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            Abstract
The mitochondrial ADP/ATP carrier (AAC) is a major transport protein of the inner mitochondrial membrane. It exchanges mitochondrial ATP for cytosolic ADP and controls cellular production of ATP. In addition, it has been proposed that AAC mediates mitochondrial uncoupling, but it has proven difficult to demonstrate this function or to elucidate its mechanisms. Here we record AAC currents directly from inner mitochondrial membranes from various mouse tissues and identify two distinct transport modes: ADP/ATP exchange and H+ transport. The AAC-mediated H+ current requires free fatty acids and resembles the H+ leak via the thermogenic uncoupling protein 1 found in brown fat. The ADP/ATP exchange via AAC negatively regulates the H+ leak, but does not completely inhibit it. This suggests that the H+ leak and mitochondrial uncoupling could be dynamically controlled by cellular ATP demand and the rate of ADP/ATP exchange. By mediating two distinct transport modes, ADP/ATP exchange and H+ leak, AAC connects coupled (ATP production) and uncoupled (thermogenesis) energy conversion in mitochondria.
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                    Fig. 1: Pharmacological and biophysical properties of IH.[image: ]


Fig. 2: AAC is required for IH.[image: ]


Fig. 3: Adenine nucleotide transport by AAC.[image: ]


Fig. 4: Nucleotide exchange negatively regulates IH.[image: ]


Fig. 5: Mitochondrial uncoupling requires AAC.[image: ]
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Extended data figures and tables

Extended Data Fig. 1 FA-dependent IH in the IMM and plasma membrane.
a, Left, a diagram of patch-clamp recording from a vesicle of the whole IMM (mitoplast). After forming a gigaohm seal between the patch pipette and the mitoplast, the IMM patch under the pipette is broken by applying short pulses of high voltage (200â€“500Â mV, 5â€“30Â ms) combined with light suction to gain access into the mitoplast through the pipette. In this configuration, called the â€˜whole-mitoplastâ€™ configuration, the interior of the mitoplast (mitochondrial matrix) is perfused with the pipette solution. The bath is also perfused to control the experimental solution on the cytosolic side of the IMM. The voltage across the IMM is set using the patch-clamp amplifier. Directions of currents flowing across the IMM: inward currents (flowing into the mitoplast) are negative, while outward currents are positive. Right, an example of an IH current trace recorded in the whole-mitoplast mode. The voltage protocol used to induce the currents is shown aboveÂ the traces. All indicated voltages are within the mitochondrial matrix relative to the bath (cytosol). The voltage of the bath solution is defined to be zero. Baseline (zero current level) as well as negative (inward) and positive (outward) currents are indicated. b, IH induced in a skeletal muscle mitoplast by 1.5Â ÂµM (IMM, upper panel, nÂ =Â 11) or 15Â ÂµM (IMM, lower panel, nÂ =Â 3) AA. Voltage protocol is shown above the traces. Bath (cytosolic side of the IMM) and pipette (matrix side) pH are indicated in the pipetteâ€“mitoplast diagram. c, As in b but using the plasma membrane (PM, nÂ =Â 4 at 1.5Â ÂµM, nÂ =Â 4 at 15Â ÂµM) of HEK293 cells. d, IH current densities in the IMM of skeletal muscle and PM of HEK293 cells at 1.5 (nÂ =Â 11 for IMM, nÂ =Â 4 for PM) and 15 ÂµM AA (nÂ =Â 3 for IMM, nÂ =Â 4 for PM). IH measured at âˆ’160Â mV. Data represent meanÂ Â±Â s.e.m.

                          Source data
                        


Extended Data Fig. 2 UCP1-independent IH in various mouse tissues.
a, IH induced in mitoplasts from heart (nÂ =Â 6), liver (nÂ =Â 5), and brown fat (UCP1âˆ’/âˆ’ mice, nÂ =Â 6) by application of 1.5Â ÂµM AA on the cytosolic side of the IMM. The voltage protocol used is shown above the traces, and the bath and pipette pH values are indicated in the pipetteâ€“mitoplast diagram. b, IH induced in mitoplasts from skeletal muscle of wild-type (nÂ =Â 7), UCP2âˆ’/âˆ’ (nÂ =Â 8), and UCP3âˆ’/âˆ’ (nÂ =Â 11) mice by application of 1.5Â ÂµM AA on the cytosolic side of the IMM. c, IH current densities in skeletal muscle mitoplasts from wild-type (nÂ =Â 7), UCP2âˆ’/âˆ’(nÂ =Â 8), and UCP3âˆ’/âˆ’ (nÂ =Â 11) mice, measured at âˆ’160Â mV as in b. Data represent meanÂ Â±Â s.e.m. d, Representative skeletal muscle mitochondrial IH induced by 1.5Â ÂµM AA before (red) and after application of 1Â mM GDP (blue) (nÂ =Â 4). e, Mitochondrial IH recorded in the absence of added FA (control, black) was deactivated by addition of 10Â mM MÎ²CD to the bath (nÂ =Â 10).

                          Source data
                        


Extended Data Fig. 3 H+ selectivity of mitochondrial IH.
a, Left, representative mitochondrial IH recorded at Î”pHÂ =Â 1 in response to the voltage step protocol indicated above (skeletal muscle mitoplast, nÂ =Â 6); Î”VÂ =Â 40Â mV. A holding potential of âˆ’60Â mV (close to the EH) was selected to minimize H+ current and depletion of the proton buffer between applications of voltage steps. Red dotted line indicates zero current. Right, I/V curve corresponding to the current traces in the left panel (skeletal muscle mitoplasts, nÂ =Â 6). Note the reversal potential. The pH values in the pipette and bath solutions are indicated on the diagram. b, Left, mitochondrial IH recorded at Î”pHÂ =Â 1.5 in response to the voltage step protocol indicated above (skeletal muscle mitoplast, nÂ =Â 3); Î”VÂ =Â 60Â mV. Holding potential was âˆ’90Â mV (close to the Nernst H+ equilibrium potential EH). Right, I/V curve corresponding to the current traces in the left panel (skeletal muscle mitoplasts, nÂ =Â 6). c, Left, mitochondrial IH recorded at Î”pHÂ =Â âˆ’0.5 in response to the voltage step protocol indicated above (skeletal muscle mitoplasts, nÂ =Â 4); Î”VÂ =Â 40Â mV. Holding potential was 0Â mV. Right, I/V curve corresponding to the current traces in the left panel. All currents were induced by 1.5Â ÂµM AA (skeletal muscle mitoplasts, nÂ =Â 6). d, IH reversal potentials (Vrev) compared to EH. Linear fitting of Vrev (red) and EH at 24â€‰Â°C (black) versus transmembrane Î”pH; pH 6/7, nÂ =Â 6; pH 6/7.5, nÂ =Â 3; pH 6.5/6, nÂ =Â 4 skeletal muscle mitoplasts. Data represent meanÂ Â±Â s.e.m.

                          Source data
                        


Extended Data Fig. 4 AAC-dependent and -independent currents induced by FA.
a, Current induced by 4Â Î¼M PA (red) was inhibited by 1Â Î¼M CATR (blue). Control current is shown in black. Representative experiments performed in heart mitoplasts, nÂ =Â 4. b, The same experiment performed with 100Â Î¼M lauric acid (LA), nÂ =Â 5. c, Top, currents induced by 2Â Î¼M of AA (green), PA (blue), or LA (red) in the same mitoplast. Control current is shown in black. Heart mitoplasts, nÂ =Â 4. Bottom, mean IH current densities at âˆ’160Â mV induced in heart mitoplasts by 2Â Î¼M of AA (nÂ =Â 6), PA (nÂ =Â 7), or LA (nÂ =Â 4) as in experiment shown above. Data represent meanÂ Â±Â s.e.m. d, Left, IH induced by 2Â Î¼M AA (red) was inhibited by 4Â Î¼M BKA (blue). Control currents are shown in black. Representative experiment performed in a heart mitoplast (nÂ =Â 4). Right, inhibition of IH induced by 2Â ÂµM AA in heart mitoplasts by 4Â ÂµM BKA. Remaining IH measured at âˆ’160Â mV is shown as a percentage of control, nÂ =Â 4. Paired t-test, two-tailed. Data represent meanÂ Â±Â s.e.m. e, Current induced by 2Â Î¼M AA sulfonate before (red) and after (blue) addition of 1Â Î¼M CATR. Representative experiment performed in a heart mitoplast, nÂ =Â 6. f, Current induced by 2Â Î¼M AA sulfonate before (red) and after (blue) addition of 50 Î¼M mersalyl. Representative experiment performed in a heart mitoplast, nÂ =Â 4. g, Currents induced by 2Â Î¼M AA before (red) and after (blue) addition of 50Â Î¼M mersalyl. Note that only the outward current was inhibited. Representative experiment performed in a heart mitoplast, nÂ =Â 6. h, The outward current activated by 2Â ÂµM AA (red) is inhibited by 50Â Î¼M mersalyl (blue) and is restored by 1Â mM DTT (green). Control current is shown in black. Heart mitoplasts, nÂ =Â 4. i, Whole-mitoplast current before (control, black) and after application of 2Â Î¼M AA (red), and upon washout of AA (blue). Heart mitoplasts, nÂ =Â 6. j, IH induced by 2Â Î¼M AA (red) was inhibited by 1Â Î¼M CATR (blue). Control current is shown in black. Symmetrical pH 6.0. Heart mitoplasts, nÂ =Â 4. k, Inhibition of the inward IH induced by 2Â ÂµM AA in skeletal muscle, heart, liver, and kidney by 1Â ÂµM CATR. Skeletal muscle (nÂ =Â 22), heart (nÂ =Â 18), liver (nÂ =Â 4), and kidney (nÂ =Â 7) for both control and CATR treatment. Remaining inward current measured at âˆ’160Â mV is shown as a percentage of control. Paired t-test, two-tailed. Data represent meanÂ Â±Â s.e.m. l, Inhibition of the outward current induced by 2Â ÂµM AA in skeletal muscle, heart, liver, and kidney by 1Â ÂµM CATR. Remaining outward current measured at +100Â mV is shown as a percentage of control. Skeletal muscle (nÂ =Â 21), heart (nÂ =Â 17), liver (nÂ =Â 4), and kidney (nÂ =Â 7) for both control and CATR treatment. Paired t-test, two-tailed. Data represent meanÂ Â±Â s.e.m.

                          Source data
                        


Extended Data Fig. 5 FA-dependent IH via AAC is potentiated by oxidation.
a, c, e, IH activated by 2Â ÂµM AA (red) was then potentiated by oxidizers 250Â ÂµM tBHP, 100Â ÂµM 4-HNE, or 20Â ÂµM TBT (blue). IH potentiated by oxidizers was inhibited by CATR (green). Control current is shown in black. Bar graphs show ratio of IH amplitudes at âˆ’160 mV before and after addition of oxidizer. Heart mitoplasts. Note that TBT and 4-HNE, but not tBHP, inhibited the AAC-independent outward current observed at positive membrane potentials. a, nÂ =Â 4; c, nÂ =Â 3; e, nÂ =Â 5 for all experimental conditions. Paired t-test, two-tailed. Data represent meanÂ Â±Â s.e.m. b, d, f, Currents before (control, black) and after (red) application of 250Â ÂµM tBHP (nÂ =Â 3), 20Â ÂµM TBT (nÂ =Â 3), or 100Â ÂµM 4-HNE (nÂ =Â 3).

                          Source data
                        


Extended Data Fig. 6 FA-dependent currents in AAC1 knockout and AAC2 hypomorphic mice.
a, b, Representative currents induced by 2Â ÂµM AA in wild-type (left) and AAC2 hypomorphic (middle) mitoplasts from heart (nÂ =Â 9 for wild-type, nÂ =Â 9 for hypomorphic; a) and kidney (nÂ =Â 4 for wild-type, nÂ =Â 5 for hypomorphic; b). Right, IH current densities at âˆ’160Â mV for wild-type (nÂ =Â 10 for heart, nÂ =Â 5 for kidney) and AAC2 hypomorphic mitoplasts (nÂ =Â 10 for heart, nÂ =Â 6 for kidney). Data are meanÂ Â±Â s.e.m. câ€“e, Densities of the outward current measured at +100Â mV for wild-type and AAC1âˆ’/âˆ’ mitoplasts from heart (c; nÂ =Â 14 for wild-type, nÂ =Â 10 for AAC1âˆ’/âˆ’), skeletal muscle (d; nÂ =Â 21 for wild-type, nÂ =Â 12 for AAC1âˆ’/âˆ’), and kidney (e; nÂ =Â 5 for wild-type, nÂ =Â 6 for AAC1âˆ’/âˆ’). Mannâ€“Whitney U-test, two-tailed. Data are meanÂ Â±Â s.e.m. f, g, Densities of the outward current measured at +100Â mV for wild-type (nÂ =Â 9 for heart, nÂ =Â 5 for kidney) and AAC2 hypomorphic (nÂ =Â 10 for heart, nÂ =Â 5 for kidney) mitoplasts from heart (f) and kidney (g). Mannâ€“Whitney U-test, two-tailed. Data are meanÂ Â±Â s.e.m. h, Inhibition of the outward current induced by 2Â ÂµM AA in AAC1âˆ’/âˆ’ heart mitoplasts by 1Â ÂµM CATR (nÂ =Â 5, control and CATR). Remaining outward current measured at +100Â mV is shown as a percentage of control. Paired t-test, two-tailed. Data are meanÂ Â±Â s.e.m. i, Left, inhibition of inward IH induced by 2Â ÂµM AA in AAC1âˆ’/âˆ’ skeletal muscle mitoplasts by 1Â ÂµM CATR (nÂ =Â 10, control and CATR). Remaining IH measured at âˆ’160Â mV is shown as a percentage of control. Right, inhibition of the outward current induced by 2Â ÂµM AA in in AAC1âˆ’/âˆ’ skeletal muscle mitoplasts by 1Â ÂµM CATR (nÂ =Â 9, control and CATR). Remaining current measured at +100Â mV is shown as a percentage of control. Paired t-test, two-tailed. Data are meanÂ Â±Â s.e.m. j, Two representative experiments in which the IH induced by 2Â ÂµM AA in AAC1âˆ’/âˆ’ mitoplasts from skeletal muscle was the smallest (left, nÂ =Â 4) and the largest (right, nÂ =Â 3). IH induced by 2Â Î¼M AA (red) was inhibited by 1Â Î¼M CATR (blue). Control current shown in black.
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Extended Data Fig. 7 Interaction of FA anions with AAC.
a, IH induced by 2Â ÂµM AA (red) was inhibited by 66Â Â±Â 2% (nÂ =Â 4, skeletal muscle mitoplasts) by 5Â ÂµM AA-sulf (blue). Data are meanÂ Â±Â s.e.m. b, Current induced by 5Â ÂµM AA-sulf (left, red) or 1Â ÂµM AA (right, red) was inhibited by 1Â ÂµM CATR (blue). Control currents are shown in black. A lower concentration of AA was used to induce comparable currents with AA-sulf. Heart mitoplasts, nÂ =Â 4. c, d, Currents recorded before (control, black) and after addition of 5Â ÂµM AA-sulf (c) or 10Â mM C6-sulf (d) to bath (red). Brown fat mitoplast (UCP1, left), heart mitoplast (AAC, right), nÂ =Â 4 for each. Currents were measured at pH 6.0 to inhibit the production of FA by phospholipase A2 (PLA2) associated with the brown fat IMM and to ensure that UCP1 currents were activated by exogenously applied FA anions only. e, Current before (control, black) and after (red) application of 50Â mM C6-sulf to the bath. Pipette solution contained 50Â mM C6-sulf. Symmetrical pH 6.0. Heart mitoplasts, nÂ =Â 3. f, Current before (control, black) and after (red) application of 5Â ÂµM AA-sulf to the bath. Pipette solution contained 10Â ÂµM AA-sulf. Bath AA-sulf was kept at 5Â ÂµM because higher concentrations disrupted the IMM. Symmetrical pH 6.0. Heart mitoplasts, nÂ =Â 3. g, Proposed model of FA-dependent IH via AAC. Without FA, AAC is impermeable for H+ (1). When FA binds in the AAC translocation pathway, its protonatable headgroup enables H+ binding and transport (2). FA can activate IH with AAC in either the c- or m-state (2, 3). Because the SBS is positively charged and retains its structure with câ€“m conformational change, the negatively charged head of FA is likely to interact with the SBS, while the hydrophobic carbon tail may protrude into the membrane and/or be stabilized by hydrophobic interactions within AAC (2, 3).


Extended Data Fig. 8 Adenine nucleotide exchange by AAC.
a, The alternating access mechanism of adenine nucleotide transport by AAC. AAC is shown in green, and its SBS (overall positively charged) located in the middle of the membrane is shown in blue. Cytosolic ADP binds to AAC in the c-state (1). AAC transitions to the m-state, and ADP is released into the matrix (2, 3). Matrix ATP binds to AAC in the m-state (4). AAC transitions to the c-state, and ATP is released into the cytosol (5). b, AAC current activated by 1Â mM ADP (red) is inhibited by 1Â Î¼M CATR (blue). Pipette solution contained 1Â mM ATP. Heart mitoplast, nÂ =Â 3. Control trace is in black. c, Inhibition of the inward ADP/ATP exchange current via AAC by 1Â ÂµM CATR. Heart mitoplast, nÂ =Â 6 (control and CATR treatment). Paired t-test, two-tailed. Data are meanÂ Â±Â s.e.m. Remaining inward current measured at âˆ’160Â mV is shown as a percentage of control. See also Fig. 3a. d, Inhibition of the outward ATP/ADP exchange current via AAC by 1Â ÂµM CATR. Heart mitoplast, nÂ =Â 5 (control and CATR treatment). Paired t-test, two-tailed. Data are meanÂ Â±Â s.e.m. Remaining outward current measured at âˆ’100Â mV is shown as a percentage of control. See also Fig. 3b. e, Inhibition of the inward IH induced by 2Â ÂµM AA by 1Â ÂµM CATR after ADP pre-treatment. Heart mitoplast, nÂ =Â 7 (control and CATR treatment). Paired t-test, two-tailed. Data are meanÂ Â±Â s.e.m. Remaining IH measured at âˆ’160Â mV is shown as a percentage of control. See also Fig. 3e. f, Current before (control, black) and after (red) addition of 2Â ÂµM AA to bath. Subsequent addition of 1Â ÂµM CATR (blue) inhibited IH. Pipette solution contained 4Â ÂµM AA. Heart mitoplast, nÂ =Â 4. g, Control current (black) and current after addition of 1Â mM ADP to the bath solution (red). AA (2Â ÂµM) was added to the bath solution at the end of the experiment (blue). Pipette solution contained 4Â ÂµM AA. Heart mitoplasts, nÂ =Â 4.

                          Source data
                        


Extended Data Fig. 9 Regulation of FA-dependent IH by nucleotides.
a, Explanation of transient inhibition of IH by cytosolic adenine nucleotides. AAC in the c-state, with an FA anion in the translocation pathway, mediates IH (1). Cytosolic ADP3âˆ’ binds in the c-state and expels the FA anion or blocks the translocation pathway, leading to inhibition of IH (2). Upon AAC conformation change, ADP dissociates into the matrix (pipette) solution (3). The FA anion re-associates with AAC in the m-state, restoring IH (4 and 5). Cytosolic ADP cannot inhibit IH while AAC is in the m-state (5). See also Fig. 4a. b, Proposed mechanism of inhibition of IH by adenine nucleotide exchange. AAC in the c-state, with an FA anion in the translocation pathway, mediates IH (1). Cytosolic ADP3âˆ’ binds in the c-state and expels the FA anion or blocks the translocation pathway, leading to inhibition of IH (2). The resultant continuous exchange of cytosolic and matrix adenine nucleotides inhibits FA anion binding and IH (3â€“5). ATP (and not ADP) is shown as a matrix adenine nucleotide to reflect physiological conditions. See also Fig. 4b. c, Remaining IH after inhibition by different concentrations of ADP applied to both sides of the IMM to induce continuous adenine nucleotide exchange via AAC as in e. ADP/ADP exchange was used to avoid contaminating IH with ADP/ATP exchange current. Heart and skeletal muscle mitoplasts, nÂ =Â 5 (control and 10Â Î¼M ADP), nÂ =Â 8 (control and 100Â Î¼M ADP, nÂ =Â 9 (control and 1Â mM ADP). Data are meanÂ Â±Â s.e.m. d, IH via UCP1 is inhibited by 100Â ÂµM Mg2+-free ADP (top, nÂ =Â 5) and 1Â mM Mg2+-free ADP (bottom, nÂ =Â 3). IH activated by 2Â ÂµM AA is shown before (red) and after inhibition by ADP (blue). In the beginning of the experiment, before the application of AA, the endogenous membrane FA were removed by a 30â€“40-s pre-treatment with 10Â mM MÎ²CD (black, control). All recording solutions contained 1Â ÂµM CATR to reduce the contribution of AAC to the IH measured. Pipette solution contained either 100Â ÂµM ADP (top) or 1Â mM ADP (bottom) to match the recording conditions for AAC (e). Brown fat mitoplasts. e, IH via AAC is inhibited by 100Â ÂµM Mg2+-free ADP (top, nÂ =Â 8) and 1Â mM Mg2+-free ADP (bottom, nÂ =Â 8). IH activated by 2Â ÂµM AA is shown before (red) and after inhibition by ADP (blue). Pipette solution contained either 100Â ÂµM ADP (top) or 1Â mM ADP (bottom) to achieve symmetrical [ADP] on both sides of IMM. Heart mitoplasts. f, Mean densities of IH via UCP1 (dark grey) and AAC (light grey) in control samples (brown fat, nÂ =Â 11 and heart, nÂ =Â 9) and in the presence of 100Â ÂµM ADP (brown fat, nÂ =Â 5 and heart, nÂ =Â 8) or 1Â mM ADP (brown fat, nÂ =Â 3 and heart, nÂ =Â 8) on both sides of the IMM. IH amplitudes were measured at âˆ’160Â mV. The same data as in Fig. 4e. Data represent meanÂ Â±Â s.e.m.
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Extended Data Fig. 10 Phenotypes associated with AAC deficiency.
a, Representative OCRs of isolated heart mitochondria from wild-type (left, nÂ =Â 3 wells) and AAC1âˆ’/âˆ’ mice (right, nÂ =Â 4 wells). As indicated by the arrows, first oligomycin and then either PA (50Â Î¼M, light orange and 100Â Î¼M, dark orange) or buffer (black) were added, followed by FCCP and rotenone. Higher PA concentrations were used than for electrophysiological experiments, because in suspensions of isolated mitochondria and in the presence of albumin, the effective concentration of PA is markedly lower. FCCP-induced uncoupled respiration in wild-type and AAC1âˆ’/âˆ’ mitochondria validated their respiration capacity. Data represent meanÂ Â±Â s.e.m. This experiment was repeated with independent mitochondrial isolations from wild-type (nÂ =Â 4) and AAC1âˆ’/âˆ’ (nÂ =Â 3) mice with the same results. b, Basal OCR of isolated heart mitochondria from wild-type (nÂ =Â 24 wells) and AAC1âˆ’/âˆ’ (nÂ =Â 18 wells) mice. Mannâ€“Whitney U-test, two-tailed. Data represent meanÂ Â±Â s.e.m. c, Representative immunoblots of wild-type (nÂ =Â 5) and DKO (nÂ =Â 7) C2C12 cells for: NDUFB8 (complex I, CI), SDHA (complex II, CII), core 2 subunit (complex III, CIII), CIV-I subunit (complex IV, CIV), and ATP5A (complex V, CV), TOM20, and the loading control (plasma membrane Na+/K+ ATPase). For gel source data see Supplementary Fig. 1. d, Basal and ADP-stimulated OCR of mitochondria from wild-type (basal, ADP 100Â Î¼M, and ADP 200Â Î¼M, nÂ =Â 20) and DKO (nÂ =Â 16 for basal, nÂ =Â 16 for ADP 100Â Î¼M, and nÂ =Â 17 for ADP 200Â Î¼M) C2C12 cells. Mannâ€“Whitney U-test, two-tailed. Data represent meanÂ Â±Â s.e.m. e, Representative confocal micrographs of wild-type (top, nÂ =Â 45 cells) and DKO (bottom, nÂ =Â 45 cells) C2C12 cells immunolabelled with TOM20 (green) and tubulin (red) antibodies. Insets show magnified areas from the same images. f, Mitochondrial biomass per cell in wild-type and DKO C2C12 cells, calculated as a ratio between TOM20 signal and the total area of the cell; nÂ =Â 45 per group. Data represent meanÂ Â±Â s.e.m. g, Comparison of ratio between mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) in wild-type (nÂ =Â 6) and DKO (nÂ =Â 6) C2C12 cells. Data represent meanÂ Â±Â s.e.m. h, Kinetic study of extracellular acidification rate (ECAR) in wild-type (nÂ =Â 22) and DKO (nÂ =Â 22) C2C12 cells under basal conditions and upon addition of oligomycin to the respiration medium. Note that inhibition of mitochondrial ATP production in DKO cells with oligomycin did not affect ECAR, whereas in wild-type cells, oligomycin potently stimulated ECAR. Data represent meanÂ Â±Â s.e.m.
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