Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diversity-oriented synthesis of polymer membranes with ion solvation cages

Abstract

Microporous polymers feature shape-persistent free volume elements (FVEs), which are permeated by small molecules and ions when used as membranes for chemical separations, water purification, fuel cells and batteries1,2,3. Identifying FVEs that have analyte specificity remains a challenge, owing to difficulties in generating polymers with sufficient diversity to enable screening of their properties. Here we describe a diversity-oriented synthetic strategy for microporous polymer membranes to identify candidates featuring FVEs that serve as solvation cages for lithium ions (Li+). This strategy includes diversification of bis(catechol) monomers by Mannich reactions to introduce Li+-coordinating functionality within FVEs, topology-enforcing polymerizations for networking FVEs into different pore architectures, and several on-polymer reactions for diversifying pore geometries and dielectric properties. The most promising candidate membranes featuring ion solvation cages exhibited both higher ionic conductivity and higher cation transference number than control membranes, in which FVEs were aspecific, indicating that conventional bounds for membrane permeability and selectivity for ion transport can be overcome4. These advantages are associated with enhanced Li+ partitioning from the electrolyte when cages are present, higher diffusion barriers for anions within pores, and network-enforced restrictions on Li+ coordination number compared to the bulk electrolyte, which reduces the effective mass of the working ion. Such membranes show promise as anode-stabilizing interlayers in high-voltage lithium metal batteries.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DOS of PIMs with ion solvation cages.
Fig. 2: Structure–transport relationships within the DOS PIM library.
Fig. 3: Molecular structure of Li+ solvation cages in PIMs and free-energy analysis of cage-to-cage Li+ transport.
Fig. 4: Electrochemical and structural characterization of Li metal cells.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information and Supplementary Data, and also from the authors upon reasonable request. Crystallographic data for compounds 37, 9 and 10 are available free of charge from the Cambridge Crystallographic Data Centre (www.ccdc.cam.ac.uk) under reference numbers 2061993–2061197, 2061199 and 2061198, respectively. Source data are provided with this paper.

References

  1. Slater, A. G. & Cooper, A. I. Function-led design of new porous materials. Science 348, aaa8075 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Koros, W. J. & Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 16, 289–297 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Li, C. et al. Engineered transport in microporous materials and membranes for clean energy technologies. Adv. Mater. 30, 1704953 (2018).

    Article  CAS  Google Scholar 

  4. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Schreiber, S. L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287, 1964–1969 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Burke, M. D., Berger, E. M. & Schreiber, S. L. Generating diverse skeletons of small molecules combinatorially. Science 302, 613–618 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Burke, M. D. & Schreiber, S. L. A planning strategy for diversity-oriented synthesis. Angew. Chem. Int. Ed. 43, 46–58 (2004).

    Article  CAS  Google Scholar 

  8. Tan, D. S. Diversity-oriented synthesis: exploring the intersections between chemistry and biology. Nat. Chem. Biol. 1, 74–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Schreiber, S. L. Molecular diversity by design. Nature 457, 153–154 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Nielsen, T. E. & Schreiber, S. L. Towards the optimal screening collection: a synthesis strategy. Angew. Chem. Int. Ed. 47, 48–56 (2008).

    Article  CAS  Google Scholar 

  11. Galloway, W. R. J. D. et al. Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat. Commun. 1, 80 (2010).

    Article  ADS  PubMed  CAS  Google Scholar 

  12. Haggarty, S. J. The principle of complementarity: chemical versus biological space. Curr. Opin. Chem. Biol. 9, 296–303 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  PubMed  CAS  Google Scholar 

  14. Tranchemontagne, D. J., Ni, Z., O’Keeffe, M. & Yaghi, O. M. Reticular chemistry of metal–organic polyhedra. Angew. Chem. Int. Ed. 47, 5136–5147 (2008).

    Article  CAS  Google Scholar 

  15. Holst, J. R., Trewin, A. & Cooper, A. I. Porous organic molecules. Nat. Chem. 2, 915–920 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Diercks, C. S. & Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 355, eaal1585 (2017).

    Article  PubMed  CAS  Google Scholar 

  17. Bisbey, R. P. & Dichtel, W. R. Covalent organic frameworks as a platform for multidimensional polymerization. ACS Cent. Sci. 3, 533–543 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cooper, A. I. Porous molecular solids and liquids. ACS Cent. Sci. 3, 544–553 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mannich, C. & Krösche, W. Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin. Arch. Pharm. 250, 647–667 (1912).

    Article  CAS  Google Scholar 

  20. Arend, M., Westermann, B. & Risch, N. Modern variants of the Mannich reaction. Angew. Chem. Int. Ed. 37, 1044–1070 (1998).

    Article  Google Scholar 

  21. McKeown, N. B. & Budd, P. M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35, 675–683 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Patel, H. A. & Yavuz, C. T. Noninvasive functionalization of polymers of intrinsic microporosity for enhanced CO2 capture. Chem. Commun. 48, 9989–9991 (2012).

    Article  CAS  Google Scholar 

  23. Baran, M. J. et al. Design rules for membranes from polymers of intrinsic microporosity for crossover-free aqueous electrochemical devices. Joule 3, 2968–2985 (2019).

    Article  CAS  Google Scholar 

  24. Tan, R. et al. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nat. Mater. 19, 195–202 (2020); author correction 19, 251 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Eloy, F. & Lenaers, R. The chemistry of amidoximes and related compounds. Chem. Rev. 62, 155–183 (1962).

    Article  CAS  Google Scholar 

  26. Bartoli, G. et al. Unusual and unexpected reactivity of t-butyl dicarbonate (Boc2O) with alcohols in the presence of magnesium perchlorate. A new and general route to t-butyl ethers. Org. Lett. 7, 427–430 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Bruce, P. G. & Vincent, C. A. Steady state current flow in solid binary electrolyte cells. J. Electroanal. Chem. Interf. Electrochem. 225, 1–17 (1987).

    Article  CAS  Google Scholar 

  28. Evans, J., Vincent, C. A. & Bruce, P. G. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28, 2324–2328 (1987).

    Article  CAS  Google Scholar 

  29. Choo, Y., Halat, D. M., Villaluenga, I., Timachova, K. & Balsara, N. P. Diffusion and migration in polymer electrolytes. Prog. Polym. Sci. 103, 101220 (2020).

    Article  CAS  Google Scholar 

  30. Laio, A. & Gervasio, F. L. Metadynamics: a method to stimulate rare events and reconstruct the free energy in biophysics. Rep. Prog. Phys. 71, 126601 (2008).

    Article  ADS  CAS  Google Scholar 

  31. Barducci, A., Bonomi, M. & Parrinello, M. Metadynamics. WIREs Comput. Mol. Sci. 1, 826–843 (2011).

    Article  CAS  Google Scholar 

  32. Li, C. et al. A polysulfide-blocking microporous polymer membrane tailored for hybrid Li–sulfur flow batteries. Nano Lett. 15, 5724–5729 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Ward, A. L. et al. Materials genomics screens for adaptive ion transport behavior by redox-switchable microporous polymer membranes in lithium–sulfur batteries. ACS Cent. Sci. 3, 399–406 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma, L. et al. Nanoporous polymer films with high cation transference number stabilize lithium metal anodes in light-weight batteries for electrified transportation. Nano Lett. 19, 1387–1394 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Fu, C. et al. Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries. Nat. Mater. 19, 758–766 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Shi, F. et al. Lithium metal stripping beneath the solid electrolyte interphase. Proc. Natl Acad. Sci. USA 115, 8529–8534 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Albertus, P. et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018).

    Article  ADS  CAS  Google Scholar 

  38. Fredericks, W. L., Sripad, S., Bower, G. C. & Viswanathan, V. Performance metrics required of next-generation batteries to electrify Vertical Takeoff And Landing (VTOL) aircraft. ACS Energy Lett. 3, 2989–2994 (2018).

    Article  CAS  Google Scholar 

  39. Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Article  ADS  CAS  Google Scholar 

  40. Viswanathan, V. & Knapp, B. M. Potential for electric aircraft. Nat. Sustain. 2, 88–89 (2019).

    Article  Google Scholar 

  41. Sripad, S. & Viswanathan, V. Quantifying the economic case for electric semi-trucks. ACS Energy Lett. 4, 149–155 (2019).

    Article  CAS  Google Scholar 

  42. Bachman, J. E., Smith, Z. P., Li, T., Xu, T. & Long, J. R. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals. Nat. Mater. 15, 845–849 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Wei, X. et al. TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries. Adv. Mater. 26, 7649–7653 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Yang, Z. et al. Highly conductive anion-exchange membranes from microporous Tröger’s base polymers. Angew. Chem. Int. Ed. 55, 11499 (2016).

    Article  CAS  Google Scholar 

  45. Doris, S. E. et al. Macromolecular design strategies for preventing active-material crossover in non-aqueous all-organic redox-flow batteries. Angew. Chem. Int. Ed. 56, 1595–1599 (2017).

    Article  CAS  Google Scholar 

  46. Yushkin, A., Vasilensky, V., Khotimskiy, V., Szymczyk, A. & Volkov, A. Evaluation of liquid transport properties of hydrophobic polymers of intrinsic microporosity by electrical resistance measurement. J. Membr. Sci. 554, 346 (2018).

    Article  CAS  Google Scholar 

  47. Jain, A. et al. The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  ADS  CAS  Google Scholar 

  48. Gromski, P. S., Henson, A., Granda, J. & Cronin, L. How to explore chemical space using algorithms and automation. Nat. Rev. Chem. 3, 119–128 (2019).

    Article  Google Scholar 

  49. Häse, F., Roch, L. M. & Aspuru-Guzik, A. Next-generation experimentation with self-driving laboratories. Trends Chem. 1, 282–291 (2019).

    Article  CAS  Google Scholar 

  50. Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. Portions of this work, including polymer synthesis and characterization, were carried out as a user project at the Molecular Foundry, which is supported by the Office of Science, Office of Basic Energy Sciences of the US DOE under contract number DE-AC02-05CH11231. S.M.M. and M.E.C. acknowledge support from the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the US DOE, Office of Science, Basic Energy Sciences under award number DE-SC0001015 to carry out principal component analysis, gas sorption and GIWAXS measurements. GIWAXS and single-crystal measurements were carried out at the Advanced Light Source, which is a DOE Office of Science User Facility under contract number DE-AC02-05CH11231. Computation was carried out at the National Energy Research Scientific Computing Center (NERSC), a US DOE Office of Science User Facility operated under the same contract. PFG-NMR measurements were performed at the Environmental Molecular Sciences Laboratory (EMSL), a national user facility sponsored by the DOE’s Office of Biological and Environmental Research and located in the Pacific Northwest National Laboratory. J.S. and C.F. acknowledge support from the Advanced Research Projects Agency-Energy Integration and Optimization of Novel Ion Conducting Solids (IONICS) programme under grant number DE-AR0000774 to carry out Li–NMC622 cell cycling. The cathodes were produced by B. Polzin, S. Trask and A. Jansen at the US DOE CAMP (Cell Analysis, Modeling and Prototyping) Facility, Argonne National Laboratory. The CAMP Facility is fully supported by the DOE Vehicle Technologies Office.

Author information

Authors and Affiliations

Authors

Contributions

B.A.H. designed and directed the study. M.J.B., M.E.C., S.S., M.A.B. and S.M.M. synthesized and characterized the monomers and polymers. S.J.T. conducted single-crystal X-ray crystallography and analysed the results. M.E.C. carried out the principal component analysis. M.J.B., M.A.B. and C.F. carried out ion transport experiments. K.S.H. and K.T.M. conducted PFG-NMR experiments. J.S. conducted full-cell cycling experiments. D.P. designed and directed the theoretical study. A.B. conducted the simulations. B.A.H. wrote the paper with contributions from all co-authors.

Corresponding author

Correspondence to Brett A. Helms.

Ethics declarations

Competing interests

B.A.H., M.J.B., M.E.C., S.S. and S.M.M. are named as inventors in US provisional patent application 62/719,498 submitted by Lawrence Berkeley National Laboratory, which covers the DOS PIM library, as well as aspects of its use.

Additional information

Peer review information Nature thanks Elie Paillard and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Tables 1–10, and Supplementary Figures 1–62.

Supplementary Data

This zipped file contains 7 .cif files with the crystal structures for compounds 3, 4, 5, 6, 7, 9 and 10.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baran, M.J., Carrington, M.E., Sahu, S. et al. Diversity-oriented synthesis of polymer membranes with ion solvation cages. Nature 592, 225–231 (2021). https://doi.org/10.1038/s41586-021-03377-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-03377-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing