Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Colossal barocaloric effects in plastic crystals

Abstract

Refrigeration is of vital importance for modern society—for example, for food storage and air conditioning—and 25 to 30 per cent of the world’s electricity is consumed for refrigeration1. Current refrigeration technology mostly involves the conventional vapour compression cycle, but the materials used in this technology are of growing environmental concern because of their large global warming potential2. As a promising alternative, refrigeration technologies based on solid-state caloric effects have been attracting attention in recent decades3,4,5. However, their application is restricted by the limited performance of current caloric materials, owing to small isothermal entropy changes and large driving magnetic fields. Here we report colossal barocaloric effects (CBCEs) (barocaloric effects are cooling effects of pressure-induced phase transitions) in a class of disordered solids called plastic crystals. The obtained entropy changes in a representative plastic crystal, neopentylglycol, are about 389 joules per kilogram per kelvin near room temperature. Pressure-dependent neutron scattering measurements reveal that CBCEs in plastic crystals can be attributed to the combination of extensive molecular orientational disorder, giant compressibility and highly anharmonic lattice dynamics of these materials. Our study establishes the microscopic mechanism of CBCEs in plastic crystals and paves the way to next-generation solid-state refrigeration technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Plastic crystals with CBCE for next-generation solid-state refrigeration technology.
Fig. 2: Reorientational dynamics of NPG molecules.
Fig. 3: Anharmonic lattice dynamics of NPG.
Fig. 4: Pressure-dependent phase transition and dynamics of NPG.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. United Nations Environment Programme. The Importance of Energy Efficiency in the Refrigeration, Air-Conditioning and Heat Pump Sectors. Briefing Note A http://conf.montreal-protocol.org/meeting/workshops/energy-efficiency/presession/breifingnotes/briefingnote-a_importance-of-energy-efficiency-in-the-refrigeration-air-conditioning-and-heat-pump-sectors.pdf (United Nations Environment Programme, May 2018).

  2. Molenbroek, E. et al. Savings and Benefits of Global Regulations for Energy Efficient Products. Final Report https://ec.europa.eu/energy/sites/ener/files/documents/Cost%20of%20Non-World%20-%20Final%20Report.pdf (European Commission, 2015).

  3. Shen, B. G., Sun, J. R., Hu, F. X., Zhang, H. W. & Cheng, Z. H. Recent progress in exploring magnetocaloric materials. Adv. Mater. 21, 4545–4564 (2009).

    Article  CAS  Google Scholar 

  4. Scott, J. F. Electrocaloric materials. Annu. Rev. Mater. Res. 41, 229–240 (2011).

    Article  ADS  CAS  Google Scholar 

  5. Mañosa, L. et al. Materials with giant mechanocaloric effects: cooling by strength. Adv. Mater. 29, 1603607 (2017).

    Article  Google Scholar 

  6. Li, B. et al. Magnetostructural coupling and magnetocaloric effect in Ni–Mn–In. Appl. Phys. Lett. 95, 172506 (2009).

  7. Li, B. et al. Intrinsic electrocaloric effects in ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymers: roles of order of phase transition and stresses. Appl. Phys. Lett. 96, 102903 (2010).

    Article  ADS  Google Scholar 

  8. Cazorla, C. & Errandonea, D. Giant mechanocaloric effects in fluorite-structured superionic materials. Nano Lett. 16, 3124–3129 (2016).

    Article  ADS  CAS  Google Scholar 

  9. Aznar, A. et al. Giant barocaloric effects over a wide temperature range in superionic conductor AgI. Nat. Commun. 8, 1851 (2017).

    Article  ADS  Google Scholar 

  10. Bom, N. M. et al. Giant barocaloric effects in natural rubber: a relevant step toward solid-state cooling. ACS Macro Lett. 7, 31–36 (2018).

    Article  CAS  Google Scholar 

  11. Parsonage, N. G. & Staveley, L. A. K. Disorder in Crystals (Clarendon Press, Oxford, 1979).

    Google Scholar 

  12. Chandra, D. et al. Phase transitions in “plastic crystals”. J. Less Common Met. 168, 159–167 (1991).

    Article  CAS  Google Scholar 

  13. Murrill, E. et al. Solid–solid phase transitions determined by differential scanning calorimetry: part I. Tetrahedral substances. Thermochim. Acta 1, 239–246 (1970).

    Article  CAS  Google Scholar 

  14. Tamarit, J. L. et al. Dielectric studies on orientationally disordered phases of neopentylglycol ((CH3)2C(CH2OH)2) and tris(hydroxymethyl aminomethane) ((NH2)C(CH2OH)3). J. Phys. Condens. Matter 9, 5469–5478 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Desai, P. D. Thermodynamic properties of iron and silicon. J. Phys. Chem. Ref. Data 15, 967–983 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Desai, P. D. Thermodynamic properties of manganese and molybdenum. J. Phys. Chem. Ref. Data 16, 91–108 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Desai, P. D. Thermodynamic properties of titanium. Int. J. Thermophys. 8, 781–794 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Yamaguchi, K. et al. Measurements of high temperature heat content of the II–VI and IV–VI (II: Zn, Cd IV: Sn, Pb VI: Se, Te) compounds. Mater. Trans. 35, 118–124 (1994).

    Article  MathSciNet  CAS  Google Scholar 

  19. Timmermans, J. Un nouvel état mésomorphe les cristaux organiques plastiques. J. Chim. Phys. 35, 331–344 (1938).

    Article  CAS  Google Scholar 

  20. Font, J. et al. Plastic crystals: dilatometric and thermobarometric complementary studies. Mater. Res. Bull. 30, 839–844 (1995).

    Article  CAS  Google Scholar 

  21. Webelements http://www.webelements.com/.

  22. Bansal, D. et al. Phonon anharmonicity and negative thermal expansion in SnSe. Phys. Rev. B 94, 054307 (2016).

    Article  ADS  Google Scholar 

  23. Hanneman, R. E. et al. Relationship between compressibility and thermal expansion coefficients in cubic metals and alloys. J. Appl. Phys. 36, 1794–1796 (1965); erratum 38, 1988 (1967).

    Article  ADS  CAS  Google Scholar 

  24. Mañosa, L. et al. Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy. Nat. Mater. 9, 478–481 (2010).

    Article  ADS  Google Scholar 

  25. Lloveras, P. et al. Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate. Nat. Commun. 6, 8801 (2015).

    Article  CAS  Google Scholar 

  26. Bermúdez-García, J. M. et al. Giant barocaloric effect in the ferroic organic-inorganic hybrid [TPrA][Mn(dca)3] perovskite under easily accessible pressures. Nat. Commun. 8, 15715 (2017).

    Article  ADS  Google Scholar 

  27. Trung, N. T., Zhang, L., Caron, L., Buschow, K. H. J. & Brück, E. Giant magnetocaloric effects by tailoring the phase transitions. Appl. Phys. Lett. 96, 172504 (2010).

    Article  ADS  Google Scholar 

  28. Lu, S. G. et al. Comparison of directly and indirectly measured electrocaloric effect in relaxor ferroelectric polymers. Appl. Phys. Lett. 97, 202901 (2010).

    Article  ADS  Google Scholar 

  29. Cui, J. et al. Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires. Appl. Phys. Lett. 101, 073904 (2012).

    Article  ADS  Google Scholar 

  30. Chandra, D. et al. Low- and high-temperature structures of neopentylglycol plastic crystal. Powder Diffr. 8, 109–117 (1993).

    Article  ADS  CAS  Google Scholar 

  31. Grüneisen, E. Theorie des festen zustandes einatomiger elemente. Ann. Phys. 344, 257–306 (1912).

    Article  ADS  CAS  Google Scholar 

  32. Wang, X., Guo, Q., Zhong, Y., Wei, X. & Liu, L. Heat transfer enhancement of neopentyl glycol using compressed expanded natural graphite for thermal energy storage. Renew. Energy 51, 241–246 (2013).

    Article  CAS  Google Scholar 

  33. Stern-Taulats, E. et al. Caloric effects in ferroic materials. MRS Bull. 43, 295–299 (2018).

    Article  Google Scholar 

  34. Moya, X. et al. Caloric materials near ferroic phase transitions. Nat. Mater. 13, 439–450 (2014).

    Article  ADS  CAS  Google Scholar 

  35. Chandra, D. et al. Heat capacities of “plastic crystal” solid state thermal energy storage materials. Z. Phys. Chem. 216, 1433 (2002).

    CAS  Google Scholar 

  36. Kawaguchi, S. et al. High-throughput powder diffraction measurement system consisting of multiple MYTHEN detectors at beamline BL02B2 of SPring-8. Rev. Sci. Instrum. 88, 085111 (2017).

    Article  ADS  CAS  Google Scholar 

  37. Petříček, V., Dušek, M. & Palatinus, L. Crystallographic computing system JANA2006: general features. Z. Kristallogr. 229, 345–352 (2014).

    Google Scholar 

  38. Isshiki, M., Ohishi, Y., Goto, S., Takeshita, K. & Ishikawa, T. High-energy X-ray diffraction beamline: BL04B2 at SPring-8. Nucl. Instrum. Meth. Phys. Res. B 467–468, 663–666 (2001).

    Article  ADS  Google Scholar 

  39. Wu, C.-M. et al. SIKA–the multiplexing cold-neutron triple-axis spectrometer at ANSTO. J. Inst. 11, P10009 (2016).

    Google Scholar 

  40. Nakajima, K. et al. AMATERAS: a cold-neutron disk chopper spectrometer. J. Phys. Soc. Jpn 80, SB028 (2011).

    Article  Google Scholar 

  41. Nakamura, M. et al. First demonstration of novel method for inelastic neutron scattering measurement utilizing multiple incident energies. J. Phys. Soc. Jpn 78, 093002 (2009).

    Article  ADS  Google Scholar 

  42. Inamura, Y. et al. Development status of software “Utsusemi” for chopper spectrometers at MLF, J-PARC. J. Phys. Soc. Jpn 82, SA031 (2013).

    Article  Google Scholar 

  43. Azuah, R. T. et al. DAVE: a comprehensive software suite for the reduction, visualization, and analysis of low energy neutron spectroscopic data. J. Res. Natl Inst. Stand. Technol. 114, 341–358 (2009).

    Article  CAS  Google Scholar 

  44. Aso, N., Fujiwara, T., Uwatoko, Y., Miyano, H. & Yoshizawa, H. Development of a hybrid CuBe/NiCrAl clamp-type high pressure cell for neutron diffraction. J. Phys. Soc. Jpn 76, 228–229 (2007).

    Article  ADS  Google Scholar 

  45. Hattori, T. et al. Design and performance of high-pressure PLANET beamline at pulsed neutron source at J-PARC. Nucl. Instrum. Methods Phys. Res. A 780, 55–67 (2015).

    Article  ADS  CAS  Google Scholar 

  46. Dewaele, A. et al. High-pressure-high-temperature equation of state of KCl and KBr. Phys. Rev. B 85, 214105 (2012).

    Article  ADS  Google Scholar 

  47. Yu, D. et al. Performance test on PELICAN – a multi-purpose time of flight cold neutron spectrometer. EPJ Web Conf. 83, 03019 (2015).

    Article  Google Scholar 

  48. Yu, D. et al. Pelican – a time of flight cold neutron polarization analysis spectrometer at OPAL. J. Phys. Soc. Jpn 82, SA027 (2013).

    Article  Google Scholar 

  49. Richard, D. et al. Analysis and visualisation of neutron-scattering data. J. Neutr. Res. 4, 33–39 (1996).

    Article  Google Scholar 

  50. Bée, M. Quasielastic Neutron Scattering Principles and Applications in Solid State Chemistry, Biology and Materials Science (IOP, Bristol, 1988).

  51. Silvi, L., Röhm, E., Fichtner, M., Petry, W. & Lohstroh, W. Hydrogen dynamics in β-Mg(BH4)2 on the picosecond timescale. Phys. Chem. Chem. Phys. 18, 14323–14332 (2016).

    Article  CAS  Google Scholar 

  52. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  ADS  CAS  MATH  Google Scholar 

  53. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Article  CAS  Google Scholar 

  54. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  ADS  CAS  Google Scholar 

  55. Nosé, S. A. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  ADS  Google Scholar 

  56. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  ADS  CAS  Google Scholar 

  57. Kresse, G. et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  58. Kresse, G. et al. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  ADS  CAS  Google Scholar 

  59. Perdew, J. P. et al. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996); erratum 78, 1396 (1997).

    Article  ADS  CAS  Google Scholar 

  60. Kresse, G. et al. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  CAS  Google Scholar 

  61. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  62. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  63. Elsässer, C. et al. Density-functional energies and forces with Gaussian-broadened fractional occupations. Phys. Rev. B 49, 13975–13978 (1994).

    Article  ADS  Google Scholar 

  64. Grimme, S. et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  Google Scholar 

  65. Svitelskiy, O. et al. Elastic properties of Gd5Si2Ge2 studied with an ultrasonic pulse-echo technique. Phys. Rev. B 74, 184105 (2006).

    Article  ADS  Google Scholar 

  66. Pecharsky, V. K. & Gschneidner, K. A. Jr Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett. 78, 4494–4497 (1997).

    Article  ADS  CAS  Google Scholar 

  67. Katter, M., Zellmann, V., Reppel, G. W. & Uestuener, K. Magnetocaloric properties of La(Fe,Co,Si)13 bulk material prepared by powder metallurgy. IEEE Trans. Magn. 44, 3044 (2008).

    Article  ADS  CAS  Google Scholar 

  68. Kanomata, T. et al. Magneto-volume effect of MnCo1−xGe (0 ≤ x ≤ 0.2). J. Magn. Magn. Mater. 140–144, 131–132 (1995).

    Article  ADS  Google Scholar 

  69. Oliveira, F. et al. Process influences on the structure, piezoelectric, and gas-barrier properties of PVDF-TrFE copolymer. J. Polym. Sci. B 52, 496–506 (2014).

    Article  CAS  Google Scholar 

  70. Shkuratov, S. I. et al. Depolarization mechanisms of PbZr0.52Ti0.48O3 and PbZr0.95Ti0.05O3 poled ferroelectrics under high strain rate loading. Appl. Phys. Lett. 104, 212901 (2014).

    Article  ADS  Google Scholar 

  71. Mischenko, A. S., Zhang, Q., Scott, J. F., Whatmore, R. W. & Mathur, N. D. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311, 1270–1271 (2006).

    Article  ADS  CAS  Google Scholar 

  72. Buttner, R. & Maslen, E. Structural parameters and electron difference density in BaTiO3. Acta Crystallogr. B 48, 764–769 (1992).

    Article  Google Scholar 

  73. Moya, X. et al. Giant electrocaloric strength in single-crystal BaTiO3. Adv. Mater. 25, 1360–1365 (2013).

    Article  CAS  Google Scholar 

  74. Wang, F. E., Buehler, W. J. & Pickart, S. J. Crystal structure and a unique “martensitic” transition of TiNi. J. Appl. Phys. 36, 3232–3239 (1965).

    Article  ADS  CAS  Google Scholar 

  75. Bonnot, E., Romero, R., Mañosa, Ll., Vives, E. & Planes, A. Elastocaloric effect associated with the martensitic transition in shape-memory alloys. Phys. Rev. Lett. 100, 125901 (2008).

    Article  ADS  Google Scholar 

  76. Nikitin, S. A. et al. Giant elastocaloric effect in FeRh alloy. Phys. Lett. A 171, 234–236 (1992).

    Article  ADS  CAS  Google Scholar 

  77. Moore, M. J. & Kasper, J. S. Crystal structure of AgI at 3 kbar. J. Chem. Phys. 48, 2446 (1968).

    Article  ADS  CAS  Google Scholar 

  78. Arroyo, M., Lopez-Manchado, M. & Herrero, B. Organo-montmorillonite as substitute of carbon black in natural rubber compounds. Polymer 44, 2447–2453 (2003).

    Article  CAS  Google Scholar 

  79. Rose, H. A. & Vancamp, A. 2-Amino-2-methyl-1,2-propanediol. Anal. Chem. 28, 1790–1791 (1956).

    Article  CAS  Google Scholar 

  80. Johnson, D. J., Ervin, J. S., Hanchak, M. & Hu, X. Graphite foam infused with pentaglycerine for solid-state thermal energy storage. J. Thermophys. Heat Transfer 29, 55–64 (2015).

    Article  CAS  Google Scholar 

  81. Zhurov, V. V., Zhurova, E. A., Chen, Y. S. & Pinkerton, A. A. Accurate charge density data collection in under a day with a home X-ray source. J. Appl. Crystallogr. 38, 827–829 (2005).

    Article  CAS  Google Scholar 

  82. Kendi, E. Molecular and crystal structure of tris(hydroxymethyl)aminomethane. Z. Kristallogr. 160, 139–143 (1982).

    Article  CAS  Google Scholar 

  83. Tamarit, J. L. et al. Crystal data of the low-temperature solid form of 2-methyl-2-nitro-propanol. Powder Diffr. 9, 84–86 (1994).

    Article  ADS  CAS  Google Scholar 

  84. Marr, H., Kruger, G. & Stewart, J. 2-Methyl-2-nitro-1, 3-propanediol. Acta Crystallogr. B 33, 2886–2887 (1977).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge beam time awarded by J-PARC (proposals 2018AU1401 and 2018B0014), SPring-8 (proposals 2018B1095 and 2018A2061) and from ANSTO. B.L., Zhao Zhang, Zhe Zhang, W.R. and Zhidong Zhang were supported by the Hundred Talents Project of CAS and the National Natural Science Foundation of China (grants 11804346, 51671192 and 51531008). T.S. was supported by JSPS KAKENHI (grant number JP18K05032). S.L. and J.W. acknowledge financial support from the US National Science Foundation (grant number CBET-1708968) and the Florida State University through the Energy and Materials Initiative. H.W. acknowledges support from the National Natural Science Foundation of China (grant number 11874429) and the High-Level Talents Project of Hunan Province (grant number 2018RS3021). We also thank W. Zhang, A. Chen and H. Zeng of Setaram for testing the sample using a μDSC 7 EVO.

Reviewer information

Nature thanks Thomas Brueckel, Claudio Cazorla and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

B.L. and Zhidong Zhang conceived the idea. B.L., Y.K., T.K., S.O.-K., T.H. and K.N. performed the neutron scattering experiments at AMATERAS. T.H. calibrated the pressures at PLANET. S.-i.Y. collected the elastic data at SIKA. D.Y. and R.M. conducted the INS measurements at PELICAN. B.L., Y.C., S.I.K., K.O., S.K. and O.S. carried out synchrotron XRD measurements. K.L. analysed the XRD data. T.S. performed pressure-dependent DSC characterizations. H.W. calculated the vibrational spectra. J.W. and S.L. conducted the molecular dynamics simulations. Zhao Zhang, Zhe Zhang and W.R. carried out the in-house XRD and DSC measurements under ambient pressure for testing the samples. B.L. analysed neutron data and wrote the manuscript with discussion and input from all coauthors.

Corresponding author

Correspondence to Bing Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Diffraction data and crystal structures of NPG.

a, Integrated intensity at −0.1 meV ≤ E ≤ 0.1 meV across Tt ≈ 314 K, obtained at AMATERAS. b, Elastic incoherent scattering intensity as a function of temperature at Q = 2.1 Å−1, measured at SIKA. The inset shows the crystal structure of the monoclinic phase. c, Synchrotron XRD patterns of NPG in the temperature region 273–353 K, obtained at BL02B2 with a wavelength of 0.9994 Å. d, Rietveld refinement of the data at 303 K. Expt, experimental data; Fit, simulated pattern; Diff, difference between experimental and simulated results; Bragg, position of Bragg peaks; Goodness, χ2. e, Temperature dependence of the lattice dimensions across the phase transition.

Extended Data Fig. 2 QENS analysis.

ac, Energy resolution at different incident energies Ei. d, Activation energy (Ea) of the isotropic reorientational mode, obtained by fitting the temperature dependence of the experimental linewidth Γ. e, f, Simplified reorientational models. Brown, red and pink spheres represent carbon, oxygen and hydrogen atoms, respectively. Distances are given in ångströms. e, Triangles with side length of 1.57 Å indicate the configuration of hydrogen atoms in the methyl groups. The rotational radius of about 0.9 Å corresponds to the distance from the centre of the triangles to the hydrogen atoms. f, The distances between carbon atoms are labelled. The distance between the central carbon atom and C(CH3)–C(CH3), which links the two carbon atoms of the methyl groups, is about 0.84 Å, and that between the central carbon atom and C(CH2OH)–C(CH2OH), which links the two carbon atoms of the hydroxymethyl groups, is about 0.87 Å. These two distances are shown schematically on the right, and their average value is 0.855 Å. This isotropic reorientation model with a rotational radius of 0.855 Å describes a complex reorientational mode consisting of a free rotational reorientation of the whole molecule with respect to an axis perpendicular to C(CH3)–C(CH3) and C(CH2OH)–C(CH2OH), and an isotropic rotational reorientation of this axis.

Extended Data Fig. 3 INS data with higher Ei.

a, b, S(QE) obtained at AMATERAS with Ei = 23.72 meV (a) and Ei = 5.93 meV (b). c, d, Multi-component fit of S(QE) data at 2 Å−1 ≤ Q ≤ 3 Å−1 with Ei = 5.93 meV at 300 K (c) and 320 K (d). e, General density of state (GDOS), measured at PELICAN. The arrows indicate the peak positions of the mode around 12.7 meV.

Extended Data Fig. 4 QENS data.

ae, Data obtained with Ei = 2.64 meV at 300 K for an empty cell (a), the pressure-transmitting medium (KBr; b, c) and the sample (d, e). It can be seen that the inelastic signal at Q = 1.3 Å−1 originates from Teflon, whereas the pressure-transmitting medium KBr does not contribute much to the background.

Extended Data Fig. 5 INS data.

ae, Data obtained with Ei = 23.72 meV at 300 K for the empty cell (a), the pressure-transmitting medium (b, c) and the sample (d, e). The inelastic signals at about 2.7, 4.4 and 5.2 Å−1 are contributed by phonons from Teflon.

Extended Data Fig. 6 Additional pressure-dependence data.

a, S(QE) at Ei = 2.64 meV, 178 MPa and 325 K. b, S(QE) at Ei = 23.72 meV, 178 MPa and 325 K. c, Elastic incoherent scattering intensity integrated in 0.2 Å−1 ≤ Q ≤ 0.8 Å−1 with a ramping rate of 0.1 K min−1 at 178 MPa. The blue and red arrows indicate the cooling and warming processes, respectively. d, Entropy changes in NPG during heating for pressure changes from the ambient pressure (P0) to the applied pressure (P = 50, 80 and 100 MPa), obtained using μDSC 7 EVO at Setaram, France.

Extended Data Fig. 7 Theoretical modelling.

a, Atomic structure of the NPG molecule and its orientation, defined in three-dimensional space using angles α and θ in molecular dynamics simulations. Vector L points from the central carbon atom to a corner carbon atom of the molecule. b, Simulation results showing the distribution of the orientations of the molecules as a function of pressure at 340 K. It can be seen that a pressure of 100 MPa already effectively suppresses disorder. c, Full vibrational spectrum of NPG calculated by DFT. We note that there is a gap between 200 and 350 meV.

Extended Data Table 1 Evaluation of entropy changes using the Clausius–Clapeyron relation on a few plastic crystals12,13,14,20
Extended Data Table 2 Entropy changes of systems shown in Fig. 1c
Extended Data Table 3 Crystal structure information, determined by XRD measurements at 303 K and by DFT calculations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Kawakita, Y., Ohira-Kawamura, S. et al. Colossal barocaloric effects in plastic crystals. Nature 567, 506–510 (2019). https://doi.org/10.1038/s41586-019-1042-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-019-1042-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing