Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

X-ray pumping of the 229Th nuclear clock isomer

Abstract

The metastable first excited state of thorium-229, 229mTh, is just a few electronvolts above the nuclear ground state1,2,3,4 and is accessible by vacuum ultraviolet lasers. The ability to manipulate the 229Th nuclear states with the precision of atomic laser spectroscopy5 opens up several prospects6, from studies of fundamental interactions in physics7,8 to applications such as a compact and robust nuclear clock5,9,10. However, direct optical excitation of the isomer and its radiative decay to the ground state have not yet been observed, and several key nuclear structure parameters—such as the exact energies and half-lives of the low-lying nuclear levels of 229Th—remain unknown11. Here we present active optical pumping into 229mTh, achieved using narrow-band 29-kiloelectronvolt synchrotron radiation to resonantly excite the second excited state of 229Th, which then decays predominantly into the isomer. We determine the resonance energy with an accuracy of 0.07 electronvolts, measure a half-life of 82.2 picoseconds and an excitation linewidth of 1.70 nanoelectronvolts, and extract the branching ratio of the second excited state into the ground and isomeric state. These measurements allow us to constrain the 229mTh isomer energy by combining them with γ-spectroscopy data collected over the past 40 years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Low-energy nuclear level structure of 229Th.
Fig. 2: Experimental setup and the NRS measurement principle.
Fig. 3: Resonance curves of 229Th.
Fig. 4: Determination of half-life of the second excited state of 229Th.
Fig. 5: Constraining the isomer energy Eis.

Similar content being viewed by others

References

  1. Beck, B. R. et al. Energy splitting of the ground-state doublet in the nucleus 229Th. Phys. Rev. Lett. 98, 142501 (2007).

    Article  ADS  CAS  Google Scholar 

  2. Beck, B. R. et al. Improved Value for the Energy Splitting of the Ground-State Doublet in the Nucleus 229m Th. Report No. LLNL-PROC-415170 (Lawrence Livermore National Laboratory, 2009).

  3. Kroger, L. A. & Reich, C. W. Features of the low-energy level scheme of 229Th as observed in the α-decay of 233U. Nucl. Phys. A 259, 29–60 (1976).

    Article  ADS  Google Scholar 

  4. Helmer, R. G. & Reich, C. W. An excited state of 229Th at 3.5 eV. Phys. Rev. C 49, 1845–1858 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Peik, E. & Tamm, C. Nuclear laser spectroscopy of the 3.5 eV transition in Th-229. Europhys. Lett. 61, 181–186 (2003).

    Article  ADS  CAS  Google Scholar 

  6. Matinyan, S. Lasers as a bridge between atomic and nuclear physics. Phys. Rep. 298, 199–249 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Flambaum, V. V. Enhanced effect of temporal variation of the fine structure constant and the strong interaction in 229Th. Phys. Rev. Lett. 97, 092502 (2006).

    Article  ADS  CAS  Google Scholar 

  8. Flambaum, V. V. Enhancing the effect of Lorentz invariance and Einstein’s equivalence principle violation in nuclei and atoms. Phys. Rev. Lett. 117, 072501 (2016).

    Article  ADS  CAS  Google Scholar 

  9. Campbell, C. J. et al. Single-ion nuclear clock for metrology at the 19th decimal place. Phys. Rev. Lett. 108, 120802 (2012).

    Article  ADS  CAS  Google Scholar 

  10. Kazakov, G. A. et al. Performance of a 229Thorium solid-state nuclear clock. New J. Phys. 14, 083019 (2012).

    Article  ADS  Google Scholar 

  11. Peik, E. & Okhapkin, M. Nuclear clocks based on resonant excitation of γ-transitions. C. R. Phys. 16, 516–523 (2015).

    Article  CAS  Google Scholar 

  12. von der Wense, L. et al. Direct detection of the 229Th nuclear clock transition. Nature 533, 47–51 (2016).

    Article  ADS  Google Scholar 

  13. Takano, T. et al. Geopotential measurements with synchronously linked optical lattice clocks. Nat. Photon. 10, 662–666 (2016).

    Article  ADS  CAS  Google Scholar 

  14. Hayes, A. C. & Friar, J. L. Sensitivity of nuclear transition frequencies to temporal variation of the fine structure constant or the strong interaction. Phys. Lett. B 650, 229 (2007).

    Article  ADS  CAS  Google Scholar 

  15. Berengut, J. C. et al. Proposed experimental method to determine α sensitivity of splitting between ground and 7.6 eV isomeric states in 229Th. Phys. Rev. Lett. 102, 210801 (2009).

    Article  ADS  CAS  Google Scholar 

  16. Thielking, J. et al. Laser spectroscopic characterization of the nuclear-clock isomer 229mTh. Nature 556, 321–325 (2018).

    Article  ADS  CAS  Google Scholar 

  17. Seiferle, B. et al. Energy of the 229Th nuclear clock transition. Nature https://doi.org/10.1038/s41586-019-1533-4 (2019).

  18. Jeet, J. et al. Results of a direct search using synchrotron radiation for the low-energy 229Th nuclear isomeric transition. Phys. Rev. Lett. 114, 253001 (2015).

    Article  ADS  Google Scholar 

  19. Yamaguchi, A. et al. Experimental search for the low-energy nuclear transition in 229Th with undulator radiation. New J. Phys. 17, 053053 (2015).

    Article  ADS  Google Scholar 

  20. Stellmer, S. et al. Attempt to optically excite the nuclear isomer in 229Th. Phys. Rev. A 97, 062506 (2018).

    Article  ADS  CAS  Google Scholar 

  21. Browne, E. & Tuli, J. K. Nuclear data sheets for A = 229. Nucl. Data Sheets 11, 2657–2724 (2008).

    Article  ADS  Google Scholar 

  22. Seto, M. Condensed matter physics using nuclear resonant scattering. J. Phys. Soc. Jpn. 82, 021016 (2013).

    Article  ADS  Google Scholar 

  23. Yabashi, M. et al. Design of a beamline for the SPring-8 long undulator source 1. Nucl. Instrum. Methods Phys. Res. A 467–468, 678–681 (2001).

    Article  ADS  Google Scholar 

  24. Krywka, C. et al. Polymer compound refractive lenses for hard X-ray nanofocusing. AIP Conf. Proc. 1764, 020001 (2016).

    Article  Google Scholar 

  25. Masuda, T. et al. Energy response of X-rays under high flux conditions using a thin APD for the energy range of 6–33 keV. Nucl. Instrum. Methods Phys. Res. A 913, 72–77 (2019).

    Article  ADS  CAS  Google Scholar 

  26. Masuda, T. et al. Fast X-ray detector system with simultaneous measurement of timing and energy for a single photon. Rev. Sci. Instrum. 88, 063105 (2017).

    Article  ADS  CAS  Google Scholar 

  27. Bond, W. L. Precision lattice constant determination. Acta Crystallogr. 13, 814–818 (1960).

    Article  CAS  Google Scholar 

  28. Raboud, P.-A., Dousse, J.-Cl., Hoszowska, J. & Savoy, I. L 1 to N 5 atomic level widths of thorium and uranium as inferred from measurements of L and M X-ray spectra. Phys. Rev. A 61, 012507 (1999).

    Article  ADS  Google Scholar 

  29. Firestone, R. B. et al. Table of Isotopes 8th edn (John Wiley & Sons, 1996).

  30. Yoshimi, A. et al. Nuclear resonant scattering experiment with fast time response: photonuclear excitation of 201Hg. Phys. Rev. C 97, 024607 (2018).

    Article  ADS  CAS  Google Scholar 

  31. Berger, M. J. et al. NIST Photon Cross Sections Database XCOM: Photon Cross Section Database (version 1.5) http://physics.nist.gov/xcom (National Institute of Standards and Technology, 2010).

  32. Barci, V. et al. Nuclear structure of 229Th from γ-ray spectroscopy study of 233U α-particle decay. Phys. Rev. C 68, 034329 (2003).

    Article  ADS  Google Scholar 

  33. Tkalya, E. V. et al. Radiative lifetime and energy of the low-energy isomeric level in 229Th. Phys. Rev. C 92, 054324 (2015).

    Article  ADS  Google Scholar 

  34. Kazakov, G. A. et al. Prospects for measuring the 229Th isomer energy using a metallic magnetic microcalorimeter. Nucl. Instrum. Methods Phys. Res. A 735, 229–239 (2014).

    Article  ADS  CAS  Google Scholar 

  35. Seiferle, B., von der Wense, L. & Thirolf, P. G. Lifetime measurement of the 229Th nuclear isomer. Phys. Rev. Lett. 118, 042501 (2017).

    Article  ADS  Google Scholar 

  36. Cavagnero, G. et al. Measurement repetitions of the Si(220) lattice spacing. Metrologia 41, 56–64 (2004).

    Article  ADS  CAS  Google Scholar 

  37. Cavagnero, G. et al. Erratum: measurement repetitions of the Si(220) lattice spacing. Metrologia 41, 445–446 (2004).

    Article  ADS  CAS  Google Scholar 

  38. Fujimoto, H. et al. Homogeneity characterization of lattice spacing of silicon single crystals by a self-referenced lattice comparator. Metrologia 48, S55–S61 (2011).

    Article  CAS  Google Scholar 

  39. Schoedel, R. & Boensch, G. Precise interferometric measurements at single-crystal silicon yielding thermal expansion coefficients from 12 °C to 28 °C and compressibility. Proc. SPIE 4401, 54–62 (2001).

    Article  ADS  Google Scholar 

  40. Lyon, K. G., Salinger, G. L., Swenson, C. A. & White, G. K. Linear thermal expansion measurements on silicon from 6 to 340 K. J. Appl. Phys. 48, 865–868 (1977).

    Article  ADS  CAS  Google Scholar 

  41. Hall, J. J. Electronic effects in the elastic constants of the n-type silicon. Phys. Rev. 161, 756–761 (1967).

    Article  ADS  CAS  Google Scholar 

  42. Watanabe, T., Kon, M., Nabeshima, N. & Taniguchi, K. An angle encoder for super-high resolution and super-high accuracy using SelfA. Meas. Sci. Technol. 25, 065002 (2014).

    Article  ADS  Google Scholar 

  43. Seto, M. et al. Nuclear resonance scattering of synchrotron radiation by 40K. Phys. Rev. Lett. 84, 566–569 (2000).

    Article  ADS  CAS  Google Scholar 

  44. Tanabashi, M. et al. Review of Particle Physics. Phys. Rev. D 98, 030001 (2018).

    Article  ADS  Google Scholar 

  45. Scofield, J. H. Theoretical Photoionization Cross Sections from 1 to 1500 keV. Report No. UCRL-51326 (Lawrence Livermore Laboratory, 1973).

  46. Kibédi, T. et al. Evaluation of theoretical conversion coefficients using BrIcc. Nucl. Instrum. Methods Phys. Res. A 589, 202–229 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The synchrotron radiation experiments were performed at the BL09XU and BL19LXU lines of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (proposals 2016B1232, 2017B1335, 2018A1326 and 2018B1436) and RIKEN (proposal number 20180045). We thank all members of the SPring-8 operation and supporting teams. The experiment received support from the KEK Photon Factory (proposal number 2017G085) and the Institute for Materials Research, Tohoku University (18F0014), where indispensable detector tests and target preparation were performed. We especially thank S. Kishimoto for support at KEK, T. Kobayashi for technical assistance at SPring-8 and K. Beeks for discussion during the preparation of the manuscript. This work was supported by JSPS KAKENHI grants JP15H03661, JP17K14291, JP18H01230 and JP18H04353. T.S. and S.S. gratefully acknowledge funding by the EU FET-Open project, grant number 664732 (nuClock). A. Yoshimi and A. Yamaguchi acknowledge the MATSUO foundation and Technology Pioneering Projects in RIKEN, respectively.

Author information

Authors and Affiliations

Authors

Contributions

The Okayama University group, S.K., M.S., K.T., A. Yamaguchi and Y. Yoda performed the synchrotron radiation experiments. T.M., A. Yoshimi, T.H., H.K., K.O., S.O., N.S., K.S., K.Y. and S.U. developed the detector system. The Osaka University, Tohoku University and RIKEN groups, together with A. Yoshimi, H.K. and K.Y. prepared the thorium-229 target. T.M., A. Yoshimi, T.H., H.K., N.S., K.S., K.Y., S.S. and T.S. analysed the data. H.F., T.W. and Y. Yoda developed the absolute energy monitor. T.M., A. Yoshimi, K.Y., T.S. and N.S. wrote the manuscript with input from all authors. All authors discussed the results.

Corresponding authors

Correspondence to Noboru Sasao or Koji Yoshimura.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Peer review information Nature thanks Jason Burke, Feodor Karpeshin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Extended data figures and tables

Extended Data Fig. 1 Pulse-processing scheme.

a, Timing diagram. Line (A) shows an analogue pulse from a Si-APD chip and line (B) represents the accelerator reference clock. The example shows two pulses with different photon energies within a cycle. b, Block diagram. For each pulse, three parameters are stored for the post-analysis: the timing of the pulse (CFD), the pulse height (ATC) and the TE timing. Preamp, preamplifier; Amp., amplifier; TDC, time-to-digital converter; USB; universal serial bus.

Extended Data Fig. 2 Absolute energy measurement setup.

The X-ray beam is diffracted by a single Si crystal. Two p–i–n (PIN) photodiodes monitor the diffracted beams. The rotary table (black disk) adjusts the angle between the Si crystal and the X-ray beam so that the diffraction condition is satisfied. The two swivel stages adjust the tilt angles between the X-ray beam, the reciprocal lattice vector of the crystal and the rotation axis of the rotary table.

Extended Data Fig. 3 NRS spectrum of 40K.

Temporal profiles measured at incident X-ray energy on resonance (blue histogram) and off resonance (black histogram). Inset, resonance curve (black dots) with a Gaussian fit (blue curve).

Extended Data Fig. 4 Energy spectra of the prompt and NRS events.

a, Energy spectrum of the prompt signal (black line). The coloured lines show various X-ray emission lines convoluted with the Si-APD energy response function: the photoelectric absorption lines listed in Extended Data Table 2 (blue), Compton scattering (magenta) and the Kα and Kβ lines of Cu, Zn and Fe (green). The strengths of these lines are adjusted to give the best fit to the data. The sum of all lines (red) reproduces the data above 7 keV well . b, NRS energy spectrum, obtained by subtracting the off-resonance data from the on-resonance data. The coloured lines are fits of the X-ray emission lines. We note that there is no contribution from Compton scattering or the Cu, Zn and Fe lines. Both experimental datasets are normalized to a 3,600-s run. The error bars represent statistical uncertainty of one standard deviation.

Extended Data Table 1 Estimation of radiative width \({{\boldsymbol{\Gamma }}}_{{\boldsymbol{\gamma }}}^{{\bf{c}}{\bf{r}}}\)
Extended Data Table 2 Comparison of energy-averaged line strengths

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masuda, T., Yoshimi, A., Fujieda, A. et al. X-ray pumping of the 229Th nuclear clock isomer. Nature 573, 238–242 (2019). https://doi.org/10.1038/s41586-019-1542-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-019-1542-3

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing