Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Absence of amorphous forms when ice is compressed at low temperature

Matters Arising to this article was published on 16 September 2020

Abstract

Amorphous water ice comes in at least three distinct structural forms, all lacking long-range crystalline order. High-density amorphous ice (HDA) was first produced by compressing ice I to 11 kilobar at temperatures below 130 kelvin, and the process was described as thermodynamic melting1, implying that HDA is a glassy state of water. This concept, and the ability to transform HDA reversibly into low-density amorphous ice, inspired the two-liquid water model, which relates the amorphous phases to two liquid waters in the deeply supercooled regime (below 228 kelvin) to explain many of the anomalies of water2 (such as density and heat capacity anomalies). However, HDA formation has also been ascribed3 to a mechanical instability causing structural collapse and associated with kinetics too sluggish for recrystallization to occur. This interpretation is supported by simulations3, analogy with a structurally similar system4, and the observation of lattice-vibration softening as ice is compressed5,6. It also agrees with recent observations of ice compression at higher temperatures—in the ‘no man’s land’ regime, between 145 and 200 kelvin, where kinetics are faster—resulting in crystalline phases7,8. Here we further probe the role of kinetics and show that, if carried out slowly, compression of ice I even at 100 kelvin (a region in which HDA typically forms) gives proton-ordered, but non-interpenetrating, ice IX′, then proton-ordered and interpenetrating ice XV′, and finally ice VIII′. By contrast, fast compression yields HDA but no ice IX, and direct transformation of ice I to ice XV′ is structurally inhibited. These observations suggest that HDA formation is a consequence of a kinetically arrested transformation between low-density ice I and high-density ice XV′ and challenge theories that connect amorphous ice to supercooled liquid water.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phase diagrams of crystalline ice and liquid and amorphous water.
Fig. 2: Diffraction data of amorphous and crystalline ice for increasing pressure at 100 K.
Fig. 3: Amorphous and crystalline structural progression of ice when compressed at 100 K.

Similar content being viewed by others

Data availability

The data that support the findings shown in the figures are available from the corresponding author upon reasonable request.

References

  1. Mishima, O., Calvert, L. D. & Whalley, E. ‘Melting ice’ I at 77 K and 10 kbar: a new method of making amorphous solids. Nature 310, 393–395 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Gallo, P. et al. Water: a tale of two liquids. Chem. Rev. 116, 7463–7500 (2016).

    Article  CAS  Google Scholar 

  3. Tse, J. et al. The mechanisms for pressure-induced amorphization of ice Ih. Nature 400, 647–649 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Shephard, J. J. et al. Is high-density amorphous ice simply a “derailed” state along the ice I to ice IV pathway? J. Phys. Chem. Lett. 8, 1645–1650 (2017).

    Article  CAS  Google Scholar 

  5. Strässle, T., Saitta, A. M., Klotz, S. & Braden, M. Phonon dispersion of ice under pressure. Phys. Rev. Lett. 93, 225901 (2004).

    Article  ADS  Google Scholar 

  6. Strässle, T., Klotz, S., Hamel, G., Koza, M. M. & Schober, H. Experimental evidence for a crossover between two distinct mechanisms of amorphization in ice Ih under pressure. Phys. Rev. Lett. 99, 175501 (2007).

    Article  ADS  Google Scholar 

  7. Wang, Y., Zhang, H., Yang, X., Jiang, S. & Goncharov, A. F. Kinetic boundaries and phase transformations of ice I at high pressure. J. Chem. Phys. 148, 044508 (2018).

    Article  ADS  Google Scholar 

  8. Lin, C. L. et al. Kinetically controlled two-step amorphization and amorphous-amorphous transition in ice. Phys. Rev. Lett. 119, 135701 (2017).

    Article  ADS  Google Scholar 

  9. Johari, G. P. Liquid state of low-density pressure-amorphized ice above its T g. J. Phys. Chem. B 102, 4711–4714 (1998).

    Article  CAS  Google Scholar 

  10. Seidl, M. et al. Volumetric study consistent with a glass-to-liquid transition in amorphous ices under pressure. Phys. Rev. B 83, 100201 (2011).

    Article  ADS  Google Scholar 

  11. Elsaesser, M. S., Winkel, K., Mayer, E. & Loerting, T. Reversibility and isotope effect of the calorimetric glass → liquid transition of low-density amorphous ice. Phys. Chem. Chem. Phys. 12, 708–712 (2010).

    Article  CAS  Google Scholar 

  12. Giovambattista, N., Angell, C. A., Sciortino, F. & Stanley, H. E. Glass-transition temperature of water: a simulation study. Phys. Rev. Lett. 93, 047801 (2004).

    Article  ADS  Google Scholar 

  13. Lin, C. L., Smith, J. S., Liu, X. Q., Tse, J. S. & Yang, W. G. Venture into water’s no man’s land: structural transformations of solid H2O under rapid compression and decompression. Phys. Rev. Lett. 121, 225703 (2018).

    Article  ADS  CAS  Google Scholar 

  14. Finney, J. L. et al. Structure of a new dense amorphous ice. Phys. Rev. Lett. 89, 205503 (2002).

    Article  ADS  CAS  Google Scholar 

  15. Tulk, C. A., Hart, R., Klug, D. D., Benmore, C. J. & Neuefeind, J. Adding a length scale to the polyamorphic ice debate. Phys. Rev. Lett. 97, 115503 (2006).

    Article  ADS  CAS  Google Scholar 

  16. Nelmes, R. J. et al. Annealed high-density amorphous ice under pressure. Nat. Phys. 2, 414–418 (2006).

    Article  CAS  Google Scholar 

  17. Kohl, I., Mayer, E. & Hallbrucker, A. Ice XII forms on compression of hexagonal ice at 77 K via high-density amorphous water. Phys. Chem. Chem. Phys. 3, 602–605 (2001).

    Article  CAS  Google Scholar 

  18. Salzmann, C. G., Loerting, T., Kohl, I., Mayer, E. & Hallbrucker, A. Pure ice IV from high-density amorphous ice. J. Phys. Chem. B 106, 5587–5590 (2002).

    Article  CAS  Google Scholar 

  19. Salzmann, C. G., Radaelli, P. G., Hallbrucker, A., Mayer, E. & Finney, J. L. The preparation and structures of hydrogen ordered phases of ice. Science 311, 1758–1761 (2006).

    Article  ADS  CAS  Google Scholar 

  20. Salzmann, C. G. et al. Detailed crystallographic analysis of the ice VI to ice XV hydrogen ordering phase transition. J. Chem. Phys. 145, (2016).

  21. Klotz, S., Hamel, G., Loveday, J. S., Nelmes, R. J. & Guthrie, M. Recrystallisation of HDA ice under pressure by in-situ neutron diffraction to 3.9 GPa. Z. Kristallogr. 218, 117–122 (2003).

    CAS  Google Scholar 

  22. Hallbrucker, A., Mayer, E. & Johari, G. P. Glass-transition in pressure-amorphized hexagonal ice: a comparison with amorphous forms made from the vapor and liquid. J. Phys. Chem. 93, 7751–7752 (1989).

    Article  CAS  Google Scholar 

  23. Tse, J. S. & Klug, D. D. Pressure amorphized ices – an atomistic perspective. Phys. Chem. Chem. Phys. 14, 8255–8263 (2012).

    Article  CAS  Google Scholar 

  24. Tse, J. S. & Klein, M. L. Pressure-induced amorphization of ice Ih. J. Chem. Phys. 92, 3992–3994 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Limmer, D. T. & Chandler, D. Theory of amorphous ices. Proc. Natl Acad. Sci. USA 111, 9413–9418 (2014).

    Article  ADS  CAS  Google Scholar 

  26. Limmer, D. T. & Chandler, D. Comment on “Spontaneous liquid-liquid phase separation of water”. Phys. Rev. E 91, 016301 (2015).

    Article  ADS  Google Scholar 

  27. English, N. J. & Tse, J. S. Massively parallel molecular dynamics simulation of formation of ice-crystallite precursors in supercooled water: incipient-nucleation behavior and role of system size. Phys. Rev. E 92, 032132 (2015).

    Article  ADS  Google Scholar 

  28. Limmer, D. T. & Chandler, D. Corresponding states for mesostructure and dynamics of super cooled water. Faraday Discuss. 167, 485–498 (2013).

    Article  ADS  Google Scholar 

  29. Sidhu, S. S., Heaton, L. R., Zauberis, D. D. & Campos, F. P. Neutron diffraction study of titanium–zirconium system. J. Appl. Phys. 27, 1040–1042 (1956).

    Article  ADS  CAS  Google Scholar 

  30. Khvostantsev, L. G. A verkh–niz (up–down) toroid device for generation of high pressure. High Temp. High Press. 16, 165–169 (1984).

    Google Scholar 

  31. Ripmeester, J. A. & Alavi, S. Some current challenges in clathrate hydrate science: nucleation, decomposition and the memory effect. Curr. Opin. Solid State Mater. Sci. 20, 344–351 (2016).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. We thank the Sloan Foundation’s Deep Carbon Observatory for supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

C.A.T. conceived and designed the experiment. C.A.T., J.J.M. and A.R.M. conducted the experiment. C.A.T. and D.D.K. analysed the data. C.A.T., D.D.K and C.E.M. wrote the manuscript.

Corresponding author

Correspondence to Chris A. Tulk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Pressure–load curve of a sample mixed with lead.

It should be noted that this curve is not from the dataset presented in Fig. 2, as that sample contained no lead. Thus, no direct one-to-one comparison can be made.

Extended Data Fig. 2 Data from separate experimental run, showing the crystallographic transformation sequence.

Initial compression of ice Ih, showing the crystalline sequence of transitions at 100 K. In the initial runs, the cooled sample was predominantly composed of ice Ih with a small amount of ice IX; hence the ‘sealing’ load that was applied to the gasket was slightly too high, and upon cooling the pressure was such that high-pressure crystalline phases were present. To remove ice IX, the sample was melted at 275 K and the pressure was reduced to atmospheric. Upon re-cooling the sample was determined to be pure ice Ih, as shown in the figure. The data shown in Fig. 2b were obtained from a subsequent loading, with a fresh sample in an unused gasket cooled to 100 K under a small sealing load; no ice IX was found to be present until initial compression at 100 K.

Extended Data Fig. 3 d-spacing plot of amorphization/recrystallization transformation.

Transformation of pure ice Ih to HDA and recrystallization to ice VII′ with some remnant HDA. In this case the sample was pressurized directly to 15 kbar in 1,740 s at 100 K. These datasets have been normalized to vanadium.

Extended Data Fig. 4 Higher-resolution plot of crystal phases.

Comparison of initial ice Ih with ice XV and ice VIII′. The sample was pressurized slowly with 1-h isobaric breaks to collect diffraction data. The data were collected using a detector at a greater diffraction angle, thus providing increased resolution at the expense of the momentum-transfer range. These datasets have been normalized to vanadium.

Extended Data Fig. 5 Resulting high-pressure crystal phases.

Comparison of the crystal phases resulting from the transformation of ice XV to ice VIII′ and from re-crystallization of HDA ice. All datasets were collected at 100 K.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tulk, C.A., Molaison, J.J., Makhluf, A.R. et al. Absence of amorphous forms when ice is compressed at low temperature. Nature 569, 542–545 (2019). https://doi.org/10.1038/s41586-019-1204-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-019-1204-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing