







    Skip to main content




    
        
        Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
            the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
            Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
            and JavaScript.


    




    

    
            

            
                
                    Advertisement

                    
        
            
    
        
            
                [image: Advertisement]
        

    


        
    
                

            
        

    
        
            
                
                    
                    
                    
                        
                        
                            
                                
                                [image: Nature]
                            
                        
                    
                    

                    
                    	
                            
                                View all journals
                            
                        
	
                            
                                Search
                            
                        
	
                            
                                Log in
                            
                        


                

            

        

        
            
                
                    
                        	
                                    
                                        Explore content
                                    
                                
	
                                    
                                        About the journal
                                    
                                
	
                                        
                                            Publish with us
                                        
                                    
	
                                    
                                        Subscribe
                                    
                                


                        	
                                    
                                        Sign up for alerts
                                    
                                
	
                                    
                                            RSS feed
                                    
                                


                    

                

            

        
    


    
    
        
            
                	nature



	articles

	
                                    article


    
        
        
            
            
                
                    	Article
	Published: 14 October 2020



                    Surface coordination layer passivates oxidation of copper

                    	Jian PengÂ 
            ORCID: orcid.org/0000-0002-0488-90761Â na1, 
	Bili Chen1Â na1, 
	Zhichang Wang1,2,3Â na1, 
	Jing Guo4, 
	Binghui Wu1, 
	Shuqiang Hao1, 
	Qinghua Zhang5, 
	Lin GuÂ 
            ORCID: orcid.org/0000-0002-7504-031X5, 
	Qin Zhou6,7, 
	Zhi Liu6,7, 
	Shuqin Hong1, 
	Sifan You2,3, 
	Ang Fu1, 
	Zaifa Shi1, 
	Hao Xie1, 
	Duanyun CaoÂ 
            ORCID: orcid.org/0000-0002-3989-959X2,3, 
	Chang-Jian Lin1, 
	Gang FuÂ 
            ORCID: orcid.org/0000-0003-3141-21901, 
	Lan-Sun Zheng1, 
	Ying JiangÂ 
            ORCID: orcid.org/0000-0002-6887-55032,3 & 
	â€¦
	Nanfeng ZhengÂ 
            ORCID: orcid.org/0000-0001-9879-47901,8Â 

Show authors

                    

                    
                        
    Nature

                        volumeÂ 586,Â pages 390â€“394 (2020)Cite this article
                    

                    
        
            	
                        40k Accesses

                    
	
                        153 Citations

                    
	
                            24 Altmetric

                        
	
                    Metrics details

                


        

    
                    
                

                
    
        Subjects

        	Materials chemistry
	Surface chemistry


    


                
    
    

    
    

                
            


        
            Abstract
Owing to its high thermal and electrical conductivities, its ductility and its overall non-toxicity1,2,3, copper is widely used in daily applications and in industry, particularly in anti-oxidation technologies. However, many widespread anti-oxidation techniques, such as alloying and electroplating1,2, often degrade some physical properties (for example, thermal and electrical conductivities and colour) and introduce harmful elements such as chromium and nickel. Although efforts have been made to develop surface passivation technologies using organic molecules, inorganic materials or carbon-based materials as oxidation inhibitors4,5,6,7,8,9,10,11,12, their large-scale application has had limited success. We have previously reported the solvothermal synthesis of highly air-stable copper nanosheets using formate as a reducing agent13. Here we report that a solvothermal treatment of copper in the presence of sodium formate leads to crystallographic reconstruction of the copper surface and formation of an ultrathin surface coordination layer. We reveal that the surface modification does not affect the electrical or thermal conductivities of the bulk copper, but introduces high oxidation resistance in air, salt spray and alkaline conditions. We also develop a rapid room-temperature electrochemical synthesis protocol, with the resulting materials demonstrating similarly strong passivation performance. We further improve the oxidation resistance of the copper surfaces by introducing alkanethiol ligands to coordinate with steps or defect sites that are not protected by the passivation layer. We demonstrate that the mild treatment conditions make this technology applicable to the preparation of air-stable copper materials in different forms, including foils, nanowires, nanoparticles and bulk pastes. We expect that the technology developed in this work will help to expand the industrial applications of copper.
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                    Fig. 1: Anti-corrosion properties of Cu foils after the formate treatment.[image: ]


Fig. 2: STM and AFM imaging of formate-treated Cu.[image: ]


Fig. 3: Importance of Cu(110) for effective passivation.[image: ]


Fig. 4: Anti-corrosion strategy for stabilizing Cu NWs and room-temperature electrochemical anti-corrosion technique.[image: ]
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Extended data figures and tables

Extended Data Fig. 1 Anti-corrosion properties of Cu-FA.
Cu-FA shows outstanding anti-corrosion properties while maintaining the excellent thermal and electrical conductivities of Cu, as revealed by qualitative and quantitative evaluations of the anti-corrosion performances of Cu foils before and after formate treatment. a, Optical and SEM images (left) and Raman spectra (right) of brass, bronze, Cu-G and Cu-BTA before and after corrosion in 0.1Â M NaOH at 25â€‰Â°C for 8Â h. The Raman bands in the spectral ranges 170â€“230Â cmâˆ’1, and 270â€“320Â cmâˆ’1 and 590â€“680Â cmâˆ’1 are attributed to Cuâ€“O vibrations from Cu2O and CuO species68, respectively. The weak Raman bands in the range 564â€“600Â cmâˆ’1 come from ZnO species69. The Raman band at ~535Â cmâˆ’1 is assigned to the triazole ring bending mode70. b, Optical image (top), Raman spectra (middle) and XRD patterns (bottom) of the Cu foil and Cu-FA before and after corrosion in 0.1Â M NaOH for 12Â h. Raman bands centred at 298Â cmâˆ’1 and 628Â cmâˆ’1 come from CuO species. The XRD pattern of the Cu foil after corrosion reveals the formation of CuO. By contrast, Cu-FA remains almost the same after the 12-h corrosion as before the test. c, d, Electric (c) and thermal (d) conductivities of Cu, Cu-FA (prepared by Method I), brass and bronze foils before and after corrosion in 0.1Â M NaOH at room temperature for 12Â h. e, Microphotograph and corresponding Raman spectrum showing the corrosion of the Cu foils before treatment in a sodium formateâ€“H2O mixture at 160â€‰Â°C for 24Â h. In the corrosion test, the foils were immersed in 0.1Â M NaOH at 25â€‰Â°C for 24Â h. The two groups of Raman bands observed at (146, 217, 417, 532)Â cmâˆ’1 and (307, 628)Â cmâˆ’1 are assigned to Cu2O and CuO species, respectively68. f, Microphotograph and corresponding Raman spectra of Cu-FA before and after corrosion in 0.1Â M NaOH at 25â€‰Â°C for 24Â h. (g) Cyclic voltammetry (CV) curves of bare Cu and Cu-FA in 0.1Â M NaOH. Two anodic current peaks and two cathodic current peaks are observed for bare Cu, which can be assigned to the two Cu redox reactions. Whereas the anodic peaks at cell potentials of âˆ’0.30Â V and âˆ’0.10Â V are due to the forward reactions, the cathodic peaks at âˆ’0.40Â V and âˆ’0.75Â V are attributed to the reverse reactions. However, no oxidation peaks were observed for Cu-FA, indicating the substantial suppression of Cu oxidation. h, Tafel plots of bare Cu and Cu-FA in 0.1 M NaOH. The Tafel plot of bare Cu is in good accordance with the reference71. Although there is slight change in the peak potential, the corrosion current density of Cu-FA is 20 times lower than that of bare Cu. The slight shift in the Tafel plot of Cu-FA suggests that the transfer of oxygen from the bulk solution to the cathodic sites of Cu is inhibited by the formate treatment72. The polarization parameters of bare Cu and Cu-FA in 0.1Â M NaOH are: EcorrÂ =Â âˆ’222Â mV, JcorrÂ =Â 6.71Â Î¼AÂ cmâˆ’2, corrosion rate 78.2Â Î¼mÂ yrâˆ’1 (bare Cu); EcorrÂ =Â âˆ’213Â mV, JcorrÂ =Â 0.33Â Î¼AÂ cmâˆ’2, corrosion rate 3.89Â Î¼mÂ yrâˆ’1 (Cu-FA); anti-corrosion factor 20.1. The anti-corrosion factor is defined as the ratio of the corrosion rate of the bare Cu foil to that of the modified Cu in 0.1Â NaOH. i, Raman spectra of bare Cu and Cu-FA after electrochemical tests. The Raman bands at (149, 217)Â cmâˆ’1 and 636Â cmâˆ’1 come from Cu2O and CuO species, respectively68. j, Nyquist impedance plots of bare Cu and Cu-FA at 0.1Â V versus Ag/AgCl. At high frequency, the capacitive impedance of the electrodeâ€“electrolyte interface becomes more effective at shunting the charge-transfer resistance. Therefore, the charge-transfer resistance calculated from the impedance difference at lower and higher frequencies is used to qualitatively evaluate the corrosion rate. Compared with the bare Cu, a 14-fold increase in the charge-transfer resistance is observed on Cu-FA, indicating that the corrosion is indeed strongly inhibited by the FA modification. Zâ€² and Zâ€³ are the real and imaginary parts of the impedance, respectively.


Extended Data Fig. 2 Comparison of anti-corrosion performance of Cu-FA with Cu foils with other corrosion inhibitors.
a, Electrochemical characterizations of Cu-FA foil and Cu foils treated with DT and BTA corrosion inhibitors. Whereas all measurements were carried out in 0.1Â M NaOH, the Nyquist impedance and Bode plots were recorded at 0.1Â V versus Ag/AgCl. The polarization parameters of Cu foils with different surface treatments in 0.1Â M NaOH are: EcorrÂ =Â âˆ’212Â mV, JcorrÂ =Â 5.12Â Î¼AÂ cmâˆ’2, corrosion rate 59.7Â Î¼mÂ yrâˆ’1, anti-corrosion factor 1.31 (Cu-BTA); EcorrÂ =Â âˆ’210Â mV, JcorrÂ =Â 4.33Â Î¼AÂ cmâˆ’2, corrosion rate 50.4Â Î¼mÂ yrâˆ’1, anti-corrosion factor 1.55 (Cu-DT). For comparison, the anti-corrosion factor of Cu-FA in 0.1Â M NaOH is 20.1. b, Tafel and Nyquist plots, SEM images and Raman spectra of the samples before and after the electrochemical measurements. The Nyquist plots were measured at 0.1Â V versus Ag/AgCl in 1Â M NaOH. The Raman bands at 297Â cmâˆ’1 and 623Â cmâˆ’1 come from CuO species68. Owing to the concentration difference, the Tafel plot of Cu-FA in 1Â NaOH displays a minimum that is different from that in 0.1Â M NaOH. The polarization parameters of Cu foils before and after the formate treatment in 1.0Â M NaOH are: EcorrÂ =Â âˆ’281Â mV, JcorrÂ =Â 59.7Â Î¼AÂ cmâˆ’2, corrosion rate 695.8Â Î¼mÂ yrâˆ’1 (bare Cu); EcorrÂ =Â âˆ’311Â mV, JcorrÂ =Â 5.10Â Î¼AÂ cmâˆ’2, corrosion rate 59.4Â Î¼mÂ yrâˆ’1 (Cu-FA), anti-corrosion factor 11.7. The anti-corrosion factor is defined as the ratio of the corrosion rate bare Cu foil to that of modified Cu in 1Â NaOH. c, SEM images of bare Cu and Cu-FA (prepared by Method II) foils after exposure to 30% H2O2 for 0, 5 and 15Â min. d, Optical images of Cu-FA (prepared by Method II) and untreated Cu foils before and after heating at 160â€‰Â°C in air for 1Â h and corresponding Raman spectra after thermal treatment. e, Localized corrosion of Cu-FA monitored by SRET/STM. The three-dimensional corrosion current maps were recorded on scratched Cu-FA and bare Cu foils after immersion in 0.1Â M NaOH for 5, 30 and 90Â min, and SEM images before and after the SRET/STM test were taken to identify the oxidized area.


Extended Data Fig. 3 Effect of treatment time and crystallinity on the anti-corrosion performance of Cu.
a, Photographs and microphotographs of Cu-FA foils after corrosion in 0.1Â M NaOH for 24Â h as a function of treatment time. The foils were obtained with the formate treatment at 160â€‰Â°C for different periods. b, XRD spectra of different Cu foil samples treated hydrothermally in the presence of formate in different conditions. Sample 1: Cu-FA foil (25Â Î¼m; Alfa Asear) treated at 160â€‰Â°C for 0â€“12Â h (Method II). Sample 2: Cu foil (25Â Î¼m; Alfa Asear) treated at 200â€‰Â°C for 2â€“24Â h (Method I). Sample 3: Cu foil (10Â Î¼m; Aladdin) treated at 200â€‰Â°C for 0â€“4Â h (Method I). c, Cross-sectional TEM and high-resolution STEM images of Cu-FA (Iâ€“II) and bare Cu foils (IIIâ€“IV), using samples prepared by the focused-ion-beam technique. d, Cross-sectional TEM and high-resolution TEM (HRTEM) images of Cu-FA (1â€“3) and bare Cu foils (4â€“6), using samples prepared by microtoming.


Extended Data Fig. 4 Identification of the surface coordinating species on Cu-FA.
a, STM images of Cu-FA foils (prepared by Method II) and untreated Cu foils after annealing for 4Â h in UHV at 150â€‰Â°C or 300â€‰Â°C. A step height of 0.258Â nm, a diatomic step height of Cu(110), was readily observed after annealing at 150â€‰Â°C, although the high-resolution STM images were obtained only after annealing at 300â€‰Â°C. In comparison, no ordered structure was observed on untreated Cu foils with different annealing conditions. b, STM images showing the successful formation of the c(6Â Ã—Â 2) superstructure on single-crystal Cu(110) treated with sodium formate solution followed by annealing at 150â€‰Â°C, which is similar to the temperature used in the formate treatment to create effective passivation. The presence of dark depressions (highlighted by yellow arrows) may arise from interstitial O2âˆ’ species of the hydrated c(6Â Ã—Â 2) surface structure. c, Structure models of the paddle-wheel dinuclear Cu(ii) formate complex and the Cu(110) surface co-passivated by [Cu(Î¼-HCOO)(OH)2]2 and O2âˆ’. d, FTIR, Raman and TPD-MS spectra of the Cu-FA foils (prepared by Method II) after annealing under the same conditions as those used for STM imaging and re-exposure to air. The inset in the Raman panel is the optical photograph of the annealed sample in air. The presence of a broad infrared absorption band at 3,378Â cm-1 clearly suggests the presence of abundant -OH groups on the surface. The Raman spectrum was obtained by using Au@SiO2 SHINERS particles to enhance the Raman signals (524Â cmâˆ’1 for Cu-O, 1,404 and 2,920Â cmâˆ’1 for the Câ€“H vibration (Î½Câ€“H) on formate)73,74. Both control Raman spectra of the SHINERS particles and Cu-FA foils are given for comparison. The TPD-MS profiles clearly show the release of H2O and HCOOâˆ’ species from Cu-FA in a wide range of temperatures. The inset in the TPD-MS spectra shows the relative ionization intensities of the detected species. e, Tafel curves of Cu-FA before and after annealing. f, Linear sweep voltammetry of Cu-FA after annealing, obtained with a scan rate of 2Â mVÂ sâˆ’1 from âˆ’1.2Â V to 0Â V (versus Ag/AgCl) in 0.1Â M NaHCO3 solution (pH 8). The Cu(ii) and Cu(i) species were detected with redox potentials in good accordance with reported values52. g, XPS spectra of bare Cu and Cu-FA foils after annealing under the same conditions as those used for STM/AFM characterizations. Once exposed to air, the bare Cu foil displays obvious peaks (935.1, 940.8 and 944.1 eV) corresponding to the oxidized Cu species. In comparison, the Cu 2p XPS (full-width at half-maximum, FWHMÂ =Â 0.9Â eV) and Cu LMM Auger spectra of annealed samples of bare Cu (without air exposure) and Cu-FA foils are almost identical and display peaks of metallic Cu reported in the literature75,76. These data clearly suggest the presence of a non-detectable amount of oxidized Cu species on annealed Cu-FA. Whereas the presence of OHâˆ’ is clearly observed in the O 1s XPS spectrum of the unannealed Cu-FA foil, the annealed Cu-FA displays O 1s XPS signals from O from the formate (532.3Â eV, FWHMÂ =Â 1.7 eV) and O2âˆ’ on Cu (530.4Â eV, FWHMÂ =Â 1.2Â eV) in a ratio close to 1. No obvious OHâˆ’ signal is identified on the annealed sample. In comparison, the bare Cu foil after air exposure displays a major O 1s XPS signal corresponding to OHâˆ’. The annealed Cu foil shows O 1s XPS signals at 530.9 (FWHMÂ =Â 1.2Â eV), 531.9 (FWHMÂ =Â 1.7Â eV) and 533.4 (FWHMÂ =Â 1.3 eV), corresponding to O2âˆ’, OHâˆ’ and O from the carbonate, respectively77. The C 1s spectra of both annealed Cu and Cu-FA foils show the dominant presence of carbon contamination.
Source data


Extended Data Fig. 5 The importance of Cu(110) for the anti-corrosion properties.
a, STM topographies of the single-crystal Cu(110)-c(6Â Ã—Â 2) sample after exposure to air and then annealing at 120â€‰Â°C. The zoom-in STM image shows distortion and darker depressions in the Cu(110)-c(6Â Ã—Â 2) superstructure, suggesting the occurrence of a hydration process during air exposure. b, STM image of the single-crystal Cu(110)-c(6Â Ã—Â 2) sample after air exposure followed by annealing at 300â€‰Â°C. The regeneration of the dehydrated c(6Â Ã—Â 2) structure without dark depressions was confirmed. c, Structure models showing the adsorption of O2 and Clâˆ’ on clean Cu(110) (I, II) and FA-modified Cu(110) (III, IV). O2 is easily dissociated on clean Cu(110) to form adsorbed O species. The Bader charge of Cu atoms on the modified Cu(110) and reference systems was as follows: (1) modified Cu(110): surface Cu +0.97 to +1.0, subsurface Cu +0.34 to +0.53, bulk Cu 0 to +0.14; (2) reference systems: bulk CuO +0.99, bulk Cu2O +0.57, Cu(110) +0.01 to âˆ’0.02. d, XRD patterns of Cu(100), Cu(111) and Cu(110) single crystals. e, XRD patterns of scratched Cu(111) single crystal treated with formate at 160â€‰Â°C for 0â€“60Â h. If the surface was not scratched, no change on the XRD pattern was detected even for treatment time of up to 60Â h. f, Micrographs and Raman spectra of Cu(110), Cu(100) and Cu(111) single-crystal samples treated by an aqueous solution of formate at 100â€‰Â°C for 1Â h, 10Â h and 10Â h, respectively. The two groups of Raman bands at (146, 217, 416, 535)Â cmâˆ’1 and 635Â cmâˆ’1 are attributed to the Cu2O and CuO species, respectively68.


Extended Data Fig. 6 Enhanced anti-corrosion performance in harsh conditions by introducing alkanethiol.
a, Structure model of Cu-FA with alkanethiol bound to the step sites, and experimental evidence of the successful introduction of 1-DT ligands. Whereas the change of contact angle of the water droplets suggests the change of surface hydrophobicity, TPD-MS confirms the presence of formate and DT on Cu-FA/DT. The Cu-FA foils were prepared by Method III. b, Electrochemical measurements (CV, Tafel, Nyquist impedance and Bode plots) confirming the enhanced anti-corrosion properties of Cu-FA after the DT treatment. All measurements were carried out in 0.1Â M NaOH solution. The Nyquist impedance and Bode plots were measured at 0.1Â V versus Ag/AgCl. The polarization parameters of Cu-FA/DT foils in 0.1Â M NaOH and 1Â M NaOH are: EcorrÂ =Â âˆ’258Â mV, JcorrÂ =Â 0.067Â Î¼AÂ cmâˆ’2, corrosion rate 0.755Â Î¼mÂ yrâˆ’1, anti-corrosion enhancement 103.6 (0.1Â M NaOH); EcorrÂ =Â âˆ’331Â mV, JcorrÂ =Â 0.38Â Î¼AÂ cmâˆ’2, corrosion rate 4.40Â Î¼mÂ yrâˆ’1, anti-corrosion factor 158.1 (1Â M NaOH). The anti-corrosion factor is defined as the ratio of the corrosion rate of the bare Cu foil to that of the modified Cu in the same NaOH solutions. c, Comparison of optical images and Raman spectra for the evaluation of the enhanced anti-corrosion of Cu-FA (prepared by Method III) against salt spray after introducing DT. Before the measurements, Cu, Cu-FA and Cu-FA/DT foil samples were subjected to a 5% NaCl salt spray test at 47â€‰Â°C for 24Â h. The Raman bands around (149, 217)Â cmâˆ’1 and 640Â cmâˆ’1 are attributed to Cu2O and CuO species, respectively68. d, Comparison of optical imaging data that reveals the enhanced anti-corrosion of Cu-FA/DT against Na2S. Before recording the images, both Cu-FA and Cu-FA/DT foils were exposed to Na2S solutions with concentrations ranging from 0.1Â mM to 1Â M for 1Â h. Compared to Cu-FA, Cu-FA/DT could survive and keep its copper colour in a much higher concentration of Na2S. e, SEM images and Raman spectra of Cu-FA and Cu-FA/DT after treatment in 10Â mM Na2S for 1Â h and 5 h, respectively. The Raman bands around 296Â cmâˆ’1 and 624Â cmâˆ’1 indicate the formation of oxidized and sulfurized Cu species. f, SEM images of Cu, Cu-FA and Cu-FA/DT foils after seawater inundation at room temperature for 30 days. g, Photographs showing enhanced anti-corrosion of Cu-FA/DT in H2O2. The photographs of the Cu-FA/DT, Cu-FA and Cu foils were taken after they were immersed in 30% H2O2 for different intervals.


Extended Data Fig. 7 Outstanding anti-corrosion performances regardless of the shape and size of Cu materials.
a, SEM images of Cu and Cu-FA (prepared by Method II) wires before and after treatment in 0.1Â M NaOH at 60â€‰Â°C for 60Â h and in 3.5Â wt% NaCl at 60â€‰Â°C for 24Â h (top), temperature-dependent resistances of Cu and Cu-FA wires (length 10Â cm, diameter 1Â mm) after heating in air for 24Â h (bottom left) and resistance changes of Cu and Cu-FA (prepared by Method II) wires (length 10Â cm, diameter 1Â mm) after ageing in 0.1Â M NaOH at 60â€‰Â°C for different time periods (bottom right). The data were averaged from three independent measurements. Error bars reflect the standard errors. b, SEM images of the untreated Cu wire and the Cu-FA wire before and after heating at 160â€‰Â°C in air for 24Â h. c, Microphotographs of Cu, Cu-DT, Cu-FA (prepared by Method III) and Cu-FA/DT meshes after a 96-h salt spray test, and their corresponding Raman spectra and relative electric conductivities before (grey) and after (red) the salt spray test. d, Optical photographs of Cu-FA/DT and Cu-FA meshes (prepared by Method III) after immersion in Na2S solutions of different concentrations for 5Â h, and microphotographs of Cuâ€“FA/DT and Cu-FA meshes after 6Â h ofÂ ageing in 10Â mM Na2S. e, Robust anti-corrosion performance of Cu-FA/DT tubes under wet mechanical conditions; photographs of the outer and inner walls of Cu-FA/DT and bare Cu tubes (inner diameter 1.6Â cm) after the wet mechanical test with flowing 3.5% NaCl solutions (flow rate of up to 1,400Â lÂ hâˆ’1, 10â€“30â€‰Â°C) for 96Â h and 12Â h, respectively, and their corresponding Raman spectra. f, Robust anti-corrosion performance of Cu-FA/DT foils under wet mechanical conditions; photographs of the wet mechanical test set-up, with salty water (3.5% NaCl, 1% Na2CO3, 1% Na2SO4 and 0.1% NaOH) flowing through the foils, comparison photographs of Cu-FA/DT, bare Cu and patinated Cu foils before and after the wet mechanical tests (72, 12 and 12Â h, respectively) and their corresponding Raman spectra after the tests. The polarization parameters of different Cu foils in 0.1Â M NaOH solution were measured as follows: EcorrÂ =Â âˆ’222Â mV, JcorrÂ =Â 6.71Â Î¼AÂ cmâˆ’2, corrosion rate 78.2Â Î¼mÂ yrâˆ’1 (bare Cu); EcorrÂ =Â âˆ’212Â mV, JcorrÂ =Â 4.65Â Î¼AÂ cmâˆ’2, corrosion rate 54.2Â Î¼mÂ yrâˆ’1, anti-corrosion enhancement 1.44 (patinated Cu); EcorrÂ =Â âˆ’258Â mV, JcorrÂ =Â 0.067Â Î¼AÂ cmâˆ’2, corrosion rate 0.755Â Î¼mÂ yrâˆ’1, anti-corrosion enhancement 103.6 (Cu-FA/DT). The anti-corrosion enhancement is defined as the ratio of the corrosion rate of the bare Cu foil to that of modified Cu. The patinated Cu foil was prepared by exposing bare Cu foils to 3.5% Na2CO3 salt spray for 60Â h.


Extended Data Fig. 8 Application of the anti-corrosion technique to Cu nanomaterials.
a, SEM images of fresh Cu NWs and of untreated Cu NWs exposed to air for 5 days, showing the easy oxidation of untreated Cu NWs. b, XRD patterns of Cu NWs (prepared by Method III), Cu NWs-FA and Cu NWs-FA/DT after a 12-h corrosion test in 1Â M NaOH (left), photographs of their water suspensions before and after being stored at room temperature in air for 90 days (top right) and their Raman spectra after storage in air for 5 and 30 days (bottom right). c, TEM and HRTEM images of Cu NWs and Cu NWs-FA. The insets display the corresponding selected-area electron diffraction patterns. d, TEM and HRTEM images of Cu NWs, Cu NWs-FA and Cu NWs-FA/DT before and after 24-h corrosion tests in 1Â M NaOH. Typical lattice fringes are labelled in the HRTEM images. e, SEM images of Cu NWs, Cu NWs-FA and Cu NWs-FA/DT after heating at 80â€‰Â°C for 24Â h. f, Performance of passivated Cu NWs in transparent electrodes. The transmittance is shown as a function of the sheet resistance of transparent electrodes made from Cu NWs with different surface modifications. The inset shows a photograph of a transparent electrode with Cu NWs on PET. Together with the resistance change of the Cu NWs-FA/DT film during a bending test with sputtered indium tin oxide (ITO), the resistance changes of transparent electrodes made from untreated Cu NWs, Cu NWs-FA, Cu NWs/DT and Cu NWs-FA/DT after heating at 80â€‰Â°C in air for 24Â h are also provided for comparison. The data were averaged from three independent measurements. Error bars represent the standard errors. g, SEM images of Cu NWs, Cu NWs-FA and Cu NWs-FA/DT before and after a 24-h salt spray test. h, Change of the square resistance of Cu NPs and Cu NPs-FA (prepared by Method II) films after storage at ambient conditions for different periods. The measurements were carried out on films made from Cu NPs and Cu NPs-FA with a thickness of 100Â Î¼m. The insets show photographs of Cu NPs and Cu NPs-FA powders after a 14-day exposure to air at room temperature.


Extended Data Fig. 9 Application of anti-oxidation Cu materials to radio-frequency identification, and room-temperature electrochemical technique for preparing anti-corrosive Cu materials.
a, Photograph of kilogram-scale anti-corrosion Cu paste. b, Photograph of radio-frequency identification (RFID) tag antenna. This antenna was designed for ultrahigh-frequency RFID on a cloth substrate (the copper paste was printed on the cloth substrate by screen printing). The working frequency is 915Â MHz, and its performance is equivalent to that of similar commercial aluminium-etching antennas. The recognition distance can reach 20.3Â m. c, Reflection coefficient S11 of the antenna shown in b, measured by Vector network analyser ZNB8. The reflection coefficient S11 is the most important parameter of the antenna; a smaller S11 implies lower energy loss of the tag antenna in the process of receiving the signal from the card reader, that is, higher energy utilization. These data verify that the antenna works at 915Â MHz and also show that the S11 value of the antenna at this frequency can reach âˆ’41.5Â dB (a very low value), which is equivalent to S11 values reported in the literature78. This suggests that our copper paste can also be used to create high-efficiency and high-performance antennas. d, Stability of the electrical conductivity of our Cu-FA/DT-paste-based RFID tag antenna compared to that of a paste of untreated Cu. For copper-paste-based RFID films, the square resistance was acquired and SÂ =Â 1/(sheet resistanceÂ Ã—Â thickness of the foils or films). e, CV curve of Cu foil immersed in 2% HCOONa (pH 8â€“10) recorded at a scan rate of 10Â mVÂ sâˆ’1, and chronoamperometric curve with reduction potential âˆ’0.7Â V (versus SCE) applied after an anodic sweep from âˆ’0.80Â V to 0.20Â V (versus SCE; 10Â mVÂ sâˆ’1). f, Photographs of Cu-FA(EC) and Cu foils before and after a 12-h corrosion test in 0.1Â M NaOH. g, SEM images and Raman spectra of Cu-FA(EC) and bare Cu foils after the corrosion test in NaOH. h, Microphotographs and Raman spectra of Cu-FA(EC)/DT, Cu-FA(EC) and Cu foils after immersion in 50Â mM Na2S solution for 10Â min. i, Schematic illustration of the roll-to-roll setup used to produce Cu-FA(EC). RE, reference electrode; CE, counter electrode; WE, working electrode. An oxidation potential of 0.1Â V versus SCE was applied for the generation of surface Cu(ii) when the Cu foil was moving from left to right, and an oxidation potential of âˆ’0.7Â V versus SCE was used when the foil was moving back from right to left for the surface reconstruction.


Extended Data Table 1 Performance of Cu NWs-FA/DT (prepared by Method II) as transparent conductive electrodes compared with previously reported workFull size table
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