Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Seismic velocities of CaSiO3 perovskite can explain LLSVPs in Earth’s lower mantle

This article has been updated

Abstract

Seismology records the presence of various heterogeneities throughout the lower mantle1,2, but the origins of these signals—whether thermal or chemical—remain uncertain, and therefore much of the information that they hold about the nature of the deep Earth is obscured. Accurate interpretation of observed seismic velocities requires knowledge of the seismic properties of all of Earth’s possible mineral components. Calcium silicate (CaSiO3) perovskite is believed to be the third most abundant mineral throughout the lower mantle. Here we simultaneously measure the crystal structure and the shear-wave and compressional-wave velocities of samples of CaSiO3 perovskite, and provide direct constraints on the adiabatic bulk and shear moduli of this material. We observe that incorporation of titanium into CaSiO3 perovskite stabilizes the tetragonal structure at higher temperatures, and that the material’s shear modulus is substantially lower than is predicted by computations3,4,5 or thermodynamic datasets6. When combined with literature data and extrapolated, our results suggest that subducted oceanic crust will be visible as low-seismic-velocity anomalies throughout the lower mantle. In particular, we show that large low-shear-velocity provinces (LLSVPs) are consistent with moderate enrichment of recycled oceanic crust, and mid-mantle discontinuities can be explained by a tetragonal–cubic phase transition in Ti-bearing CaSiO3 perovskite.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Compressional- and shear-wave velocities of cubic CaSiO3 perovskite from this and previous studies.
Fig. 2: X-ray diffraction patterns demonstrating the cubic–tetragonal phase transition in CaSiO3 perovskite.
Fig. 3: Acoustic velocities of Ca-Pv samples at high-PT conditions.
Fig. 4: Modelled velocity profiles of lower-mantle phase assemblages incorporating Ca-Pv based on this study.

Similar content being viewed by others

Data availability

Raw data were collected at the European Synchrotron Radiation Facility in Grenoble and are available from https://doi.org/10.5285/6db95d87-365f-4018-abec-00e96e8fcf8d. Derived data from this study, which includes source data for Figs. 2 and 3 and Extended Data Figs. 1 and 5, are provided in the Supplementary Tables.

Change history

  • 23 August 2019

    Owing to a technical error, this Letter was not published online on 14 August 2019, as originally stated, and was instead first published online on 15 August 2019. The Letter has been corrected online.

References

  1. Ritsema, J., Deuss, A., van Heijst, H. J. & Woodhouse, J. H. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184, 1223–1236 (2011).

    Article  ADS  Google Scholar 

  2. Waszek, L., Schmerr, N. C. & Ballmer, M. D. Global observations of reflectors in the mid-mantle with implications for mantle structure and dynamics. Nat. Commun. 9, 385 (2018).

    Article  ADS  Google Scholar 

  3. Stixrude, L., Lithgow-Bertelloni, C., Kiefer, B. & Fumagalli, P. Phase stability and shear softening in CaSiO3 perovskite at high pressure. Phys. Rev. B 75, 024108 (2007).

    Article  ADS  Google Scholar 

  4. Kawai, K. & Tsuchiya, T. Small shear modulus of cubic CaSiO3 perovskite. Geophys. Res. Lett. 42, 2718–2726 (2015).

    Article  ADS  CAS  Google Scholar 

  5. Li, L. et al. Elasticity of CaSiO3 perovskite at high pressure and high temperature. Phys. Earth Planet. Inter. 155, 249–259 (2006).

    Article  ADS  CAS  Google Scholar 

  6. Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals—II. Phase equilibria. Geophys. J. Int. 184, 1180–1213 (2011).

    Article  ADS  CAS  Google Scholar 

  7. Ballmer, M. D., Schmerr, N. C., Nakagawa, T. & Ritsema, J. Compositional mantle layering revealed by slab stagnation at 1000-km depth. Sci. Adv. 1, e1500815 (2015).

    Article  ADS  Google Scholar 

  8. Fukao, Y. & Obayashi, M. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. 118, 5920–5938 (2013).

    Article  ADS  Google Scholar 

  9. Stixrude, L. & Lithgow-Bertelloni, C. Geophysics of chemical heterogeneity in the mantle. Annu. Rev. Earth Planet. Sci. 40, 569–595 (2012).

    Article  ADS  CAS  Google Scholar 

  10. Murakami, M., Ohishi, Y., Hirao, N. & Hirose, K. A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data. Nature 485, 90–94 (2012).

    Article  ADS  CAS  Google Scholar 

  11. Cottaar, S., Heister, T., Rose, I. & Unterborn, C. BurnMan: a lower mantle mineral physics toolkit. Geochem. Geophys. Geosyst. 15, 1164–1179 (2014).

    Article  ADS  CAS  Google Scholar 

  12. Irifune, T. et al. Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science 327, 193–195 (2010).

    Article  ADS  CAS  Google Scholar 

  13. Ricolleau, A. et al. Phase relations and equation of state of a natural MORB: implications for the density profile of subducted oceanic crust in the Earth’s lower mantle. J. Geophys. Res. 115, B08202 (2010).

    Article  ADS  Google Scholar 

  14. Liu, L.-G. & Ringwood, A. E. Synthesis of a perovskite-type polymorph of CaSiO3. Earth Planet. Sci. Lett. 28, 209–211 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar 

  16. Sinelnikov, Y. D., Chen, G. & Liebermann, R. C. Elasticity of CaTiO3-CaSiO3 perovskites. Phys. Chem. Miner. 25, 515–521 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Kudo, Y. et al. Sound velocity measurements of CaSiO3 perovskite to 133 GPa and implications for lowermost mantle seismic anomalies. Earth Planet. Sci. Lett. 349–350, 1–7 (2012).

    Article  ADS  Google Scholar 

  18. Komabayashi, T., Hirose, K., Sata, N., Ohishi, Y. & Dubrovinsky, L. S. Phase transition in CaSiO3 perovskite. Earth Planet. Sci. Lett. 260, 564–569 (2007).

    Article  ADS  CAS  Google Scholar 

  19. Chen, H. et al. Crystal structure of CaSiO3 perovskite at 28–62 GPa and 300 K under quasi-hydrostatic stress conditions. Am. Mineral. 103, 462–468 (2018).

    Article  ADS  Google Scholar 

  20. Gréaux, S. et al. Sound velocity of CaSiO3 perovskite suggests the presence of basaltic crust in the Earth’s lower mantle. Nature 565, 218–221 (2019).

    Article  ADS  Google Scholar 

  21. Thomson, A. R., Walter, M. J., Kohn, S. C. & Brooker, R. A. Slab melting as a barrier to deep carbon subduction. Nature 529, 76–79 (2016).

    Article  ADS  CAS  Google Scholar 

  22. Li, B., Kung, J. & Liebermann, R. C. Modern techniques in measuring elasticity of Earth materials at high pressure and high temperature using ultrasonic interferometry in conjunction with synchrotron X-radiation in multi-anvil apparatus. Phys. Earth Planet. Inter. 143, 559–574 (2004).

    Article  ADS  Google Scholar 

  23. Kurashina, T., Hirose, K., Ono, S., Sata, N. & Ohishi, Y. Phase transition in Al-bearing CaSiO3 perovskite: implications for seismic discontinuities in the lower mantle. Phys. Earth Planet. Inter. 145, 67–74 (2004).

    Article  ADS  CAS  Google Scholar 

  24. Yashima, M. & Ali, R. Structural phase transition and octahedral tilting in the calcium titanate perovskite CaTiO3. Solid State Ion. 180, 120–126 (2009).

    Article  CAS  Google Scholar 

  25. Salje, E. K. H. et al. Elastic excitations in BaTiO3 single crystals and ceramics: mobile domain boundaries and polar nanoregions observed by resonant ultrasonic spectroscopy. Phys. Rev. B 87, 014106 (2013).

    Article  ADS  Google Scholar 

  26. Perks, N. J., Zhang, Z., Harrison, R. J. & Carpenter, M. A. Strain relaxation mechanisms of elastic softening and twin wall freezing associated with structural phase transitions in (Ca,Sr)TiO3 perovskites. J. Phys. Condens. Matter 26, 505402 (2014).

    Article  CAS  Google Scholar 

  27. Liu, Z. et al. Elastic wave velocity of polycrystalline Mj80Py20 garnet to 21 GPa and 2,000 K. Phys. Chem. Miner. 42, 213–222 (2015).

    Article  ADS  CAS  Google Scholar 

  28. Guennou, M., Bouvier, P., Kreisel, J. & Machon, D. Pressure-temperature phase diagram of SrTiO3 up to 53 GPa. Phys. Rev. B 81, 054115 (2010).

    Article  ADS  Google Scholar 

  29. Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals—I. Physical properties. Geophys. J. Int. 162, 610–632 (2005).

    Article  ADS  Google Scholar 

  30. Garnero, E. J., McNamara, A. K. & Shim, S.-H. Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat. Geosci. 9, 481–489 (2016).

    Article  ADS  CAS  Google Scholar 

  31. Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997).

    Article  ADS  CAS  Google Scholar 

  32. Hirose, K., Fei, Y., Ma, Y. & Mao, H.-K. The fate of subducted basaltic crust in the Earth’s lower mantle. Nature 397, 53–56 (1999).

    Article  ADS  CAS  Google Scholar 

  33. Deschamps, F., Cobden, L. & Tackley, P. J. The primitive nature of large low shear-wave velocity provinces. Earth Planet. Sci. Lett. 349–350, 198–208 (2012).

    Article  ADS  Google Scholar 

  34. Guignard, J. & Crichton, W. A. The large volume press facility at ID06 beamline of the European synchrotron radiation facility as a high pressure-high temperature deformation apparatus. Rev. Sci. Instrum. 86, 085112 (2015).

    Article  ADS  Google Scholar 

  35. Hammersley, A. P. FIT2D: An Introduction and Overview. Technical Report ESRF-97-HA-02T (ESRF, 1997).

  36. Larson, A. C. & von Dreele, R. B. General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86–748 (LANL, 2004).

  37. Dorogokupets, P. I., Dewaele, A. & Dewaele, A. Equations of state of MgO, Au, Pt, NaCl-B1, and NaCl-B2: internally consistent high-temperature pressure scales. High Press. Res. 27, 431–446 (2007).

    Article  ADS  CAS  Google Scholar 

  38. Glazer, A. M. The classification of tilted octahedra in perovskites. Acta Crystallogr. B 28, 3384–3392 (1972).

    Article  CAS  Google Scholar 

  39. Woodward, P. M. Octahedral tilting in perovskites. I. Geometrical considerations. Acta Crystallogr. A 53, 32–43 (1997).

    Article  Google Scholar 

  40. Wood, I. G., Price, G. D., Street, J. N. & Knight, K. S. Equation of State and Structural Phase Transitions in CaTiO3 Perovskite. ISIS Experimental Report RB7844 (ISIS, 1997).

  41. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  42. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  CAS  Google Scholar 

  43. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  ADS  Google Scholar 

  44. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    Article  CAS  Google Scholar 

  45. Shim, S.-H., Duffy, T. S. & Shen, G. The stability and P–V–T equation of state of CaSiO3 perovskite in the Earth’s lower mantle. J. Geophys. Res. 105, 25955–25968 (2000).

    Article  ADS  CAS  Google Scholar 

  46. Sun, N. et al. Confirming a pyrolitic lower mantle using self-consistent pressure scales and new constraints on CaSiO3 perovskite. J. Geophys. Res. 121, 4876–4894 (2016).

    Article  ADS  CAS  Google Scholar 

  47. Wang, Y., Weidner, D. J. & Guyot, F. Thermal equation of state of CaSiO3 perovskite. J. Geophys. Res. 101, 661–672 (1996).

    Article  ADS  CAS  Google Scholar 

  48. Noguchi, M., Komabayashi, T., Hirose, K. & Ohishi, Y. High-temperature compression experiments of CaSiO3 perovskite to lowermost mantle conditions and its thermal equation of state. Phys. Chem. Miner. 40, 81–91 (2013).

    Article  ADS  CAS  Google Scholar 

  49. Chust, T. C., Steinle-Neumann, G., Dolejš, D., Schuberth, B. S. A. & Bunge, H. P. MMA-EoS: a computational framework for mineralogical thermodynamics. J. Geophys. Res. 122, 9881–9920 (2017).

    Article  ADS  Google Scholar 

  50. Brown, J. M. & Shankland, T. J. Thermodynamic parameters in the Earth as determined from seismic profiles. Geophys. J. R. Astron. Soc. 66, 579–596 (1981).

    Article  ADS  Google Scholar 

  51. Zhang, Z., Stixrude, L. & Brodholt, J. Elastic properties of MgSiO3-perovskite under lower mantle conditions and the composition of the deep Earth. Earth Planet. Sci. Lett. 379, 1–12 (2013).

    Article  ADS  CAS  Google Scholar 

  52. Wentzcovitch, R. M. et al. Anomalous compressibility of ferropericlase throughout the iron spin cross-over. Proc. Natl Acad. Sci. USA 106, 8447–8452 (2009).

    Article  ADS  CAS  Google Scholar 

  53. Badro, J. et al. Electronic transitions in perovskite: possible non-convecting layers in the lower mantle. Science 305, 383–386 (2004).

    Article  ADS  CAS  Google Scholar 

  54. Andrault, D., Fiquet, G., Guyot, F. & Hanfland, M. Pressure-induced Landau-type transition in stishovite. Science 282, 720–724 (1998).

    Article  ADS  CAS  Google Scholar 

  55. Hernlund, J., Leinenweber, K., Locke, D. & Tyburczy, J. A. A numerical model for steady-state temperature distributions in solid-medium high-pressure cell assemblies. Am. Mineral. 91, 295–305 (2006).

    Article  ADS  CAS  Google Scholar 

  56. Piskunov, S., Heifets, E., Eglitis, R. I. & Borstel, G. Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study. Comput. Mater. Sci. 29, 165–178 (2004).

    Article  CAS  Google Scholar 

  57. Tadano, T. & Tsuneyuki, S. Self-consistent phonon calculations of lattice dynamical properties in cubic SrTiO3 with first-principles anharmonic force constants. Phys. Rev. B 92, 054301 (2015).

    Article  ADS  Google Scholar 

  58. Hachemi, A., Hachemi, H., Ferhat-Hamida, A. & Louail, L. Elasticity of SrTiO3 perovskite under high pressure in cubic, tetragonal and orthorhombic phases. Phys. Scr. 82, 025602 (2010).

    Article  ADS  Google Scholar 

  59. Caracas, R., Wentzcovitch, R., Price, G. D. & Brodholt, J. CaSiO3 perovskite at lower mantle pressures. Geophys. Res. Lett. 32, L06306 (2005).

    ADS  Google Scholar 

  60. Jung, D. Y. & Oganov, A. R. Ab initio study of the high-pressure behavior of CaSiO3 perovskite. Phys. Chem. Miner. 32, 146–153 (2005).

    Article  ADS  CAS  Google Scholar 

  61. Mao, H. K. et al. Stability and equation of state of CaSiO3-perovskite to 134 GPa. J. Geophys. Res. 94, 17889–17894 (1989).

    Article  ADS  Google Scholar 

  62. Yagi, T., Tsuchida, Y., Kusanagi, S. & Fukai, Y. Isothermal compression and stability of perovskite-type CaSiO3. Proc. Jpn. Acad. B 65, 129–132 (1989).

    Article  CAS  Google Scholar 

  63. Tamai, H. & Yagi, T. High-pressure and high-temperature phase relations in CaSiO3 and CaMgSi2O6 and elasticity of perovskite-type CaSiO3. Phys. Earth Planet. Inter. 54, 370–377 (1989).

    Article  ADS  CAS  Google Scholar 

  64. Tarrida, M. & Richet, P. Equation of state of CaSiO3 perovskite to 96 GPa. Geophys. Res. Lett. 16, 1351–1354 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of NERC grants NE/PO17657/1 and NE/M00046X/1, and ESRF beamtime proposals ES-464 and ES-636. We thank G. Manthilake and D. Freitas for their assistance and for lending us ultrasonic equipment from Laboratoire Magmas et Volcans for use during the initial experiments of this study. Use of the Pixirad-8 detector was supported by the French Government via the ‘Investissements d’Avenir’ programme, under the reference ANR-10-AIRT-05.

Author information

Authors and Affiliations

Authors

Contributions

A.R.T. designed, performed and analysed the experiments, gathered data from the literature and wrote the manuscript. W.A.C. designed and developed the experimental procedure at ID06 of the ESRF. I.G.W. assisted with interpretation and refinement of diffraction data. J.P.B., D.P.D, W.A.C and N.C.S. helped perform experiments over two sessions at the ESRF. J.M.R.M. performed the computational simulations. S.A.H. assisted with data analysis. All authors contributed to the scientific discussion and preparation of the manuscript.

Corresponding author

Correspondence to A. R. Thomson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Peer review information Nature thanks Ian Jackson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Extended data figures and tables

Extended Data Fig. 1 Lattice and diffraction peak parameters for CaSiO3 and Ca[Si0.6Ti0.4]O3 perovskite.

ad, Refined lattice parameters and pseudo-cubic unit cell volumes from Ca[Si0.6Ti0.4]O3 (a, c) and CaSiO3 (b, d) plotted as a function of experimental temperature with 2σ uncertainties. e, Full-width at half-maximum (FWHM) of diffraction peaks (see key) of the CaSiO3 perovskite sample, normalized to the FWHM at high temperature, measured at 100 K intervals in a separate experiment to that in Fig. 2.

Extended Data Fig. 2 X-ray diffraction patterns from CaSiO3 perovskite.

Shown are stacked diffraction patterns of CaSiO3 perovskite; each panel shows data at 300 K, 373 K and 473 K (see key in a). a, Full patterns; b, c, patterns limited in the 2θ range to allow indication of weak superlattice peaks. The positions of the diffraction peaks from the Ca-Pv sample, MgO, NaCl and Au are indicated by markers—other small peaks are from boron epoxy and/or furnace components. Cubic Ca-Pv peaks are labelled with indices, hkl, in bold. The diffraction patterns reveal the appearance of small superlattice reflections at T = 373 K and 300 K at 2θ values of about 6.1°, 8.05°, 12.1° and 13.2° (we note there is believed to be an additional superlattice reflection obscured at 2θ = 10.5°) labelled with hkl indexed on the tetragonal (I4/mcm) unit cell and marked with gold stars.

Extended Data Fig. 3 Refined X-ray diffraction patterns from Ca[Si0.6Ti0.4]O3 perovskite.

ac, Rietveld refinements of Ca[Si0.6Ti0.4]O3 samples: a, in P21/c with LaB6 calibrant, at 300 K and ambient pressure; b, in the tetragonal I4/m structure (with other cell components) at 890 K and high pressure (about 12 GPa); and c, in \(Fm\bar{3}m\) at 1,336 K and high pressure (12 GPa). In each panel, the black dots are the collected data, the blue curve the model pattern and the green curve the residual. The coloured tick-marks indicate the positions of diffraction peaks of each phase.

Extended Data Fig. 4 X-ray diffraction patterns from Ca[Si0.6Ti0.4]O3 perovskite.

a, Complete diffraction pattern of the Ca[Si0.6Ti0.4]O3 sample as a function of temperature at about 12 GPa, with diffraction intensity indicted by colour scaling. bh, Magnified panels from a focusing on the temperature evolution of the 311, 222, 400, 422, 440, 620 and 444 diffraction peaks (bh, respectively; indexed using a cubic lattice with a ≈ 7.3 Å), demonstrating the change in thermal expansivity between cubic and tetragonal/monoclinic structures, and allowing visual identification of the observed phase transitions.

Extended Data Fig. 5 Phase diagram of calcium perovskite throughout the mantle from ab initio simulations and experiments.

Shown is the cubic–tetragonal transition extrapolated throughout the mantle based on ab initio (solid circles) and experimental (triangles) constraints from this study. Vertical error bars (1σ) and the grey envelope (80% confidence interval) represent the uncertainty in computational results from this study. A 1,500 K mantle adiabat and cold slab temperature profile are plotted as red curves, with dashed red arrows indicating the warming occurring during slab stagnation at 700–1,000 km depth. Results from previous experimental18,23 and computational3 studies are plotted as open symbols and grey curves, respectively.

Extended Data Fig. 6 Equations of state for CaSiO3 perovskite.

a, PV EoS for tetragonal CaSiO3 at 300 K, fitted to data from this study only (purple line) and combined with data from previous studies (thick black curve). Only data with large symbols, those that used pressure transmitting media, have been included in fitting the EoS. All small symbols are from experiments that did not employ a pressure-transmitting medium so have been excluded as volumes are expected to be affected by residual sample stress. Additionally, data from Wang et al.47 were excluded as they used energy dispersive diffraction in the large volume press, which can be subject to larger uncertainties in volume. Error bars represent pressure and volume uncertainties as reported in previous studies. Computational EoS for tetragonal Ca-Pv are plotted as dashed curves for comparison3,17,19,45,47,59,60,61,62,63,64. b, PVT EoS for cubic CaSiO3 perovskite at 298 K and along a 1,600 K adiabat fitted to data from this and previous studies. Small, partially transparent symbols are literature data that were not included in the fitting, either due to falling below the calculated slope of the cubic–tetragonal transition (Methods) or due to concerns about data accuracy. The inset histogram shows the, approximately normal, distribution for the residuals for the fitted data compared with the best-fit model, demonstrating the lack of outliers45,46,47,48.

Extended Data Fig. 7 Bulk sound velocity and bulk modulus of CaSiO3 perovskite.

a, Bulk sound velocity of Ca-Pv predicted from the EoS in this study along a 1,600 K mantle adiabat and at 300 K, compared with results from previous computational studies on a 1,600 K adiabat4,5,6, a fit to previously published PVT diffraction data, and PREM15. b, The adiabatic bulk modulus of CaSiO3 perovskite calculated at 300 K and along a 1,600 K mantle adiabat using the finite strain model from this study, compared with thermodynamic results in Stixrude et al.6 and previous high-temperature computational studies4,5.

Extended Data Fig. 8 Exemplar radiographic image, ultrasonic data and schematic of the experimental cell design.

a, Example of synchrotron radiographic image in plan view used to measure sample length in a Ca[Si0.6Ti0.4]O3 sample. b, Ultrasonic signals from the ‘runa’ experiment on a CaSiO3 sample. c, Cross-section of the experimental assembly (to scale) used in ultrasonic experiments throughout this study.

Extended Data Fig. 9 Comparison of bulk sound velocity from diffraction and ultrasonic measurements.

Shown is a comparison of bulk sound velocity calculated from PVT EoSs, fitted to literature diffraction data (solid curves) with 2σ uncertainties shown by shaded regions, and only to that reported by Gréaux et al.20 (dashed curves), with bulk sound velocities calculated from ultrasonic measurements via vbulk = (vP2 − 4/3vS2)0.5 for data from Gréaux et al.20 (squares) and this study (circles). All curves and symbols are coloured for temperature (colour scale at right).

Supplementary information

Supplementary Tables

Supplementary Tables 1–7

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomson, A.R., Crichton, W.A., Brodholt, J.P. et al. Seismic velocities of CaSiO3 perovskite can explain LLSVPs in Earth’s lower mantle. Nature 572, 643–647 (2019). https://doi.org/10.1038/s41586-019-1483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-019-1483-x

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing