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            Abstract
The shear force along convergent plate boundary faults (megathrusts) determines the height of mountain ranges that can be mechanically sustained1,2,3,4. However, whether the true height of mountain ranges corresponds to this tectonically supported elevation is debated4,5,6,7. In particular, climate-dependent erosional processes are often assumed to exert a first-order control on mountain height5,6,7,8,9,10,11,12, although this assumption has remained difficult to validate12. Here we constrain the shear force along active megathrusts using their rheological properties and then determine the tectonically supported elevation using a force balance model. We show that the height of mountain ranges around the globe matches this elevation, irrespective of climatic conditions and the rate of erosion. This finding indicates that mountain ranges are close to force equilibrium and that their height is primarily controlled by the megathrust shear force. We conclude that temporal variations in mountain height reflect long-term changes in the force balance but are not indicative of a direct climate control on mountain elevation.




            
                
                    

    
        
            
                
                Access through your institution
            
        

        
            
                
                    Buy or subscribe
                
            

        
    



                
            


            
                
                    
                

            

            
                
                
                
                
                    
                        This is a preview of subscription content, access via your institution

                    

                    
                

                

                Access options

                


                
                    
                        
                            

    
        
            
                
                Access through your institution
            
        

        
    



                        

                        

    
        
        

        
        
            
                
                Access through your institution
            
        

        
            
                Change institution
            
        

        
        
            
                Buy or subscribe
            
        

        
    



                    
                

                
    
    Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time

Learn more


Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue

Learn more


Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Learn more


Prices may be subject to local taxes which are calculated during checkout



  

    
    
        
    Additional access options:

    	
            Log in
        
	
            Learn about institutional subscriptions
        
	
            Read our FAQs
        
	
            Contact customer support
        



    

                
                    Fig. 1: Schematic summary of processes and topography at convergent plate margins.[image: ]


Fig. 2: Megathrust shear strength envelopes derived from the rheological model.[image: ]


Fig. 3: Maximum mean elevation compared to the tectonically supported elevation.[image: ]


Fig. 4: Maximum mean elevation compared to the shear-force component supporting mountain height.[image: ]
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                Data availability


All data used in this study are from the published literature as referenced14,15,16,17,18,47,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73 in Extended Data Tables 1 and 2. The solutions of the rheological model and the force balance model are available at https://doi.org/10.5880/GFZ.4.1.2020.002.



Code availability


To create the maps in Extended Data Figs. 1â€“3, we used the Python package Matplotlib74 and MATLAB75. To create the swath profiles in Extended Data Figs. 6 andÂ 7, we used TopoToolbox76. All force-balance calculations are based on the analytical expressions described in theÂ Methods. The Python scripts used for the calculations of the shear force and the tectonically supported elevation are available from the corresponding author upon reasonable request.
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Extended data figures and tables

Extended Data Fig. 1 Map with the localities of the convergent margin segments studied.
Red and blue circles indicate margins where the frictional strength of the megathrust has been derived from heat dissipation models and from Coulomb wedge models, respectively. 1, Northern Cascadia; 2, 3 and 4, The Andes at 23Â° S, 34Â° S, and 36Â° S, respectively; 5, Northern Sumatra; 6, Kamchatka; 7, Japan Trench; 8, Nankai Trough; 9, Northern Hikurangi; 10, Himalayas. Maps of the study sites are shown in Extended Data Figs. 2 andÂ 3.


Extended Data Fig. 2 Map view of the convergent margin segments studied.
aâ€“f, Thick black lines and black rectangles indicate the trace and width (100 km), respectively, of the swath profiles shown in Extended Data Figs. 6 andÂ 7. Small red, yellow, and blue circles are continental earthquakes with normal faulting, strike-slip and thrust faulting focal mechanisms, respectively77. Lines associated with symbols indicate the orientation of the maximum horizontal compressional stress.


Extended Data Fig. 3 Map view of the convergent margin segments studied.
aâ€“c, Thick black lines and black rectangles indicate the trace and width (100 km), respectively, of the swath profile shown in Extended Data Fig. 7. Small red, yellow, and blue circles are continental earthquakes with normal faulting, strike-slip, and thrust faulting focal mechanisms, respectively77. Lines associated with symbols indicate the orientation of the maximum horizontal compressional stress.


Extended Data Fig. 4 Coulomb wedge model for the Andean outer wedge at 23Â° S.
The model is constrained by the wedge geometry (surface slope Î± and basal dip angle Î²), the coefficient of friction of the wedge material Î¼w (0.45), and the pore fluid pressure ratio in the wedge Î» (see refs. 15,16,50 for details). The open circle indicates the ideal state of basal erosion, which is given by the intersection of the compressively critical strength envelope with the straight line that represents all principal solutions for which the effective strength of the megathrust is equal to the effective strength of the wedge (Î¼â€²Â =Â Î¼w(1Â âˆ’Â Î»)). Basal erosion occurs during coseismic strengthening of the shallow megathrust beneath the outer wedge and constrains the dynamic strength of the fault during great earthquakes16. The average interseismic strength of the megathrust (solid circle) used for the calculation of the megathrust shear force is taken to be lower by 0.01 than the dynamic strength (open circle) of the megathrust during coseismic strengthening of the shallow megathrust.


Extended Data Fig. 5 Analytical force balance model.
a, b, Schematic illustration of the force balance model for subduction and collision zones, respectively. Fs is the shear force along the megathrust and Fg is the gravitational force. \(\bar{\rho }\) is the average density of the triangular wedge above the megathrust. P is the push of the upper plate. L is the downdip extent of the megathrust. dT is the trench depth and Î³ is the surface slope of the submarine part of the wedge. SeeÂ Methods and refs. 2,3 for details.


Extended Data Fig. 6 Topographic swath profiles.
aâ€“e, Mean elevation (red line)Â Â±Â 1 standard deviation (grey). Width of the swath profiles is 100 km. The submarine topography and subaerial topography were obtained from the ETOPO1 global relief model78 and the SRTM 90-m digital elevation model21, respectively. To calculate the MME, we first identified the maximum value of the mean elevation along each swath. We then averaged the elevation over the area (black bars) in which the elevation is within 95% of this maximum value. The uncertainty represents one standard deviation of the mean elevation within that area. Dashed horizontal lines indicate sea level. Vertical arrows indicate the position of the trench at subduction zones. Vertical exaggeration is 10.


Extended Data Fig. 7 Topographic swath profiles.
aâ€“e, Mean elevation (red line)Â Â±Â 1 standard deviation (grey). Width of the swath profiles is 100 km. The submarine topography and subaerial topography were obtained from the ETOPO1 global relief model78 and the SRTM 90-m digital elevation model21, respectively. To calculate the MME, we first identified the maximum value of the mean elevation along each swath. We then averaged the elevation over the area (black bars) in which the elevation is within 95% of this maximum value. The uncertainty represents one standard deviation of the mean elevation within that area. Dashed horizontal lines indicate sea level. Vertical arrows indicate the position of the trench at subduction zones and the position of the Main Frontal Thrust for the Himalayas. Vertical exaggeration is 10.


Extended Data Table 1 Parameters of the rheological modelFull size table


Extended Data Table 2 Parameters of the force balance modelFull size table


Extended Data Table 3 Components of the megathrust shear force FsFull size table
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