Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Entanglement of two quantum memories via fibres over dozens of kilometres

Abstract

A quantum internet that connects remote quantum processors1,2 should enable a number of revolutionary applications such as distributed quantum computing. Its realization will rely on entanglement of remote quantum memories over long distances. Despite enormous progress3,4,5,6,7,8,9,10,11,12, at present the maximal physical separation achieved between two nodes is 1.3 kilometres10, and challenges for longer distances remain. Here we demonstrate entanglement of two atomic ensembles in one laboratory via photon transmission through city-scale optical fibres. The atomic ensembles function as quantum memories that store quantum states. We use cavity enhancement to efficiently create atom–photon entanglement13,14,15 and we use quantum frequency conversion16 to shift the atomic wavelength to telecommunications wavelengths. We realize entanglement over 22 kilometres of field-deployed fibres via two-photon interference17,18 and entanglement over 50 kilometres of coiled fibres via single-photon interference19. Our experiment could be extended to nodes physically separated by similar distances, which would thus form a functional segment of the atomic quantum network, paving the way towards establishing atomic entanglement over many nodes and over much longer distances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the remote entanglement generation between atomic ensembles.
Fig. 2: Performance of the telecommunications interface.
Fig. 3: Tomography of the atom–photon entanglement.
Fig. 4: Entanglement over field fibres.
Fig. 5: Characterization of the remote entanglement via TPI.
Fig. 6: Characterization of the remote entanglement via SPI.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    ADS  CAS  PubMed  Google Scholar 

  2. Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

    ADS  MathSciNet  PubMed  Google Scholar 

  3. Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001).

    ADS  CAS  PubMed  Google Scholar 

  4. Chou, C. W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 (2005).

    ADS  CAS  PubMed  Google Scholar 

  5. Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).

    ADS  CAS  PubMed  Google Scholar 

  6. Chou, C.-W. et al. Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316, 1316–1320 (2007).

    ADS  CAS  PubMed  Google Scholar 

  7. Yuan, Z.-S. et al. Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008).

    ADS  CAS  PubMed  Google Scholar 

  8. Hofmann, J. et al. Heralded entanglement between widely separated atoms. Science 337, 72–75 (2012).

    ADS  CAS  PubMed  Google Scholar 

  9. Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    ADS  CAS  PubMed  Google Scholar 

  10. Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    ADS  CAS  PubMed  Google Scholar 

  11. Delteil, A. et al. Generation of heralded entanglement between distant hole spins. Nat. Phys. 12, 218–223 (2016).

    CAS  Google Scholar 

  12. Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558, 268–273 (2018).

    ADS  CAS  PubMed  Google Scholar 

  13. Simon, J., Tanji, H., Thompson, J. K. & Vuletić, V. Interfacing collective atomic excitations and single photons. Phys. Rev. Lett. 98, 183601 (2007).

    ADS  PubMed  Google Scholar 

  14. Bao, X.-H. et al. Efficient and long-lived quantum memory with cold atoms inside a ring cavity. Nat. Phys. 8, 517–521 (2012).

    CAS  Google Scholar 

  15. Yang, S.-J. et al. Highly retrievable spin-wave–photon entanglement source. Phys. Rev. Lett. 114, 210501 (2015).

    ADS  PubMed  Google Scholar 

  16. Kumar, P. Quantum frequency conversion. Opt. Lett. 15, 1476–1478 (1990).

    ADS  CAS  PubMed  Google Scholar 

  17. Simon, C. & Irvine, W. T. M. Robust long-distance entanglement and a loophole-free Bell test with ions and photons. Phys. Rev. Lett. 91, 110405 (2003).

    ADS  PubMed  Google Scholar 

  18. Zhao, B., Chen, Z.-B., Chen, Y.-A., Schmiedmayer, J. & Pan, J.-W. Robust creation of entanglement between remote memory qubits. Phys. Rev. Lett. 98, 240502 (2007).

    ADS  PubMed  Google Scholar 

  19. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    ADS  CAS  PubMed  Google Scholar 

  20. Yuan, Z.-S. et al. Entangled photons and quantum communication. Phys. Rep. 497, 1–40 (2010).

    ADS  MathSciNet  CAS  Google Scholar 

  21. Inagaki, T., Matsuda, N., Tadanaga, O., Asobe, M. & Takesue, H. Entanglement distribution over 300 km of fiber. Opt. Express 21, 23241–23249 (2013).

    ADS  PubMed  Google Scholar 

  22. Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017).

    CAS  PubMed  Google Scholar 

  23. Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

    ADS  Google Scholar 

  24. Gottesman, D., Jennewein, T. & Croke, S. Longer-baseline telescopes using quantum repeaters. Phys. Rev. Lett. 109, 070503 (2012).

    ADS  PubMed  Google Scholar 

  25. Kómár, P. et al. A quantum network of clocks. Nat. Phys. 10, 582–587 (2014).

    Google Scholar 

  26. Tittel, W. et al. Photon-echo quantum memory in solid state systems. Laser Photon. Rev. 4, 244–267 (2010).

    CAS  Google Scholar 

  27. Duan, L.-M. & Monroe, C. Quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209–1224 (2010).

    ADS  Google Scholar 

  28. Reiserer, A. & Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015).

    ADS  CAS  Google Scholar 

  29. Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    ADS  CAS  Google Scholar 

  30. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    ADS  CAS  Google Scholar 

  31. Jing, B. et al. Entanglement of three quantum memories via interference of three single photons. Nat. Photon. 13, 210–213 (2019).

    ADS  CAS  Google Scholar 

  32. Radnaev, A. G. et al. A quantum memory with telecom-wavelength conversion. Nat. Phys. 6, 894–899 (2010).

    CAS  Google Scholar 

  33. De Greve, K. et al. Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012).

    ADS  PubMed  Google Scholar 

  34. Maring, N. et al. Photonic quantum state transfer between a cold atomic gas and a crystal. Nature 551, 485–488 (2017).

    ADS  CAS  PubMed  Google Scholar 

  35. Bock, M. et al. High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion. Nat. Commun. 9, 1998 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  36. Ikuta, R. et al. Polarization insensitive frequency conversion for an atom–photon entanglement distribution via a telecom network. Nat. Commun. 9, 1997 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  37. Walker, T. et al. Long-distance single photon transmission from a trapped ion via quantum frequency conversion. Phys. Rev. Lett. 120, 203601 (2018).

    ADS  CAS  PubMed  Google Scholar 

  38. Dréau, A., Tcheborateva, A., Mahdaoui, A. E., Bonato, C. & Hanson, R. Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths. Phys. Rev. Appl. 9, 064031 (2018).

    ADS  Google Scholar 

  39. Farrera, P., Heinze, G. & de Riedmatten, H. Entanglement between a photonic time-bin qubit and a collective atomic spin excitation. Phys. Rev. Lett. 120, 100501 (2018).

    ADS  CAS  PubMed  Google Scholar 

  40. Jiang, Y., Rui, J., Bao, X.-H. & Pan, J.-W. Dynamical zeroing of spin-wave momentum to suppress motional dephasing in an atomic-ensemble quantum memory. Phys. Rev. A 93, 063819 (2016).

    ADS  Google Scholar 

  41. Ma, X.-s. et al. Experimental delayed-choice entanglement swapping. Nat. Phys. 8, 479–484 (2012).

    Google Scholar 

  42. Gühne, O. & Tóth, G. Entanglement detection. Phys. Rep. 474, 1–75 (2009).

    ADS  MathSciNet  Google Scholar 

  43. Minář, J., De Riedmatten, H., Simon, C., Zbinden, H. & Gisin, N. Phase-noise measurements in long-fiber interferometers for quantum-repeater applications. Phys. Rev. A 77, 052325 (2008).

    ADS  Google Scholar 

  44. Yang, S.-J., Wang, X.-J., Bao, X.-H. & Pan, J.-W. An efficient quantum light–matter interface with sub-second lifetime. Nat. Photon. 10, 381–384 (2016).

    ADS  CAS  Google Scholar 

  45. Li, L., Dudin, Y. O. & Kuzmich, A. Entanglement between light and an optical atomic excitation. Nature 498, 466–469 (2013).

    ADS  CAS  PubMed  Google Scholar 

  46. Li, J. et al. Hong-Ou-Mandel interference between two deterministic collective excitations in an atomic ensemble. Phys. Rev. Lett. 117, 180501 (2016).

    ADS  PubMed  Google Scholar 

  47. Collins, O. A., Jenkins, S. D., Kuzmich, A. & Kennedy, T. A. B. Multiplexed memory-insensitive quantum repeaters. Phys. Rev. Lett. 98, 060502 (2007).

    ADS  CAS  PubMed  Google Scholar 

  48. Pu, Y.-F. et al. Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells. Nat. Commun. 8, 15359 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tian, L. et al. Spatial multiplexing of atom-photon entanglement sources using feedforward control and switching networks. Phys. Rev. Lett. 119, 130505 (2017).

    ADS  PubMed  Google Scholar 

  50. Parniak, M. et al. Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection. Nat. Commun. 8, 2140 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  51. Bar-Gill, N., Pham, L., Jarmola, A., Budker, D. & Walsworth, R. Solid-state electronic spin coherence time approaching one second. Nat. Commun. 4, 1743 (2013).

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFA0303902, 2018YFB0504300, 2017YFA0304000), the Anhui Initiative in Quantum Information Technologies, the National Natural Science Foundation of China and the Chinese Academy of Sciences. We thank QuantumCTek for providing the field-deployed fibres.

Author information

Authors and Affiliations

Authors

Contributions

X.-H.B. and J.-W.P. conceived the research. Q.Z., X.-H.B. and J.-W.P. designed the experiment. Y.Y., X.-Y.L., B.J., P.-F.S., R.-Z.F., C.-W.Y. and X.-H.B. carried out the experiment with assistance from all other authors. F.M., M.-Y.Z., X.-P.X. and Q.Z. built the QFC module. W.-J.Z., L.-X.Y. and Z.W. fabricated the superconducting nanowire single-photon detectors. Y.Y., Q.Z., X.-H.B. and J.-W.P. analysed the data and wrote the paper with input from all other authors.

Corresponding authors

Correspondence to Qiang Zhang, Xiao-Hui Bao or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains the following sections: I. General information of experimental setups; II. Phase stabilization; III. Lasers in outdoor application; IV. Analysis on experimental imperfections; V. Entanglement evaluation of Fock state entanglement; and additional references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Ma, F., Luo, XY. et al. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature 578, 240–245 (2020). https://doi.org/10.1038/s41586-020-1976-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-020-1976-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing