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            Abstract
Genetic and epigenetic intra-tumoral heterogeneity cooperate to shape the evolutionary course of cancer1. Chronic lymphocytic leukaemia (CLL) is a highly informative model for cancer evolution as it undergoes substantial genetic diversification and evolution after therapy2,3. The CLL epigenome is also an important disease-defining feature4,5, and growing populations of cells in CLL diversify by stochastic changes in DNA methylation known as epimutations6. However, previous studies using bulk sequencing methods to analyse the patterns of DNA methylation were unable to determine whether epimutations affect CLL populations homogeneously. Here, to measure the epimutation rate at single-cell resolution, we applied multiplexed single-cell reduced-representation bisulfite sequencing to B cells from healthy donors and patients with CLL. We observed that the common clonal origin of CLL results in a consistently increased epimutation rate, with low variability in the cell-to-cell epimutation rate. By contrast, variable epimutation rates across healthy B cells reflect diverse evolutionary ages across the trajectory of B cell differentiation, consistent with epimutations serving as a molecular clock. Heritable epimutation information allowed us to reconstruct lineages at high-resolution with single-cell data, and to apply this directly to patient samples. The CLL lineage tree shape revealed earlier branching and longer branch lengths than in normal B cells, reflecting rapid drift after the initial malignant transformation and a greater proliferative history. Integration of single-cell bisulfite sequencing analysis with single-cell transcriptomes and genotyping confirmed that genetic subclones mapped to distinct clades, as inferred solely on the basis of epimutation information. Finally, to examine potential lineage biases during therapy, we profiled serial samples during ibrutinib-associated lymphocytosis, and identified clades of cells that were preferentially expelled from the lymph node after treatment, marked by distinct transcriptional profiles. The single-cell integration of genetic, epigenetic and transcriptional information thus charts the lineage history of CLL and its evolution with therapy.
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                    Fig. 1: CLL epigenomes show increased epimutation rate with low cell-to-cell variation.[image: ]


Fig. 2: CLL higher epimutation rate is associated with higher transcriptional entropy consistent with transcriptional dysregulation.[image: ]


Fig. 3: Lineage relationships inferred from single-cell DNA methylomes.[image: ]


Fig. 4: Joint single-cell methylomics and RNA sequencing link lineage and transcriptional information in CLL evolution.[image: ]
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              Multiplexed scRRBS and single-cell Smart-seq2 datasets have been deposited to the NCBI Gene Expression Omnibus (GEO) under accession number GSE109085. ChIPâ€“seq datasets have been deposited to the NCBI GEO under accession number GSE119103. Other data are available from the corresponding author upon reasonable request.
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Extended data figures and tables

Extended Data Fig. 1 Multiplexed scRRBS is an accurate and reproducible method for single-cell DNAme analysis.
a, Detailed schematic of the protocol for multiplexed scRRBS. b, Summary table of the healthy donor and CLL patient samples used in this study. c, Representative size distribution of the multiplexed scRRBS libraries assessed by Agilent Bioanalyzer before and after primer dimers removal. The DNA fragment size in multiplexed scRRBS libraries is typically 200â€“1,000 bp, with some visible peaks corresponding to the MspI fragments for repeat elements, and primer dimer contaminants (approximately 170 bp). LM, lower marker; UM, upper marker; MW, molecular-weight size marker. d, Number of CpGs observed in multiplexed scRRBS libraries across relevant genomic regions comparing multiplexed scRRBS (left) and bulk RRBS (right) assays for normal B (B01) and CLL (CLL01) cells. The enrichment in exons, promoters and CpG islands (CGIs) observed in multiplexed scRRBS libraries corresponded to approximately 40% of the total sequenced CpGs, akin to bulk RRBS assays. e, Downsampling analysis showing that around 1.7Â million paired-end reads per cell provided roughly 85% of unique CpGs with further sequencing, resulting in a marginal increase in coverage. f, Correlation of average CpG methylation across in silico merged single cells and bulk RRBS obtained from matched samples for normal B (B01, nÂ =Â 40,257 CpGs) (left) and CLL (CLL01, nÂ =Â 9,578 CpGs) (right) cells. P values are indicated for two-sided Pearsonâ€™s correlation test. g, Pooling individual single cells together rapidly increases the number of CpGs recovered, approaching bulk RRBS coverage with more than 48 cells. The percentage of CpG sites detected in single-cell data (blue and red for normal B and CLL cells, respectively), the in vitro pooled single-cell datasets (light blue and light red, respectively) and matched bulk RRBS libraries (striped bars) are shown. Error bars represent 95% confidence interval. h, As in g for the percentage of average CpG DNA methylation. Single, pooled cells and bulk RRBS showed a similar percentage of CpG methylation, suggesting measured genome-wide DNAme profiles of individual cells accurately recapitulate bulk methylation profiles in the same cell type.


Extended Data Fig. 2 Single-cell DNA methylation coverage analysis.
a, The approximately 10% sampling of the multiplexed scRRBS DNA methylome leads to intersection decrease of individual CpGs across cells. Left, expected number of times of observing a given CpG across all k-cells (matching k (number of cells)Â indicated in the x-axis value). Right, expected number of measured CpGs given k-cells. b, Biallelic coverage within a given single cell was detected in only 4.6Â Â±Â 2% of approximately 230 germline single nucleotide polymorphisms (SNPs) available for analysis, suggesting that the observed single-cell CpG data largely represents only one of the two alleles of the near-diploid CLL genome. c, Histograms of the distribution of CpG methylation values for single normal B (blue) and CLL (red) cells and matched bulk RRBS libraries showing highly digitized patterns of DNAme in single cells (that is, CpG sites either methylated or unmethylated) in contrast to bulk RRBS, which shows intermediate DNAme values. d, Representative analysis for three non-contiguous genomic windows around the promoter region of TWIST2, previously shown to be implicated in CLL pathogenesis68. Shown from top to bottom are the annotation of the TWIST2 promoter locus with CGI sites indicated (green); the estimated methylation rate of in silico pooled single cells for healthy donors and CLL; and the CpG methylation patterns (black circles: methylated; white circles: unmethylated) of single cells. Note the higher level of DNAme percentage in CLL compared with healthy donor cells at these selected regions.


Extended Data Fig. 3 CLL epigenomes show an increased epimutation rate across all genomic regions, with low cell-to-cell variability in epimutation rates.
a, Representative analysis of the WT1 locus. CpG island is indicated in green, along with the CpG methylation patterns (black circles denote methylated; white circles denote unmethylated) in single cells. We note that CLL cells exhibit lower cell-to-cell variation in the epimutation rate than normal B cells. b, Comparison of cell-to-cell epimutation rate difference per genomic region between CLL cells (nÂ = 12; M-CLL (CLL01â€“CLL07), nÂ =Â 309 pairs; U-CLL (CLL08â€“CLL12), nÂ =Â 218 pairs) and healthy B cells (nÂ =Â 5; B01â€“B02, B04â€“B06, nÂ =Â 256 pairs). c, Difference in average CpG methylation per genomic region between CLL samples (nÂ =Â 12; CLL01â€“CLL12 (M-CLL, nÂ =Â 619 cells; U-CLL, nÂ =Â 436 cells)) and normal B samples (nÂ =Â 6; B01â€“B06 (nÂ =Â 666 cells)). d, Percentage of change in CpG methylation at CGIs when comparing the DNAme level of individual cells in each sample to the baseline (defined as the average DNAme level across all samples) for CLL cells (nÂ =Â 12; CLL01â€“CLL12 (M-CLL, nÂ =Â 619 cells; U-CLL, nÂ =Â 436 cells)) and normal B cells (nÂ =Â 6; B01â€“B06 (nÂ =Â 666 cells)). e, Multivariable linear regression model that accounts for potential technical confounders (bisulfite conversion rate, number of aligned reads, number of covered CpGs) in CLL samples (nÂ =Â 12; CLL01â€“CLL12 (M-CLL, nÂ =Â 619 cells; U-CLL, nÂ =Â 436 cells)) and normal B samples (nÂ =Â 6; B01â€“B06 (nÂ =Â 666 cells)). f, Single-cell epimutation rate across index-sorted normal B cells (B04, nÂ =Â 96 cells; B05, nÂ =Â 96 cells; B06Â =Â 92 cells). g, As in f for the difference in cell-to-cell epimutation rate (B04, nÂ =Â 48 pairs; B05, nÂ =Â 48 pairs; B06Â =Â 46 pairs). h, Direct comparison of difference in cell-to-cell epimutation rate between CLL cells (nÂ =Â 12; M-CLL (CLL01â€“CLL07)), nÂ =Â 309 pairs; U-CLL (CLL08â€“CLL12), nÂ =Â 218 pairs) and index-sorted B cells (nÂ =Â 3; B04â€“B06; NBC, nÂ =Â 35 pairs; loMBC, nÂ =Â 35 pairs; intMBC, nÂ =Â 35 pairs; hiMBC, nÂ =Â 35 pairs). Box plots are as defined in Fig. 1. Error bars represent 95% confidence interval. P values were determined by two-sided Mannâ€“Whitney U-test (b, fâ€“h), followed by a Bonferroni adjustment procedure (b).


Extended Data Fig. 4 Long-range DNA methylation concordance decay.
a, Concordance odds ratio (COR) of the DNA methylation state between any two neighbouring CpGs as a function of their genomic distance (seeÂ Methods for details). b, Left, scaled COR (0â€“1) for CGIs at transcription start sites (TSS) (the B01 and CLL01 samples are shown as representative examples). Right, average rate of decay (slope of the first order fit line) in the COR for normal B samples (nÂ =Â 6) and CLLÂ samples (nÂ =Â 12) for CGIs at TSS (B01â€“B06 (nÂ =Â 666 cells; nÂ =Â 48,065,000 CpGs) and CLL01â€“CLL12 (M-CLL, nÂ =Â 619 cells, nÂ =Â 38,968,846 CpGs; U-CLL, nÂ =Â 436 cells, nÂ =Â 37,464,310 CpGs)). c, As in b for CGIs at TSS of genes belonging to the TP53 gene set69. Healthy donor B cell samples (nÂ =Â 6): nÂ =Â 666 cells, nÂ =Â 6,308,174 CpGs; CLL samples (nÂ =Â 12): M-CLL, nÂ =Â 619 cells, nÂ =Â 5,113,493 CpGs; U-CLL, nÂ =Â 436 cells, nÂ =Â 4,982,039 CpGs. d, As in b for CGIs at the TSS of housekeeping genes70. Healthy donor B cell samples (nÂ =Â 6): nÂ =Â 666 cells, nÂ =Â 2,087,432 CpGs; CLL samples (nÂ =Â 12): M-CLL, nÂ =Â 619 cells, nÂ =Â 1,686,295 CpGs; U-CLL, nÂ =Â 436 cells, nÂ =Â 1,620,802 CpGs. e, Average rate of decay in the COR for normal B (nÂ =Â 6) and CLL (nÂ =Â 12) samples for CGIs at the TSS of genes belonging to gene sets previously reported to be affected by a high epimutation rate6. Healthy donor B cell samples (nÂ =Â 6): nÂ =Â 666 cells, nÂ =Â 48,065,000 CpGs; CLL samples (nÂ =Â 12): M-CLL, nÂ =Â 619 cells, nÂ =Â 38,968,846 CpGs; U-CLL, nÂ =Â 436 cells, nÂ =Â 37,464,310 CpGs. Error bars represent 95% confidence interval. PÂ values were determined by two-sided Mannâ€“Whitney U-test.


Extended Data Fig. 5 Epimutations at single CpG resolution.
a, Frequency of four gametes according to the level of average methylation of each individual CpG site in each CLL sample (CLL01â€“CLL12; randomly sampled CpGs shown out of the total CpGs assessed in each CLL sample; range 156,662â€“2,371,498 CpGs per sample covered in >5 cells in each sample). Smooth local regression line (LOESS) is shown in red. b, Low epimutation (loEpi) CpGs are defined as being 1.5Ã— median absolute deviation (MAD) away from the median frequency of four gametes in each DNAme window of 0.05 (rangeÂ 0.1â€“0.9) for a given sample. Shown is a representative example of this procedure for DNAme window of 0.5â€“0.55 in the CLL04 patient sample. c, Percentage of low epimutation CpGs (average of 1.22%Â Â±Â 0.42 (meanÂ Â±Â s.e.m.); range 0.04â€“2.9%) out of the total CpGs assessed in each CLL sample. CLL01, nÂ =Â 14,711 loEpi CpGs; CLL02, nÂ =Â 2,573 loEpi CpGs; CLL013, nÂ =Â 25,270 loEpi CpGs; CLL04, nÂ =Â 29,114 loEpi CpGs; CLL05, nÂ =Â 16,603 loEpi CpGs; CLL06, nÂ =Â 11,413 loEpi CpGs; CLL07, nÂ =Â 19,330 loEpi CpGs; CLL08, nÂ =Â 19,916 loEpi CpGs; CLL09, nÂ =Â 11,440 loEpi CpGs; CLL10, nÂ =Â 18,614 loEpi CpGs; CLL11, nÂ =Â 7,067 loEpi CpGs; CLL12, nÂ =Â 308 loEpi CpGs. d, Additional sequence logos of the DNA motifs determined to be significantly overrepresented in low epimutation CpGs (Â±25Â bp around CpGs at promoters (TSSÂ Â±Â 1 kb) or at enhancers) across all CLL samples. For each motif, the E value and the TOMTOM PÂ value are shown. SeeÂ Methods for details on the de novo motif enrichment analysis and the statistical tests used. e, Median protein expression (log10(normalized intensity-based absolute quantification (iBAQ))) of transcription factors for which motifs were enriched in regions with low epimutation CpGs, confirming that the identified transcription factors are expressed at the protein level in B cells and/or haematopoietic compartments. Error bars represent 95% confidence interval. All available human proteome data from lymphoid/haematopoietic lineages are displayed71.


Extended Data Fig. 6 Methylation-transcription relationships at the single-cell level.
a, Number of reads (left) and expression of IGH genes (right) in index-sorted B cells, validating our index-sorting strategy (CD27âˆ’IgM+IgD+++IgGâˆ’ (NBC, nÂ =Â 24 cells), CD27âˆ’IgM+IgD+IgGâˆ’ (loMBC, nÂ =Â 24 cells), CD27+IgM+IgD++IgGâˆ’ (intMBC, nÂ =Â 24 cells), and CD27+IgG+ (hiMBC, nÂ =Â 23 cells)). Violin plots represent kernel density estimation showing the distribution shape of the data. b, Proportion of cells with gene expression (read count > 0) and exhibiting above-threshold DNAme. Data are meanÂ Â±Â s.e.m. across all genes with sufficient RNA (expression seen in >5 cells) and DNAme (>5 CpGs per promoter) information across the three samples (nÂ =Â 1,816 genes). c, Transcriptional entropy across cells (seeÂ Methods) showing higher transcriptome entropy in CLL cells (CLL03, nÂ =Â 94; CLL04, nÂ =Â 92) than in healthy donor B cells (B04, nÂ =Â 84) across various downsampling regimes (range 5,000â€“100,000; step-size of 1,000). Data are meanÂ Â±Â s.e.m. d, e, Single-cell transcriptional entropy (d) and epimutation rate (e) between normal CD27âˆ’ B (NBC and loMBC) and CD27+ B (intMBC and hiMBC) cells. f, Left, distribution of the Spearmanâ€™s rho between expression and promoter DNAme rate (nÂ =Â 3,094 genes with sufficient RNA (expression seen in >5 cells) and DNAme (>5 CpGs per promoter) information) in CLL04. The observed Spearmanâ€™s rho values were compared to values obtained by randomly permuting cell labels for the methylation values (seeÂ Methods). Right, heat maps of Spearmanâ€™s rank-order correlation for representative genes with positive or negative single-cell expression-methylation correlation. Scale bar represents promoter methylation and RNA read counts scaled by maximal value. g, As in f for individual normal B cells (nÂ =Â 5,729 genes; nÂ =Â 16 permutations; seeÂ Methods for details). h, As in g for CLL03 (nÂ =Â 2,699 genes; nÂ =Â 16 permutations). i, As in g for CLL04 (nÂ =Â 3,094 genes; nÂ =Â 16 permutations). j, Absolute change in Spearmanâ€™s rho when comparing matched versus scrambled DNAme and RNA single-cell data in CLL (CLL03 and CLL04) and normal B (B04) cells. From the pool of genes used in gâ€“i, only overlapping genes (nÂ =Â 951) across the three samples were used in the comparison. k, As in f for individual normal B cells (nÂ =Â 2,500 most variable genes with sufficient RNA (expression seen in >5 cells) and DNAme (>5 CpGs per promoter) information; nÂ =Â 16 permutations; seeÂ Methods for details). l, As in k for CLL03. m, As in k for CLL04. n, Absolute change in Spearmanâ€™s rho when comparing matched versus scrambled DNAme and RNA single-cell data in CLL (CLL03 and CLL04) and normal B (B04) cells. From the pool of genes used in kâ€“m, only overlapping genes (nÂ =Â 459) across the three samples were used in the comparison. o, Hydroxymethylation (5hmC) level at genes with positive correlation between expression and promoter DNA methylation (top correlated 10% of genes) compared with negatively correlated genes (top anti-correlated 10% of genes) in both normal B (B04; nÂ =Â 336 and 330 genes, respectively) and CLL (CLL03 (nÂ =Â 290 and 278 genes, respectively); CLL04 (nÂ =Â 320 and 314 genes, respectively)) cells. Error bars represent 95% confidence interval. Published 5hmC data were used for the analysis19. Box plots are as defined in Fig. 1. P values were determined by two-sided Kolmogorovâ€“Smirnov test (fâ€“i, kâ€“m), two-sided Wilcoxon signed-rank test (j, n) or two-sided Welchâ€™s t-test (o).


Extended Data Fig. 7 Methylation-based lineage trees provide a native lineage tracing system.
a, Additional representative (random cell subsampling) methylation-based lineage trees of CLL cells. b, As in a for index-sorted normal B cells, showing that naive CD27âˆ’ B cells (NBC; CD27âˆ’IgM+IgD+++IgGâˆ’) precede CD27+ memory terminally differentiated B cells (hiMBC; CD27+IgG+) in the lineage tree. c, Representative (cell subsampling) methylation-based lineage trees of CLL cells reconstructed using only autosomes or chromosome X. Tree topologies are similar to when using whole-genome information (see a and Fig. 3d), showing rapid drift after the initial malignant transformation. d, As in c for lineage trees of CLL cells obtained by holding-out chromosomes (hold-out three chromosomes at a time before phylogeny reconstruction; for example, excluding chromosomes 1â€“3, left), or downsampling the number of CpGs per cell to equal numbers (120,000 CpGs per cell; right). e, Normalized Robinsonâ€“Foulds distances between any two trees (nÂ =Â 30 tree replicates; seeÂ Methods) of CLL01 reconstructed by maximum (M)-likelihood versus maximum-parsimonyÂ analyses. Differences (Î”) are indicated. f, Average maximum tree depth of lineage trees (nÂ =Â 10 tree replicates; seeÂ Methods) of CLL (CLL01) and normal B (B02) cells when using whole-genome information compared to lineage trees obtained by holding-out chromosomes (hold-out three chromosomes at a time before phylogeny reconstruction). Error bars represent 95% confidence interval. g, Distribution of root-to-tip branch lengths (that is, the length from the root to each tip in the lineage tree) between CLL and normal B cells (M-CLL (CLL07), U-CLL (CLL10) and B05 are shown as representative examples). h, Patristic distances between index-sorted B cells from B04, B05 and B06 healthy donor samples (NBC, nÂ =Â 24 cells for each sample; loMBC, nÂ =Â 24 cells for each sample; intMBC, nÂ =Â 24 cells for each sample; hiMBC, nÂ =Â 23 cells for each sample). i, Patristic distances between CLL (CLL01) and normal B (B02) cells obtained from lineage trees reconstructed by using only autosomes, chromosome X, holding-out chromosomes (hold-out three chromosomes at a time before phylogeny reconstruction), or downsampling the number of CpGs per cell to equal numbers (120,000 CpGs per cell), respectively. Box plots are as defined in Fig. 1. P values were determined by two-sided Mannâ€“Whitney U-test (e, h, i) or Welchâ€™s t-test (f).


Extended Data Fig. 8 Multiplexed scRRBS integration with single-cell transcriptomes and genotyping.
a, Schematic of the joint multiplexed scRRBS, transcriptome and genotyping capture protocol. b, Normalized Robinsonâ€“Foulds distances between any two trees (nÂ =Â 30 tree replicates; seeÂ Methods) of CLL12 (nÂ =Â 56 cells; see Fig. 3h) reconstructed by maximum-likelihood versus maximum-parsimonyÂ analyses. Differences (Î”) are indicated. c, Proportion of wild-type (white) and mutated (black) SF3B1 cells in each clade identified from the lineage tree shown in Fig. 3h. d, Comparison of the number of unique CpGs (left) and the CpG methylation level (right) between the wild-type-enriched and the mutated-enriched SF3B1 clade of cells identified from the lineage tree in Fig. 3h. e, Volcano plot of differentially methylated gene promoters (absolute weighted average DNAme difference > 0.3 and two-sided non-parametric permutation test PÂ <Â 0.05) between the wild-type and mutated SF3B1 cells from the lineage tree shown in Fig. 3h. f, Single-cell alternative 3â€² splicing score (fraction of reads that map downstream to the 3â€² end (up to 100 bp) of the exons versus within the exons) for cells belonging to wild-type (nÂ =Â 30) and mutated (nÂ =Â 26) SF3B1 clades identified from the lineage tree shown in Fig. 3h. g, Volcano plot of differentially expressed genes between the wild-type-enriched and mutated-enriched SF3B1 clade. Genes (nÂ =Â 57) with absolute log2(SF3B1 mutated-enriched/SF3B1 wild-type-enriched gene expression) > 0.5 and Benjaminiâ€“Hochberg FDR-adjusted weighted F-test PÂ <Â 0.2 are shown in red. Genes that were previously reported to be affected by SF3B1 mutation22 are also labelled. h, Gene expression projections on lineage trees for two representative genes identified in g. i, Comparison of transcriptional distances (measured as Euclidean distances of the first three principal components after principal component analysis) as a function of lineage distance between cell pairs from the lineage tree shown in Fig. 3h. j, Cells belonging to SF3B1-mutated enriched clade show significantly lower relative node heights (that is, height of internal tree nodes relative to the root node; seeÂ Methods) compared with wild-type SF3B1-enriched clade, consistent with SF3B1 mutation being a later subclonal event in CLL15. k, As in j for root-to-tip branch lengths (that is, the length from the root to each tip in the lineage tree). l, Distribution of node ages (estimated number of divisions before present; seeÂ Methods) between the wild-type (white, nÂ =Â 30 nodes) and mutated (grey, nÂ =Â 25 nodes) SF3B1 enriched clade. Box plots are as defined in Fig. 1. P values were determined by two-sided Mannâ€“Whitney U-test (b, d, f, i, j, l) or two-sided Fisherâ€™s exact test (c).


Extended Data Fig. 9 Joint single-cell methylomics and RNA-seq link epigenetic and transcriptional information in CLL evolution with therapy.
a, Representative methylation-based lineage trees integrating cells before treatment (T0; white circle; nÂ =Â 40 out of 96 randomly sampled cells) and duringÂ treatment (T1; red circle; nÂ =Â 40 out of 96 randomly sampled cells) for samples CLL03, CLL04 and CLL05. See Fig. 4c for the percentage of T1 cells in each of the two clades (defined as the ones occurring after the first major split in the lineage tree) inferred from these lineage trees. b, Comparison of the CpG methylation level between the T1-enriched clade of cells and the remaining T1 cells identified from the lineage trees in a and in Fig. 4b and for samples CLL03, CLL04, CLL05 and CLL11, respectively. c, As in b for number of unique CpGs. d, Volcano plot of differentially methylated genes (absolute weighted average DNAme difference > 0.3 and two-sided non-parametric permutation test PÂ < 0.05) between the T1-enriched clade of cells and the remaining T1 cells identified from the lineage trees in a and Fig. 4b for CLL03 (nÂ =Â 515 genes), CLL04 (nÂ =Â 429 genes), CLL05 (nÂ =Â 690 genes) and CLL11 (nÂ =Â 578 genes), respectively. Box plots are as defined in Fig. 1. P values were determined by two-sided Mannâ€“Whitney U-test (b, c).


Extended Data Fig. 10 Cells preferentially expelled from the lymph nodes are marked by a distinct transcriptional profile.
a, Gene sets (canonical pathways; CP) enriched in differentially expressed genes (nÂ =Â 336) between the T1-enriched clade of cells and the remaining T1 cells identified from the lineage trees in Fig. 4b and Extended Data Fig. 9a. A two-sided hypergeometric test was used to measure the enrichment of these genes in each gene set, followed by a Benjaminiâ€“HochbergÂ (BH) FDR procedure (cut-off of adjusted PÂ <Â 0.2). b, Gene expression projections on lineage tree for TLR pathway genes from Fig. 4d for samples CLL04, CLL05 and CLL11, respectively. Scale bar represents RNA read counts scaled by maximal value. Expression value projection is performed only for T1 cells, comparing T1 versus T0-enriched clades. Asterisks indicate cells without RNA information. c, Fold change in gene expression of NF-ÎºB-related genes between the T1-enriched clade of cells and the remaining T1 cells identified from the lineage trees in Fig. 4b and Extended Data Fig. 9a.
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