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            Abstract
Tropospheric ozone (O3) is a key component of air pollution and an important anthropogenic greenhouse gas1. During the twentieth century, the proliferation of the internal combustion engine, rapid industrialization and land-use change led to a global-scale increase in O3 concentrations2,3; however, the magnitude of this increase is uncertain. Atmospheric chemistry models typically predict4,5,6,7 an increase in the tropospheric O3 burden of between 25 and 50 per cent since 1900, whereas direct measurements made in the late nineteenth century indicate that surface O3 mixing ratios increased by up to 300 per cent8,9,10 over that time period. However, the accuracy and diagnostic power of these measurements remains controversial2. Here we use a record of the clumped-isotope composition of molecular oxygen (18O18O in O2) trapped in polar firn and ice from 1590 to 2016 ad, as well as atmospheric chemistry model simulations, to constrain changes in tropospheric O3 concentrations. We find that during the second half of the twentieth century, the proportion of 18O18O in O2 decreased by 0.03 ± 0.02 parts per thousand (95 per cent confidence interval) below its 1590–1958 ad mean, which implies that tropospheric O3 increased by less than 40 per cent during that time. These results corroborate model predictions of global-scale increases in surface pollution and vegetative stress caused by increasing anthropogenic emissions of O3 precursors4,5,11. We also estimate that the radiative forcing of tropospheric O3 since 1850 ad is probably less than +0.4 watts per square metre, consistent with results from recent climate modelling studies12.
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                    Fig. 1: Mean atmospheric Δ36 values from different archives.


Fig. 2: Measurement–model comparisons for increase in tropospheric O3 since 1850 ad.


Fig. 3: Zonal-mean change in O3 concentrations between 1850 and 2005 ad.



                


                
                    
                
            

            
                Data availability

              
              The isotopic data and main LOCK-IN firn data that support the findings of this study are available from the PANGAEA database (https://doi.pangaea.de/10.1594/PANGAEA.901154). The LOCK-IN firn analysis is ongoing, so additional firn data underlying sensitivity tests in Extended Data Fig. 6 will be published elsewhere and made available freely and immediately upon request.

            

Code availability

              
              The computer codes used to support the findings of this study are available from the authors upon reasonable request.
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Extended data figures and tables

Extended Data Fig. 1 Age distribution estimates in firn and ice.
In green: gas age distributions in LOCK-IN firn at depths of 84.2 m (short-dashed line), 98.6 m (long-dashed line), 104.8 m depth (solid line) and 107.65 m (short–long dashed line). In red: gas age distribution of GISP2 ice samples. In blue: gas age distributions of WAIS Divide ice samples, estimated using a diffusivity based on NEEM-EU data (solid line) and NEEM-US data (dashed line). In purple: gas age distribution of Siple Dome ice samples.

                          Source Data
                        


Extended Data Fig. 2 Comparison of the most precise model (in isotopic δ notation23) and the simplified model used to include ice data45.
Left, black stars show ∆36 (‘D-36’, in parts per thousand) data in LOCK-IN firn plotted against mean gas ages with uncertainties (±2 s.e.m., calculated using the pooled standard deviation) shown as vertical bars. Lines represent reconstructed atmospheric trends. The preferred scenario is obtained using a SCRIPPS-based O2 trend (see Methods, ‘Δ36 for firn modelling’) and is constrained by LOCK-IN firn data excluding the deepest value. The black and green solid lines show the best-guess trend obtained with the most precise and simplified models, respectively. Long-dashed lines show the uncertainty envelope. Short-dashed lines show the results of the two models when including the probably contaminated deepest data point (most precise model in green, simplified model in black). Right, δ18O18Ocor data (‘d18O18Ocor’, in parts per thousand; see Methods, ‘Δ36 for firn modelling’) in LOCK-IN firn against depth (symbols), compared with model results (lines). The four model simulations only differ in the very deep firn. The deepest data point at 107.65 m, which is probably contaminated (see text), is not shown in the left panel. Its mean gas age is 110 yr, corresponding to 1906 ad.

                          Source Data
                        


Extended Data Fig. 3 Effect of gravitational fractionation on isotopic ratios in the LOCK-IN firn.
Shown are δ15N values of N2 measured at LSCE (black stars); δ18O values of O2, divided by 2, measured at LSCE (green crosses) and at Rice University (red circles); and δ18O18O values of O2, divided by 4, measured at Rice University (blue circles). The black line shows the barometric slope.

                          Source Data
                        


Extended Data Fig. 4 Test of gravitational fractionation corrections for δ18O18O in LOCK-IN firn.
Shown are the corrections obtained using the δ15N value of N2 measured at LSCE (black stars), the δ18O value of O2 measured at LSCE (green crosses), the δ18O value of O2 measured at Rice University (red circles) and the ∆36 value of O2 measured at Rice University (empty blue circles).

                          Source Data
                        


Extended Data Fig. 5 Comparison of firn model scenarios.
Shown are results obtained with or without the deepest LOCK-IN data point, and with constant or SCRIPPS-based O2 trend estimates, as well as forward firn model tests of atmospheric model scenarios. Top left, ∆36 data in firn and ice (LOCK-IN in green, GISP2 in red, WAIS Divide in blue, Siple Dome in purple) plotted against mean 18O18O age, compared with atmospheric trends obtained by inverse firn/ice modelling. Shown also are the ±2σ-equivalent uncertainty envelope for the inverse model (long-dashed black lines) and the best-guess trends obtained using: the SCRIPPS-based O2 scenario and excluding the deepest LOCK-IN data point (short-dashed black line); a constant-O2 scenario and excluding the deepest LOCK-IN data point (red line); the SCRIPPS-based O2 scenario and all LOCK-IN data points (dashed grey line); and a constant O2 scenario and all LOCK-IN data points (blue line). Top right, δ18O18Ocor in firn and ice (defined in Methods, ‘Δ36 for firn modelling’; LOCK-IN in green, GISP2 in red, WAIS Divide in blue, Siple Dome in purple) plotted against depth, compared with model results in firn and ice using the SCRIPPS-based O2 scenario. The solid lines show the simulation excluding the deepest LOCK-IN data point and the dashed lines correspond to the simulation with all data points. Bottom left, ∆36 data in firn and ice (same colours as in upper panels) compared with simulated profiles using the forward firn model (LOCK-IN, solid lines; WAIS Divide, long dashed lines; GISP2, short dashed lines; Siple Dome, short–long-dashed lines). Outputs shown correspond to SCRIPPS-based atmospheric concentration trends for O2 and constant values for δ18O and ∆36 (black lines); constant values for O2, δ18O and ∆36 (grey lines; results are nearly the same as the black lines); SCRIPPS-based atmospheric concentration trends for O2 and constant values for δ18O, with the +25% box model scenario for ∆36 (orange lines); the +200% box model scenario for ∆36 (blue lines); and the +300% box model scenario for ∆36 (red lines).

                          Source Data
                        


Extended Data Fig. 6 Results of sensitivity tests on atmospheric trend reconstructions from the inverse firn model.
∆36 data in firn and ice (stars with ±2 s.e.m. uncertainties shown as vertical bars; LOCK-IN in green, GISP2 in red, WAIS Divide in blue, Siple Dome in purple) plotted against mean 18O18O age and compared with modelled atmospheric trends (lines). The solid black line is the preferred scenario, obtained using a SCRIPPS-based O2 concentration trend and excluding the deepest LOCK-IN data point, with its uncertainty envelope shown alongside (dashed black lines). The left panel shows the simulation that includes the deepest LOCK-IN data point (red line), a simulation with the deepest LOCK-IN data point corrected (grey star) from a maximum estimate of 10% surface air contamination (purple line), tests of the sensitivity to the optimal solution (grey lines; see Methods, ‘Sensitivity tests on atmospheric trend reconstructions’), the simulation excluding WAIS Divide data (blue line), and simulations excluding the Siple Dome data (green solid line) or excluding the Siple Dome data and using NEEM-US-data-based diffusivity to simulate WAIS Divide firn (green dashed line). The dashed grey line shows that a straight trend with a weak slope can remain in the uncertainty envelope. The right panel shows tests of LOCK-IN firn physics parameters (green; see Methods, ‘Sensitivity tests on atmospheric trend reconstructions’) and tests of LOCK-IN diffusivity constrained with field data only (blue), all nearly superimposed to the preferred trend.

                          Source Data
                        


Extended Data Fig. 7 Comparison of Δ36 values in measurements of ice-core, firn and modern air.
a, Firn and ice-core Δ36 values (means of replicates) plotted against mean gas age. b, Kernel-smoothed probability density distributions of bootstrap-resampled mean values of each dataset, showing a significant (P < 0.002) difference between the means of the ice-core and firn (above 105 m) datasets. Uncertainties are omitted for clarity. Pooled standard deviations for each sample type are 0.03‰–0.04‰ (see Methods). C.E., common era.

                          Source Data
                        


Extended Data Fig. 8 Modelled fraction of stratospheric air derived from GISS-E2.1 7Be simulations.
Shown are 12-month grid-scale moving averages at the surface near each of the four polar sampling sites between 1850 ad and 2015 ad.

                          Source Data
                        


Extended Data Fig. 9 Instantaneous tropospheric O3 radiative forcing at the tropopause relative to 1850 ad.
Results calculated with the GISS-E2.1 (2000s) and GEOS-Chem/MERRA2 (2005) models. Maps created using the NCAR command language67.
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Extended Data Fig. 10 Solar modulation potential.
Results estimated using the sunspot number (orange line) and reconstructed from ground‐based neutron monitors and ionization chambers (from Usoskin et al.62; blue line).
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Source data
Source Data Fig. 1

Source Data Fig. 2

Source Data Fig. 3

Source Data Extended Data Fig. 1

Source Data Extended Data Fig. 2

Source Data Extended Data Fig. 3

Source Data Extended Data Fig. 4

Source Data Extended Data Fig. 5

Source Data Extended Data Fig. 6

Source Data Extended Data Fig. 7

Source Data Extended Data Fig. 8

Source Data Extended Data Fig. 9

Source Data Extended Data Fig. 10




Rights and permissions
Reprints and permissions


About this article
       



Cite this article
Yeung, L.Y., Murray, L.T., Martinerie, P. et al. Isotopic constraint on the twentieth-century increase in tropospheric ozone.
                    Nature 570, 224–227 (2019). https://doi.org/10.1038/s41586-019-1277-1
Download citation
	Received: 11 September 2018

	Accepted: 10 May 2019

	Published: 12 June 2019

	Issue Date: 13 June 2019

	DOI: https://doi.org/10.1038/s41586-019-1277-1


Share this article
Anyone you share the following link with will be able to read this content:
Get shareable linkSorry, a shareable link is not currently available for this article.


Copy to clipboard

                            Provided by the Springer Nature SharedIt content-sharing initiative
                        








            


            
        
            
                This article is cited by

                
                    	
                            
                                
                                    
                                        Two decades of fumigation data from the Soybean Free Air Concentration Enrichment facility
                                    
                                

                            
                                
                                    	Elise Kole Aspray
	Timothy A. Mies
	Elizabeth A. Ainsworth


                                
                                Scientific Data (2023)

                            
	
                            
                                
                                    
                                        Stratospheric ozone depletion and tropospheric ozone increases drive Southern Ocean interior warming
                                    
                                

                            
                                
                                    	Wei Liu
	Michaela I. Hegglin
	Neil C. Swart


                                
                                Nature Climate Change (2022)

                            
	
                            
                                
                                    
                                        Elevated ozone phytotoxicity ameliorations in mung bean {Vigna radiata (L.) Wilczek} by foliar nebulization of silicic acid and ascorbic acid
                                    
                                

                            
                                
                                    	Eram Shahzadi
	Muhammad Nawaz
	Naeem Iqbal


                                
                                Environmental Science and Pollution Research (2022)

                            
	
                            
                                
                                    
                                        The effects of historical ozone changes on Southern Ocean heat uptake and storage
                                    
                                

                            
                                
                                    	Shouwei Li
	Wei Liu
	Xuebin Zhang


                                
                                Climate Dynamics (2021)

                            
	
                            
                                
                                    
                                        An empirical approach toward the SLCP reduction targets in Asia for the mid-term climate change mitigation
                                    
                                

                            
                                
                                    	Hajime Akimoto
	Tatsuya Nagashima
	Markus Amann


                                
                                Progress in Earth and Planetary Science (2020)

                            


                

            

        
    

            
                Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.



                
                    
                    

                

            
        





    
        

        
            
                

    
        
            
                
                Access through your institution
            
        

        
            
                
                    Buy or subscribe
                
            

        
    



            

            
                

    
        
        

        
        
            
                
                Access through your institution
            
        

        
            
                Change institution
            
        

        
        
            
                Buy or subscribe
            
        

        
    



            

        
    


    
        
    

    
    
        
            
                Associated content

                
                    
                    
                        
                            
    
        
            
                
                    Ozone mystery laid to rest
                

                
	Mathew Evans



                
    
        
            Nature
        
        News & Views
        
        
            12 Jun 2019
        
    


            

        

    


                        

                    
                
            
        

        
    

    

    
        
            
                
                    
                        
                            Advertisement

                            
    
        
            
                
        

    


                        

                    

                

            

            

            

        

    






    
        
            
                Explore content

                	
                                
                                    Research articles
                                
                            
	
                                
                                    News
                                
                            
	
                                
                                    Opinion
                                
                            
	
                                
                                    Research Analysis
                                
                            
	
                                
                                    Careers
                                
                            
	
                                
                                    Books & Culture
                                
                            
	
                                
                                    Podcasts
                                
                            
	
                                
                                    Videos
                                
                            
	
                                
                                    Current issue
                                
                            
	
                                
                                    Browse issues
                                
                            
	
                                
                                    Collections
                                
                            
	
                                
                                    Subjects
                                
                            


                	
                            Follow us on Facebook
                            
                        
	
                            Follow us on Twitter
                            
                        
	
                            
                                Subscribe
                            
                        
	
                            Sign up for alerts
                            
                        
	
                            
                                RSS feed
                            
                        


            

        
    
    
        
            
                
                    About the journal

                    	
                                
                                    Journal Staff
                                
                            
	
                                
                                    About the Editors
                                
                            
	
                                
                                    Journal Information
                                
                            
	
                                
                                    Our publishing models
                                
                            
	
                                
                                    Editorial Values Statement
                                
                            
	
                                
                                    Journal Metrics
                                
                            
	
                                
                                    Awards
                                
                            
	
                                
                                    Contact
                                
                            
	
                                
                                    Editorial policies
                                
                            
	
                                
                                    History of Nature
                                
                            
	
                                
                                    Send a news tip
                                
                            


                

            
        

        
            
                
                    Publish with us

                    	
                                
                                    For Authors
                                
                            
	
                                
                                    For Referees
                                
                            
	
                                
                                    Language editing services
                                
                            
	
                                Submit manuscript
                                
                            


                

            
        
    



    
        Search

        
            Search articles by subject, keyword or author
            
                
                    
                

                
                    
                        Show results from
                        All journals
This journal


                    

                    
                        Search
                    

                


            

        


        
            
                Advanced search
            
        


        Quick links

        	Explore articles by subject
	Find a job
	Guide to authors
	Editorial policies


    





        
    
        
            

            
                
                    Nature (Nature)
                
                
    
    
        ISSN 1476-4687 (online)
    
    


                
    
    
        ISSN 0028-0836 (print)
    
    

            

        

    




    
        
    nature.com sitemap

    
        
            
                About Nature Portfolio

                	About us
	Press releases
	Press office
	Contact us


            


            
                Discover content

                	Journals A-Z
	Articles by subject
	Protocol Exchange
	Nature Index


            


            
                Publishing policies

                	Nature portfolio policies
	Open access


            


            
                Author & Researcher services

                	Reprints & permissions
	Research data
	Language editing
	Scientific editing
	Nature Masterclasses
	Research Solutions


            


            
                Libraries & institutions

                	Librarian service & tools
	Librarian portal
	Open research
	Recommend to library


            


            
                Advertising & partnerships

                	Advertising
	Partnerships & Services
	Media kits
                    
	Branded
                        content


            


            
                Professional development

                	Nature Careers
	Nature 
                        Conferences


            


            
                Regional websites

                	Nature Africa
	Nature China
	Nature India
	Nature Italy
	Nature Japan
	Nature Korea
	Nature Middle East


            


        

    

    
        	Privacy
                Policy
	Use
                of cookies
	
                Your privacy choices/Manage cookies
                
            
	Legal
                notice
	Accessibility
                statement
	Terms & Conditions
	Your US state privacy rights


    





        
    
        
    
    © 2024 Springer Nature Limited




    

    
    
    







    

    



    
    

        

    
        
            


Close
    



        

            
                
                    
                    Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

                

                
                    
                        
                        

                        
                        
                        
                        

                        Email address

                        
                            
                            
                            
                            Sign up
                        


                        
                            
                            I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.
                        

                    

                

            


        


    

    
    

        

    
        
            

Close
    



        
            Get the most important science stories of the day, free in your inbox.
            Sign up for Nature Briefing
            
        


    









    








