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            Abstract
Antibody class switch recombination (CSR) in B lymphocytes replaces immunoglobulin heavy chain locus (Igh) CÎ¼ constant region exons (CHs) with one of six CHs lying 100â€“200Â kb downstream1. Each CH is flanked upstream by an I promoter and long repetitive switch (S) region1. Cytokines and activators induce activation-induced cytidine deaminase (AID)2 and I-promoter transcription, with 3â€² IgH regulatory region (3â€² IgHRR) enhancers controlling the latter via I-promoter competition for long-range 3â€² IgHRR interactions3,4,5,6,7,8. Transcription through donor SÎ¼ and an activated downstream acceptor S-region targets AID-generated deamination lesions at, potentially, any of hundreds of individual S-region deamination motifs9,10,11. General DNA repair pathways convert these lesions to double-stranded breaks (DSBs) and join an SÎ¼-upstream DSB-end to an acceptor S-region-downstream DSB-end for deletional CSR12. AID-initiated DSBs at targets spread across activated S regions routinely participate in such deletional CSR joining11. Here we report that chromatinÂ loop extrusion underlies the mechanism11 by which IgH organization in cis promotes deletional CSR. In naive B cells, loop extrusion dynamically juxtaposes 3â€² IgHRR enhancers with the 200-kb upstream SÎ¼ to generate a CSR centre (CSRC). In CSR-activated primary B cells, I-promoter transcription activates cohesin loading, leading to generation of dynamic subdomains that directionally align a downstream S region with SÎ¼ for deletional CSR. During constitutive SÎ± CSR in CH12F3 B lymphoma cells, inversional CSR can be activated by insertion of a CTCF-binding element (CBE)-based impediment in the extrusion path. CBE insertion also inactivates upstream S-region CSR and converts adjacent downstream sequences into an ectopic S region by inhibiting and promoting their dynamic alignment with SÎ¼ in the CSRC, respectively. Our findings suggest that, in a CSRC, dynamically impeded cohesin-mediated loop extrusion juxtaposes proper ends of AID-initiated donor and acceptor S-region DSBs for deletional CSR. Such a mechanism might also contribute to pathogenic DSB joining genome-wide.
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                    Fig. 1: Cytokine-induced target S-region transcription promotes synapsis with SÎ¼ during CSR.


Fig. 2: Constitutive CH12F3 SÎ± transcription causes dominant SÎ± CSR and impedes long-range interactions and CSR to upstream S regions.


Fig. 3: Inserting CBEs upstream of IÎ± activates inversional CH12F3 CSR.


Fig. 4: CBEÂ insertion in IÎ±-deleted CH12F3Î” cells impedes upstream transcription, looping and CSR and creates ectopic S region.
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                Data availability

              
              CSR-HTGTS-seq, 3C-HTGTS, GRO-seq and ChIPâ€“seq sequencing data analysed here have been deposited in the Gene Expression Omnibus (GEO) database under the accession number GSE130270. Specifically, the GEO accession number for Figs. 1d, e, 2dâ€“f, 3f, g, 4eâ€“g and Extended Data Figs. 2bâ€“e, 5a, b, 6aâ€“c, 7b, c, 8d, 10aâ€“c is GSE130263. The GEO accession number for Figs. 1c, 2c, 4h and Extended Data Figs. 2a, 4aâ€“c, 10d is GSE130266. The GEO accession number for Figs. 2b, 3c, d, 4bâ€“d and Extended Data Figs. 3f, 8b, 9a, b is GSE130265. The GEO accession number for Figs. 1f, g, 3e and Extended Data Figs. 2f, g, 5c, d, 7a is GSE130264.

            

Code availability

              
              The CSR-HTGTS-seq and 3C-HTGTS pipelines38 used in this study are available at http://robinmeyers.github.io/transloc_pipeline/.
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Extended data figures and tables

Extended Data Fig. 1 Working model for cohesin-mediated chromatin loop extrusion-driven deletional CSR joining.
a, Cohesin (blue rings) loaded at the indicated HS sites within the 3â€² IgHRR dynamically extrude 3â€² IgHRR chromatin which aligns the HS sites as transient loop anchors (brown oval). bâ€“e, In resting B cells, cohesin is loaded (blue arrows) at either IÎ¼â€“SÎ¼ (red rectangles) or the 3â€² IgHRR. While similar models could be drawn for both, we illustrate one in which loading occurs at 3â€² IgHRR (brown oval) and downstream extrusion is impeded by 3â€² IgHRRâ€“3â€² CBEs chromatin to generate a dynamic impediment for extrusion of upstream chromatin that brings iEÎ¼â€“IÎ¼â€“SÎ¼ into proximity with the 3â€² IgHRR to generate a CSRC (grey circle). In this process, upstream extrusion is strongly impeded at the V(D)Jâ€“iEÎ¼ locale. f, g, B cell activation primes a targeted S-region promoter (light green becoming darker green), which is activated for high level transcription (bright green) after extrusion into proximity with the 3â€² IgHRR. h, i, Downstream extrusion of cohesin loaded at the activated S region is impeded by activated S-region chromatin allowing extrusion of upstream chromatin to dynamically align targeted S region with SÎ¼. jâ€“p, Activation-induced AID is transcriptionally targeted to SÎ¼ and the activated S region leading to DSBs (lightning bolts) in one or the other and, ultimately, in both. Cohesin-mediated loop extrusion pulls S-region DSB ends into cohesin rings stalling extrusion and aligning them for deletional endÂ joining. DSBs in the SÎ¼ and activated S regions need not occur at the same spatial location or time in this model. See also Supplementary VideoÂ 1.


Extended Data Fig. 2 Cytokineâ€“activator-induced S-region transcription promotes dynamic loop formation and S-S synapsis during CSR.
a, Left, additional repeats of GRO-seq profiles shown in Fig. 1c from non-stimulated and anti-CD40â€“IL-4-stimulated AIDâˆ’/âˆ’ mature splenic B cells. Right, magnified view of the GRO-seq profiles on the left to better reveal the transcription level around the iEÎ¼â€“CÎ´ locale from non-stimulated and anti-CD40â€“IL-4-stimulated AIDâˆ’/âˆ’ mature splenic B cells. b, c, Additional repeats of 3C-HTGTS profiles shown in Fig. 1d, e from non-stimulated and anti-CD40â€“IL-4-stimulated AIDâˆ’/âˆ’ mature splenic B cells using iEÎ¼â€“IÎ¼ (b) or 3â€² IgHRR(HS4) (c) locale as baits (blue asterisks). Bar graphs on the right of 3C-HTGTS profiling show the relative iEÎ¼â€“IÎ¼ or 3â€² IgHRR(HS4) interaction frequency with SÎ³1 and SÎµ in anti-CD40â€“IL-4-stimulated mature splenic B cells. Diagrams on the top of the 3C-HTGTS profiling show the digestion and bait strategies used for the 3C-HTGTS experiments. d, e, 3C-HTGTS profiles of interactions within the 3â€² IgH locus domain in anti-CD40â€“IL-4-stimulated AIDâˆ’/âˆ’ mature splenic B cells using the first (d) (two biologically independent repeats) and seventh (e) (three biologically independent repeats) 3â€² CBE locale as baits (blue asterisks). Diagrams on the right of the 3C-HTGTS profiling show the digestion and bait strategies used for the 3C-HTGTS experiments. f, g, Additional repeats of NIPBL (f) and RAD21 (g) ChIPâ€“seq shown in Fig. 1f, g from non-stimulated and anti-CD40â€“IL-4-stimulated AIDâˆ’/âˆ’ mature splenic B cells. Bar graphs on the right of the ChIPâ€“seq profiling show NIPBL and RAD21 accumulation of indicated regions. All bar graph data (b, c, f, g) are meanÂ Â±Â s.d. from three biologically independent repeats. P values were calculated via an unpaired two-tailed t-test. All other bars and symbols are as indicated in Fig. 1 legend.

                          Source data
                        


Extended Data Fig. 3 IÎ± deletion promotes CSR to upstream S regions.
a, Illustration of dominant, deletional CSR between SÎ¼ and SÎ± in CH12F3 cells. b, Illustration of Cas9â€“gRNA targeting (lightning bolts) used to generate the CH12F3NCÎ” line. c, Southern blot confirmation (using BamHI digestion and a JH4 probe) of the CH12F3NCÎ” lines (done twice independently with similar results). d, Western blot confirmation of AID expression or lack of expression, respectively, in AID sufficient and deficient (via targeted deletion) CH12F3NCÎ” and IÎ±Î” lines following stimulation with anti-CD40â€“IL-4â€“TGFÎ² for 72 h (done twice independently with similar results). e, FACS analysis for surface IgA expression in CH12F3NCÎ” AIDâˆ’/âˆ’ cells stimulated with anti-CD40â€“IL-4â€“TGFÎ² for 72 h (done three times independently with similar results). f, Three repeats of CSR-HTGTS-seq data shown in Fig. 2b for anti-CD40â€“IL-4â€“TGFÎ²-stimulated CH12F3NCÎ” and IÎ±Î” cells (three biologically independent repeats). Junctions are plotted at 2.5-kb bin size. The blue lines indicate deletional joining and the red lines indicate inversional joining. Bar graph shows percentages of junctions located in different regions from CH12F3NCÎ” and IÎ±Î” cells. Data are meanÂ Â±Â s.d. from three biologically independent repeats. P values were calculated via an unpaired two-tailed t-test. g, FACS analysis of IgA, IgG3 and IgG2b surface expression in CH12F3NCÎ” and IÎ±Î” cells stimulated with anti-CD40â€“IL-4â€“TGFÎ² for 72 h (four biologically independent repeats). Bar graph shows percentages of IgA, IgG3 and IgG2b expression on CH12F3NCÎ” and IÎ±Î” cells. Data are meanÂ Â±Â s.d. from four biologically independent repeats. P values were calculated via an unpaired two-tailed t-test.

                          Source data
                        


Extended Data Fig. 4 IÎ± deletion promotes transcription to upstream S regions.
a, GRO-seq profile of repeat no. 1 (shown immediately below it) with an enlarged scale to allow better comparison of relative transcription levels of different portions of the IgH constant region in CH12F3NCÎ” AIDâˆ’/âˆ’ and IÎ±Î” AIDâˆ’/âˆ’ cells with or without anti-CD40â€“IL-4â€“TGFÎ² stimulation (three biologically independent repeats with similar results). Green asterisks indicate the HS3a, HS1,2 and HS4 sites within 3â€² IgHRR. b, Three repeats of the GRO-seq profiles with a smaller scale to better reveal low, but significant transcription of CÎ³2b and CÎ³2a (upon IÎ±Â deletion) in CH12F3NCÎ” AIDâˆ’/âˆ’ and IÎ±Î” AIDâˆ’/âˆ’ cells with or without anti-CD40â€“IL-4â€“TGFÎ² stimulation. c, Higher magnification view of the three repeats of GRO-seq profiles to better reveal induced antisense transcription in the region between SÎ³3 to SÎµ in IÎ±Î” AIDâˆ’/âˆ’ versus CH12F3NCÎ” AIDâˆ’/âˆ’ cells with or without anti-CD40â€“IL-4â€“TGFÎ² stimulation. d, Bar graph shows GRO-seq transcriptional activity (calculated as RPM) of the different indicated S regions in anti-CD40â€“IL-4â€“TGFÎ²-stimulated CH12F3NCÎ” AIDâˆ’/âˆ’ cells and IÎ±Î” AIDâˆ’/âˆ’ cells (three biologically independent repeats). Bar graph panel represents meanÂ Â±Â s.d. from three biologically independent repeats. P values were calculated via unpaired two-tailed t-test. Grey bars highlight the iEÎ¼â€“CÎ¼, IÎ³3â€“CÎ³3, IÎ³2bâ€“CÎ³2b, IÎ³2aâ€“CÎ³2a, IÎ±â€“CÎ±, 3â€² IgHRR and 3â€² CBEs.

                          Source data
                        


Extended Data Fig. 5 Constitutively transcribed SÎ± leads to constitutive synapsis of SÎ± with SÎ¼ in CH12F3 cells.
a, b, Additional repeats for the 3C-HTGTS profiles shown in Fig. 2d, e, from non-stimulated and anti-CD40â€“IL-4â€“TGFÎ²-stimulated CH12F3NCÎ” AIDâˆ’/âˆ’ cells using iEÎ¼â€“IÎ¼ (a) or HS4 (b) locale as baits (blue asterisks). Green asterisks indicate the HS3a, HS1,2 and HS4 sites within 3â€² IgHRR. Grey bars highlight the iEÎ¼â€“CÎ¼, SÎ±, 3â€² IgHRR and 3â€² CBEs. c, d, NIPBL (c) (two biologically independent repeats) and RAD21 (d) (three biologically independent repeats) ChIPâ€“seq profiles of non-stimulated and anti-CD40â€“IL-4â€“TGFÎ²-stimulated CH12F3NCÎ” AIDâˆ’/âˆ’ cells. Green asterisks indicate the IÎ±, HS3a, HS1,2, HS3b, HS4 and HS7 sites that were implicated by this experiment as targets for cohesin loading. Grey bars highlight the broader regions around SÎ¼, SÎ±, the 3â€² IgHRR and the 3â€² CBEs. e, Loop extrusion-mediated SÎ¼â€“SÎ± synapsis in CH12F3 cells. I, Cohesin is loaded at various Igh locations including transcriptionally activated IÎ±â€“SÎ±. IIâ€“IV, For cohesin loaded at IÎ± locale downstream extrusion is impeded by transcribed SÎ± allowing upstream extrusion to proceed until being dynamically impeded by transcribed iEÎ¼â€“SÎ¼â€“CÎ¼ locale resulting in SÎ¼ and SÎ± being brought into proximity without complete alignment. During upstream extrusion, the activated IÎ± promoter blocks extrusion-mediated activation of upstream I promoters by the 3â€² IgHRR via promoter competition. V, VI, Continued loading of cohesin at the IÎ± locale is impeded for downstream extrusion allowing continued upstream extrusion until reaching the transcribed SÎ¼ locale causing dynamic SÎ±â€“SÎ¼ synapsis. VIIâ€“X, Activation-induced AID is transcriptionally targeted to SÎ¼ and the activated SÎ± leading to DSBs (lightning bolts) in one or the other and, ultimately, in both. Cohesin-mediated loop extrusion pulls S-region DSB ends into cohesin rings stalling extrusion and aligning them for deletional endÂ joining. This model could be explained by other variations including cohesin loading at SÎ¼ or the 3â€² IgHRR or a process like the one shown in Extended Data Fig. 1.


Extended Data Fig. 6 IÎ± deletion increases iEÎ¼â€“IÎ¼ and HS4 interactions across the upstream CH domain.
a, b, Left, additional repeats for the 3C-HTGTS profiles shown in Fig. 2d, e, from anti-CD40â€“IL-4â€“TGFÎ²-stimulated CH12F3NCÎ” AIDâˆ’/âˆ’ and IÎ±Î” AIDâˆ’/âˆ’ cells using iEÎ¼â€“IÎ¼ (a) or HS4 (b) locale as baits (blue asterisks). Green asterisks indicate 3â€² IgH RR HS sites in all panels. Grey bars highlight the iEÎ¼â€“CÎ¼, SÎ³3, SÎ³2b, SÎ³2a, SÎ±, 3â€² IgHRR and 3â€² CBEs. Right, magnified view of the 3C-HTGTS profiles on the left to better reveal the interaction patterns in the region from IÎ³3 to CÎµ in anti-CD40â€“IL-4â€“TGFÎ²-stimulated CH12F3NCÎ” AIDâˆ’/âˆ’ and IÎ±Î” AIDâˆ’/âˆ’ cells. c, Left, 3C-HTGTS profiles of interactions across the indicated domain of non-stimulated and anti-CD40â€“IL-4â€“TGFÎ²-stimulated IÎ±Î” AIDâˆ’/âˆ’ cells using the iEÎ¼â€“IÎ¼ locale as bait (blue asterisks). Grey bars highlight the iEÎ¼â€“CÎ¼, SÎ³3, SÎ³2b, SÎ³2a, SÎ±, 3â€² IgHRR and 3â€² CBEs. Right, magnified view of the 3C-HTGTS profiles on the left to better reveal the interaction patterns in the region from SÎ³3 to SÎµ in non-stimulated and anti-CD40â€“IL-4â€“TGFÎ²-stimulated IÎ±Î” AIDâˆ’/âˆ’ cells.


Extended Data Fig. 7 CBEs inserted upstream of IÎ± lead to increased inversional SÎ± CSR.
a, Three repeats of RAD21 ChIPâ€“seq profiles of CD40â€“IL-4â€“TGFÎ²-stimulated i3CBEs AIDâˆ’/âˆ’ cells. b, c, Additional repeats of the 3C-HTGTS profiles shown in Fig. 3f, g, from CD40â€“IL-4â€“TGFÎ²-stimulated CH12F3NCÎ” AIDâˆ’/âˆ’ and i3CBEs AIDâˆ’/âˆ’ cells using CBE insertion (b) or iEÎ¼â€“IÎ¼ (c) locale as baits (blue asterisks). b, Right, 3C-HTGTS profiling shows the digestion and bait strategies used. d, Model to address increased inversional SÎ± CSR in CH12F3 cells with CBEs inserted upstream of IÎ±. I, Cohesin is loaded at various Igh locations including transcriptionally activated IÎ±â€“SÎ±. IIâ€“VII, For cohesin loaded at the IÎ± locale, extrusion past the CBE impediment allows a significant subset of cells to reach step VII to generate CSRC. VIIIâ€“X, In these cells, a significant portion of continued upstream extrusion passes by the CBE impediment to yield cells in the population with configurations shown inÂ steps IX and X. XIâ€“XIV, The cells with the configuration shown in IX will have both deletional (XIII) and inversional (XIV) joining mediated by a diffusion-related process in the absence of complete SÎ¼â€“SÎ± synapsis (see main text for more details). Those with the configuration shown in X will join via deletion as described in Extended Data Fig. 5e. This working model could be explained by other variations as indicated for other model figures.


Extended Data Fig. 8 Deletion of 3â€² CBEs in i3CBE cells has little effect on the SÎ± CSR and SÎ± inversional joining.
a, Representative FACS analyses for IgH class switching from IgM to IgA for CH12F3NCÎ”, i3CBEs and i3CBEs 3â€² CBEsÎ” cells stimulated with anti-CD40â€“IL-4â€“TGFÎ² for 72Â h. Bar graph on right shows FACS data from six biologically independent repeats plotted as meanÂ Â±Â s.d. P values were calculated via an unpaired two-tailed t-test. b, CSR-HTGTS-seq of three repeats that use 5â€² SÎ¼ bait for analyses of anti-CD40â€“IL-4â€“TGFÎ²-stimulated CH12F3NCÎ”, i3CBEs and i3CBEs-3â€² CBEsÎ” cells. Junctions are plotted at 200-bp bin size. Blue lines indicate deletional joining and red lines indicate inversional joining. c, Schematic of Igh CH locus from iEÎ¼ to 33Â kb downstream of 3â€² CBEs. Top, magnified view illustrates 3â€² CBEs deletion in i3CBEs lines to generate i3CBE 3â€² CBEÎ” lines. d, Three repeats of 3C-HTGTS profiles of anti-CD40â€“IL-4â€“TGFÎ²-stimulated i3CBE AIDâˆ’/âˆ’ and i3CBE 3â€² CBEÎ”-AIDâˆ’/âˆ’ cells using the CBEÂ insertion locale as bait (blue asterisks).

                          Source data
                        


Extended Data Fig. 9 CBE insertion in IÎ±-deleted CH12F3NCÎ” cells impedes IgH class-switching and CSR and creates an ectopic S region.
a, Top and middle, three individual repeats of CSR-HTGTS-seq experiments shown in Fig. 4b that use a 5â€² SÎ¼ bait to assay anti-CD40 regionâ€“IL-4â€“TGFÎ²-stimulated IÎ±Î” and IÎ±Î” i3CBE cells. Junctions are plotted at 2.5-kb bin size. Bottom, magnified views of three repeats of data in Fig. 4c showing junctions located in the AID-targeted ectopic S region between CÎ³2a and IÎµ in assays of IÎ±Î” i3CBE cells. Junctions are plotted at 115-bp bin size. Blue lines indicate deletional joining and red lines indicate inversional joining. b, Bar graph shows percentages of junctions located in indicated AID-targeted regions from IÎ±Î” and IÎ±Î” i3CBE cells. Data are meanÂ Â±Â s.d. from three biologically independent repeats. P values were calculated via an unpaired two-tailed t-test based on the three repeats. c, AID-targeting-motif frequency analysis of 2-kb ectopic S-region targeting peak and in comparably sized region just upstream and downstream of the targeting peak. d, FACS analysis of IgG3 and IgG2b surface expression in IÎ±Î” and IÎ±Î” i3CBE cells stimulated with anti-CD40â€“IL-4â€“TGFÎ² for 72Â h (6 biologically independent repeats). Bar graph shows percentages of IgG3 and IgG2b production from IÎ±Î” and IÎ±Î” i3CBE cells. Data are meanÂ Â±Â s.d. from six biologically independent repeats. P values were calculated via an unpaired two-tailed t-test.

                          Source data
                        


Extended Data Fig. 10 Repeats of experiments showing that CBE insertion in IÎ±-deleted CH12F3Î” cells impedes upstream transcription and looping.
aâ€“c, Additional repeats of Fig. 4eâ€“h: 3C-HTGTS profiles from anti-CD40â€“IL-4â€“TGFÎ²-stimulated IÎ±Î” AIDâˆ’/âˆ’ and IÎ±Î” i3CBE AIDâˆ’/âˆ’cells using the CBEs insertion (a) (three biologically independent repeats), the iEÎ¼â€“IÎ¼ (b) (three biologically independent repeats) or the 3â€² IgHRR(HS4) (c) (three biologically independent repeats) locale as baits (blue asterisks). Bar graphs on the right of the 3C-HTGTS profiles show the relative iEÎ¼â€“IÎ¼ or 3â€² IgHRR(HS4) interaction frequency with eS and the region between CÎ´ to SÎ³2b. In b, c, data are meanÂ Â±Â s.d. from three biologically independent repeats. P values were calculated via paired two-tailed t-test. d, Three repeats of GRO-seq profiles with larger scale from anti-CD40â€“IL-4â€“TGFÎ²-stimulated IÎ±Î” AIDâˆ’/âˆ’ and IÎ±Î” i3CBEs AIDâˆ’/âˆ’cells as in Fig. 4h. All bars and other notations as described in the legend of Fig. 4.

                          Source data
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