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            Abstract
MicroRNAs (miRNAs) regulate the levels of translation of messenger RNAs (mRNAs). At present, the major parameter that can explain the selection of the target mRNA and the efficiency of translation repression is the base pairing between the â€˜seedâ€™ region of the miRNA and its counterpart mRNA1. Here we use R1Ï� relaxation-dispersion nuclear magnetic resonance2 and molecular simulations3 to reveal a dynamic switchâ€”based on the rearrangement of a single base pair in the miRNAâ€“mRNA duplexâ€”that elongates a weak five-base-pair seed to a complete seven-base-pair seed. This switch also causes coaxial stacking of the seed and supplementary helix fitting into human ArgonauteÂ 2 protein (Ago2), reminiscent of an active state in prokaryotic Ago4,5. Stabilizing this transient state leads to enhanced repression of the target mRNA in cells, revealing the importance of this miRNAâ€“mRNA structure. Our observations tie together previous findings regarding the stepwise miRNA targeting process from an initial â€˜screeningâ€™ state to an â€˜activeâ€™ state, and unveil the role of the RNA duplex beyond the seed in Ago2.
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                    Fig. 1: Conformational dynamics in the seed of miR-34aâ€“Sirt1 mRNA.[image: ]


Fig. 2: Structure and conformation of the excited state of miR-34aâ€“mSirt1.[image: ]


Fig. 3: Biophysical and functional characterization of wild-type and trapped excited state miR-34aâ€“mSirt1 duplexes.[image: ]


Fig. 4: Proposed mechanism of downregulation for GCâ€“GU switches in miR-34a-loaded RISC.[image: ]
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                Data availability

              
              NMR sequence-specific resonance assignments have been deposited in theÂ Biological Magnetic Resonance Data Bank under accesssion numbersÂ 27225Â (hsa-miR-34a-5p), 27226Â (the miR34aâ€“mSirt1 bulge) and 27229Â (the miR34aâ€“mSirt1 trapped excited state). The plasmids used for the DLR assay were a gift from J. Weidhaas (Addgene plasmids 78258 and 78259). All data and code used for data analysis are available upon request. The ensembles of REMD simulations have been deposited in Model Archive (www.modelarchive.org) under accession numbers ma-bc9uo, ma-z54y4 and ma-g8e5z.
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Extended data figures and tables

Extended Data Fig. 1 Secondary-structure prediction using MC-Fold.
Secondary-structure rearrangements among the ten lowest-energy structures were calculated using MC-Fold21. Ranking (numbers in parentheses) according to the predicted energy difference, based on the minimum free energy (MFE), is indicated in each label (Î”Î”G(n) in units of unreferenced kcalÂ molâˆ’1, as described21). Secondary structures with a single base-pair opening in the cUUCGg region are omitted. a, The miR-34aâ€“mSirt1 duplex connected by a cUUCGg loop (black). The MFE corresponds to a 7-merâ€“A1 binding site. Suboptimal structures (3) and (5) suggest possible modulation of the binding site to a 8-merâ€“GU and an 6-merâ€“A1 configuration, respectively. b, miR-34aâ€“mSirt1 bulge construct, comprising a cUUCGg loop and a closing stem (black). The secondary-structure distribution of the miR-34aâ€“mSirt1 bulge follows the same trend as the full-length duplex; dashed lines connect identical bulge structures. Suboptimal structures were used to validate or reject models of excited-state (ES) secondary structures on the basis of R1Ï� NMR relaxation-dispersion data. Structure (1), with the MFE, corresponds to the assigned ground-state structure (GS). Structure (3) satisfies the 1H1 and 15N1 R1Ï� NMR relaxation-dispersion data on gG6(G24), being G:U base paired with tU20(U9). Structure (5) is mutually exclusive with (3) in structural terms and satisfies the 13C R1Ï� NMR relaxation-dispersion data measured on tA19 that indicate this residue adopting a base-paired conformation. Therefore we propose structure (3) as ES1 and structure (5) as ES2. Conformations (6) and (7) do not agree, and partially clash, with our R1Ï� NMR relaxation-dispersion data and can therefore be excluded as excited states. c, miR-34aâ€“mSirt1 trapped excited-state duplex connected by a cUUCGg loop (black). Substituted nucleotides used to trap the excited state are in yellow. The MFE corresponds to a 8-mer binding site. d, miR-34aâ€“mSirt1 (turquoise) trapped excited-state construct comprising an cUUCGg loop and a closing stem (black). Substituted nucleotides used to trap the excited state are in yellow. The secondary-structure distribution of the miR-34aâ€“mSirt1 trapped excited state follows a similar trend as the full-length duplex; dashed lines connect identical bulge structures.


Extended Data Fig. 2 Mg2+ titration of the miR-34aâ€“mSirt1 bulge followed by NMR.
Shown are HSQC overlays of different Mg2+ titration steps. a, 1Hâ€“13C aromatic 2/6/8 HSQC. b, 1Hâ€“13C sugar 1â€² HSQC. c, 1Hâ€“15N imino 1/3 HSQC. The titration steps are colour-coded (a, top left). Additional overlay of the miR-34aâ€“mSirt1 trapped ES is shown in grey in a, b. Arrows indicate the chemical-shift trajectory during titration. Dashed lines connect equivalent peaks in the miR-34aâ€“mSirt1 bulge and trapped ES constructs.


Extended Data Fig. 3 MCSF analysis of the miR-34aâ€“mSIRT1 bulge and trapped excited state, and analysis of â€‰13C tA22C8 outliers.
a, b, We used the MCSF approach22 to cross-validate our candidate excited state (ES1), modelled using R1Ï�-derived ground-state-to-excited-state chemical-shift differences (a, 13C R1Ï� Î”Ï‰ data, blue dots; b, left). pES refers to the excited-state population (popES in the main text). We also generated an ES1 mimic (trapped ES1) using a two-point substitution, predicted to stabilize the proposed conformation (b, bottom). For each reporter atom, we compared 13C R1Ï� Î”Ï‰ data with the chemical-shift differences derived from the assignment of the bulge and the trapped ES constructs (a, 13C Î”Ï‰ trapped ES (tES) data, turquoise dots). In a, The MCSF analysis validates our ES1 model (green shading), with exceptions arising from the limitations of the mimic (orange shading) and from the presence (violet shading) of a second ES (ES2, b, right). Errors for R1Ï� relaxation-dispersion-derived Î”Ï‰ represent 1 s.d. from fitting (see alsoÂ Supplementary Methods). In b, the proposed model for ES2 satisfies the 13C R1Ï� Î”Ï‰ data measured for tA19 and gG6. GS, ground state. c, The free-energy landscape for the entire star-like three-state exchange process. (The MCSF analysis and ES2 are discussed further in theÂ Supplementary Information, Discussion 5.) The transition coeffient (Îº), is assumed to be 1 (ref. 23), so the transition-state energies (TS1 and TS2), calculated using Supplementary equation (11), must be considered an upper limit of this exchange process. d, e, The substitution site (tU21 to tC21) perturbs the chemical environment of tA22C8 that is directly neighbouring the substituted nucleobase (orange sphere in e). Conversely, tA22C2 (green sphere), pointing towards the miR-34a strand (red), experiences an equivalent chemical environment in the bulge (blue) and trapped ES (turquoise) constructs. This explains the inconsistency in the MCSF profile for tA22C8 (Supplementary Fig. 12a, orange box). d, Secondary structure environment of tA22 in the miR-34aâ€“mSirt1 bulge excited state (left) and trapped ES (right) constructs. The substitution site (tU21 to tC21) is highlighted. e, Overlay of average structures of the bulge ES (blue) and trapped ES (turquoise) from REMD ensembles, aligned according to residues gU7 and tA22. Residues gU7, gG8, tU21 and tA22 are shown. tA22C8 and tA22C2 13C atoms are in orange and green respectively.


Extended Data Fig. 4 Biophysical and biochemical characterization of the constructs.
a, Individual A260 UV melting profiles for the constructs used here. The miR-34aâ€“mSirt1 duplex, miR-34aâ€“mSirt1 trapped ES duplex, miR-34aâ€“complementary-strand duplex and miR-34a single-stranded RNA (ssRNA) were each measured as three technical independent replicates (shown in different colours; nÂ =Â 1). Individual technical replicates are plotted. Tm values are shown as meansÂ Â±Â s.d. of fitted Tm values in individual technical replicates (nÂ =Â 3). The other ssRNAs (bottom row) were measured and plotted as individual technical replicates; fitted Tm values are shown with associated confidence intervals of 95% (nÂ =Â 1) as an estimate of the experimental error. Normalized differential melting curves (Î´A260/Î´T) are plotted as a function of temperature (in K) (circles) and fitted to Supplementary equation (1a) or (1b) (curves), depending on the molecularity of the system. b, EMSA titration profiles for the miR-34aâ€“mSirt1 duplex, miR-34aâ€“mSirt1 trapped ES duplex and miR-34aâ€“complementary-strand duplex, measured as three independent technical replicates. The ratio of bound to total miR-34a 3â€²-Cy3 is plotted as a function of titrand concentration (circles) and fits a standard binding isotherm (line) (Supplementary equation (2)). The plot centre is the mean; error bars represent 1 s.d. from the three independent replicates. Fitted Kd values along with confidence intervals of 95% are shown as an estimate of the experimental error (nÂ =Â 3). Gel images were acquired by detection of Cy3 fluorescence. During the titration, miR-34a 3â€²-Cy3 was kept at a constant concentration of 24Â nM, setting the sensitivity limit for estimating Kd (Supplementary Fig. 1aâ€“c). mSirt1 and its trapped-ES counterpart are equivalent in their ability to form a stable RNAâ€“RNA duplex with miR-34a. Tighter binding is observed for the complementary strand (48.4Â Â±Â 9.5Â nM) than for the mSirt1 (124.3Â Â±Â 21.7Â nM) and trapped-ES mSirt1 (110.3Â Â±Â 23.0Â nM), providing a control for the dynamic range of Kd estimation. c, Equilibrium FBA profiles for mSirt1, mSirt1 trapped ES and a scrambled control, binding to miR-34a-loaded Ago2. The three targets were each measured as three independent replicates and fitted to a standard binding isotherm (line) (Supplementary equation (2)). The plot centre is the mean; error bars represent 1 s.d. from three independent replicates. Fitted Kd values are shown with confidence intervals of 95% (an estimate of the experimental error). As in c, mSirt1 and mSirt1 trapped ES are equivalent in their ability to form a stable ternary complex within RISC. The simulated data set (dotted lines) indicate curves corresponding to Kd values ten times lower (red) or ten times higher (green) than the average value for mSirt1 and mSirt1 trapped ES, providing a frame for the amplitude of our experimental error. d, Top, northern blot showing the detection of miR-34a loaded in Ago2. Bottom, a standard calibration curve (using naked miR-34a), used to obtain an estimate of miR-34a in RISC. The centre calibration curve was used to calculate R2. The two outer curves indicate the 95% confidence interval of the calibration-line fit (from a single repeated experiment). The average ratio of Ago2 and miR-34a-loaded Ago2 (both in pmole) was used to obtain the fraction of Ago2 loaded with our guide (roughly 1.5%). The complete lists of fitted parameters for UV melting, EMSA titration, FBA titration and northern blot are in Supplementary Table 1aâ€“d. The complete fitting analyses of UV melting, EMSA titration and FBA titration are in Supplementary Tables 7â€“9.


Extended Data Fig. 5 Crystal structure of Ago2 overlaid with REMD ensembles.
Superposition of ground state (green) and excited state (orange) conformational ensembles on the Ago2 crystal structure (PDB code 4W5T), with seed sequences aligned to crystallographic miRNAâ€“mRNA positions (red). Although the seed orientations are comparable, the ground-state and excited-state conformations sample different space within Ago2.


Extended Data Fig. 6 Slow-growth insertion of excited-state RNA into Ago2 predicts the ability of bulged miRNAâ€“mRNA complexes to access an alternative dsRNA-binding mode of Ago2.
Slow-growth induced-fit Ago2 structures are compared with existing X-ray structures (whose PDB identification codes are shown in the figure) via structural alignment. a, Ago2 after induced fit with ES RNA binds in the PIWI-adjacent groove rather than the PAZ domain. b, The Thermus thermophilus (Tt) Ago crystal structure similarly shows DNA/RNA-duplex binding in the analogous PIWI-adjacent groove. câ€“j, The root mean square deviation (r.m.s.d.) for each indicated pair of Ago structures was measured after structural alignment either of all protein atoms, or excluding the PAZ domain, PIWI loops and helix-7 atoms (â€˜subset alignedâ€™; these excluded atoms still count towards the r.m.s.d.). The subset-aligned structures show that most of the r.m.s.d. difference arises from pivoting motions of the PAZ domain, coupled with small shifts in helix-7 and PIWI loops to accommodate the inserted ES RNA structures. c, Comparison of slow-growthÂ human Ago2â€“GS and the existing Ago2 structure (PDB code 4OLA; r.m.s.d.Â =Â 2.065Â Ã… (all) and 2.62Â Ã… (subset aligned)). d, Comparison of slow-growth Ago2â€“ES and the 4OLA structure (r.m.s.d.Â =Â 1.4Â Ã… (all) and 1.65Â Ã… (subset aligned)). e, Comparison of the slow-growth Ago2â€“trapped ES and the 4OLA structure (r.m.s.d.Â =Â 1.9Â Ã… (all) and 2.18 Â Ã… (subset aligned)). f, Comparison of the slow-growth Ago2â€“GS with Ago2â€“ES (r.m.s.d.Â =Â 2.1Â Ã… (all) and 2.2Â Ã… (subset aligned)). g, Comparison of the slow-growth Ago2â€“ES with Ago2â€“trapped ES (r.m.s.d.Â =Â 1.6Â Ã… (all) and 1.33Â Ã… (subset aligned)). h, Comparison of the slow-growth Ago2â€“GS and the 6N4O structure (r.m.s.d.Â =Â 2.05Â Ã… (all) and 2.065Â Ã… (subset aligned)). i, Comparison of the slow-growth Ago2â€“ES (green) with the 3HM9 structure (r.m.s.d.Â =Â 4.52Â Ã… (all)). j, Comparison of the slow-growth Ago2â€“GS with the 3HM9 structure (r.m.s.d.Â =Â 3.85Ã… (all)).


Extended Data Fig. 7 DLR assay of additional miR-34a targets.
We studied five targets of different bulge sizes (seeÂ Methods). Individual replicates are plotted as circles; the centre line is the mean; error bars represent 1 s.d from three independent replicates; nts, nucleotides. a, Standard DLR normalization (relative to the control condition with no miR-34a duplex transfected). Despite the large variability between replicates, a consistent increase in downregulation (connecting lines) is observed for wild-type (WT) and trapped excited-state (tES) constructs. b, When the data sets are internally normalized and the WT condition is set to 100% (mean value), the variation due to experimental replicas is attenuated and the trend observed in a is maintained.


Extended Data Table 1 Tm and Kd fitted parametersFull size table
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Video 1 Morph of GS-ES Ago2 slow-growth structures.
Morphing transition between GS-ES Ago2 structures shows that the accommodation of the ES state requires pivoting of the PAZ domain.
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