the simulations. Smaller values in parentheses show GMSL contributions after 5,000 model years (Extended Data Fig. 2d). Ice mass gain after peak retreat is caused by post-retreat bedrock rebound and enhanced precipitation in the warm Pliocene atmosphere.


Extended Data Fig. 4 RCP8.5 ensembles calibrated with modern and palaeo observations.
The fan charts show the time-evolving uncertainty and range around the median ensemble value (black line) in 10% increments. Mean and median ensemble values are shown at 2100. a, Raw ensemble with a range of plausible model parameters based on glaciological observations (Extended Data Table 1). b, The ensemble trimmed with IMBIE4 (1992â€“2017) estimates of ice mass change. c, The ensemble trimmed with IMBIE rates of ice mass change plus LIG sea-level constraints between 129 and 128Â kyr ago34. d, The same as c, except with the addition of maximum mid-Pliocene sea-level constraints35,36 (Extended Data Fig. 1). Future ensembles in the main text (Fig. 1, Table 1) use the combined IMBIE + LIG + Pliocene history matching constraints as shown in d.
Source data


Extended Data Fig. 5 Future retreat of Thwaites Glacier (TG) and Pine Island Glacier (PIG) with +3â€‰Â°C global warming.
The Amundsen Sea sector of the ice sheet in a nested, high-resolution (1Â km) simulation using average calibrated values of hydrofracturing and ice-cliff calving parameters (CALVLIQÂ =Â 107Â mâˆ’1Â yr2; VCLIFÂ =Â 7.7Â kmÂ yrâˆ’1), consistent with those used in CESM1.2.2-forced simulations (Fig. 1h) and CDR simulations (Fig. 3, Table 1). aâ€“c, The ice sheet in 2050. dâ€“f, The ice sheet in 2100. a, d, Ice-sheet geometry and annually averaged ice-cliff calving rates at thick, weakly buttressed grounding lines. The solid line in all panels is the grounding line and the dashed line is its initial position. Note that simulated ice-cliff calving rates are generally much slower than the maximum allowable value of 7.7Â kmÂ yrâˆ’1. Ice shelves downstream of calving ice cliffs are the equivalent of weak mÃ©lange, incapable of stopping calving64. b, e, Ice surface speed showing streaming and fast flow just upstream of calving ice cliffs where driving stresses are greatest. c, f, Change in ice thickness relative to the initial state. g, GMSL contributions within the nested domain at model spatial resolutions spanning 1â€“10Â km.


Extended Data Fig. 6 Antarctic contribution to sea level under standard RCP forcing.
aâ€“c, The fan charts show the time-evolving uncertainty and range around the median ensemble value (thick black line) in 10% increments. The RCP ensembles use the same IMBIE, LIG and Pliocene observational constraints applied to the simulations in Fig. 1. GMSL contributions in simulations without hydrofracturing or ice-cliff calving (excluded from the validated ensembles) are shown for East Antarctica (thin blue line), West Antarctica (thin red line) and the total Antarctic contribution (thin black line). a, RCP2.6; b, RCP4.5; and c, RCP8.5.
Source data


Extended Data Fig. 7 Long-term magnitudes and rates of GMSL rise contributed by Antarctica.
a, Ensemble median (50th percentile) projections of GMSL rise contributed by Antarctica with emissions forcing consistent with the +1.5â€‰Â°C and +2.0â€‰Â°C Paris Agreement ambitions, versus a +3.0â€‰Â°C scenario closer to current NDCs. b, Median (50th percentile) rates of GMSL rise in the same emissions scenarios as in a, illustrating a sharp jump in ice loss in the warmer +3.0â€‰Â°C scenario after 2060 (also see Fig. 1), and reduced net ice loss before 2060 (black line) caused by increased snowfall. c, Ensemble median (50th percentile) projections of GMSL rise contributed by Antarctica with emissions forcing consistent with standard RCP scenarios, highlighting the potential for extreme GMSL rise under high (RCP8.5) emissions. d, Ensemble median (50th percentile) rates of GMSL rise in the same RCP scenarios as shown in c. Note the much larger vertical-axis scales in c and d relative to a and b.


Extended Data Fig. 8 Coupled iceâ€“Earthâ€“sea level model simulations.
aâ€“c, Simulations without hydrofracturing and ice-cliff calving processes. dâ€“f, Simulations with hydrofracturing and ice-cliff calving enabled (Methods). GMSL contributions are from the WAIS only. Various Earth viscosity profiles (coloured lines) are compared with the ice-sheet modelâ€™s standard ELRA formulation (black line). The most extreme viscosity profile (blue line) assumes a thin lithosphere and very weak underlying mantle, like that observed in the Amundsen sea10, but extended continent-wide. a, RCP2.6 without hydrofracturing or ice-cliff calving. b, RCP2.6 with hydrofracturing and ice-cliff calving. c, RCP4.5 without hydrofracturing or ice-cliff calving. d, RCP4.5 with hydrofracturing and ice-cliff calving. e, RCP8.5 without hydrofracturing or ice-cliff calving. f, RCP8.5 with hydrofracturing and ice-cliff calving.


Extended Data Table 1 Model ensemble parameter valuesFull size table


Extended Data Table 2 Antarctic sea-level contributions with alternative maximum ice-cliff calving ratesFull size table
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