Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Secondary organic aerosol reduced by mixture of atmospheric vapours

Abstract

Secondary organic aerosol contributes to the atmospheric particle burden with implications for air quality and climate. Biogenic volatile organic compounds such as terpenoids emitted from plants are important secondary organic aerosol precursors with isoprene dominating the emissions of biogenic volatile organic compounds globally. However, the particle mass from isoprene oxidation is generally modest compared to that of other terpenoids. Here we show that isoprene, carbon monoxide and methane can each suppress the instantaneous mass and the overall mass yield derived from monoterpenes in mixtures of atmospheric vapours. We find that isoprene ‘scavenges’ hydroxyl radicals, preventing their reaction with monoterpenes, and the resulting isoprene peroxy radicals scavenge highly oxygenated monoterpene products. These effects reduce the yield of low-volatility products that would otherwise form secondary organic aerosol. Global model calculations indicate that oxidant and product scavenging can operate effectively in the real atmosphere. Thus highly reactive compounds (such as isoprene) that produce a modest amount of aerosol are not necessarily net producers of secondary organic particle mass and their oxidation in mixtures of atmospheric vapours can suppress both particle number and mass of secondary organic aerosol. We suggest that formation mechanisms of secondary organic aerosol in the atmosphere need to be considered more realistically, accounting for mechanistic interactions between the products of oxidizing precursor molecules (as is recognized to be necessary when modelling ozone production).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reduced SOA mass and yield of α-pinene by product scavenging and OH scavenging by isoprene.
Fig. 2: The reduction of the SOA yield of α-pinene by isoprene as a function of the isoprene consumption relative to that of α-pinene.
Fig. 3: HOM monomer/dimer distribution in the presence and absence of isoprene illustrating the product scavenging effect.
Fig. 4: Suppression of α-pinene SOA in the presence of CO, illustrating the generality of the product-scavenging effect.
Fig. 5: Atmospheric implications of product scavenging and OH scavenging.

Similar content being viewed by others

Data availability

All data used are shown as figures or tables in the manuscript or in Supplementary Information. Raw data are available from the corresponding author on reasonable request.

References

  1. Hallquist, M. et al. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 9, 5155–5236 (2009).

    Article  ADS  CAS  Google Scholar 

  2. Jimenez, J. L. et al. Evolution of organic aerosols in the atmosphere. Science 326, 1525–1529 (2009).

    Article  ADS  CAS  Google Scholar 

  3. Goldstein, A. H. & Galbally, I. E. Known and unexplored organic constituents in the Earth’s atmosphere. Environ. Sci. Technol. 41, 1514–1521 (2007).

    Article  ADS  CAS  Google Scholar 

  4. Spracklen, D. V. et al. Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. Atmos. Chem. Phys. 11, 12109–12136 (2011).

    Article  ADS  CAS  Google Scholar 

  5. Kanakidou, M. et al. Organic aerosol and global climate modelling: a review. Atmos. Chem. Phys. 5, 1053–1123 (2005).

    Article  ADS  CAS  Google Scholar 

  6. Guenther, A. et al. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 6, 3181–3210 (2006).

    Article  ADS  CAS  Google Scholar 

  7. Guenther, A. et al. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 5, 1471–1492 (2012).

    Article  ADS  CAS  Google Scholar 

  8. Carlton, A. G., Wiedinmyer, C. & Kroll, J. H. A review of secondary organic aerosol (SOA) formation from isoprene. Atmos. Chem. Phys. 9, 4987–5005 (2009).

    Article  ADS  CAS  Google Scholar 

  9. Clark, C. H. et al. Temperature effects on secondary organic aerosol (SOA) from the dark ozonolysis and photo-oxidation of isoprene. Environ. Sci. Technol. 50, 5564–5571 (2016).

    Article  ADS  CAS  Google Scholar 

  10. Liu, J. et al. Efficient isoprene secondary organic aerosol formation from a non-IEPOX pathway. Environ. Sci. Technol. 50, 9872–9880 (2016).

    Article  ADS  CAS  Google Scholar 

  11. Edney, E. O. et al. Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOx/SO2/air mixtures and their detection in ambient PM2.5 samples collected in the eastern United States. Atmos. Environ. 39, 5281–5289 (2005).

    Article  ADS  CAS  Google Scholar 

  12. Surratt, J. D. et al. Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proc. Natl Acad. Sci. USA 107, 6640–6645 (2010).

    Article  ADS  CAS  Google Scholar 

  13. Claeys, M. et al. Formation of secondary organic aerosols from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide. Atmos. Environ. 38, 4093–4098 (2004).

    Article  ADS  CAS  Google Scholar 

  14. Robinson, N. H. et al. Evidence for a significant proportion of secondary organic aerosol from isoprene above a maritime tropical forest. Atmos. Chem. Phys. 11, 1039–1050 (2011).

    Article  ADS  CAS  Google Scholar 

  15. Xu, L. et al. Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States. Proc. Natl Acad. Sci. USA 112, 37–42 (2015).

    Article  ADS  CAS  Google Scholar 

  16. Lee, A. et al. Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes. J. Geophys. Res. 111, D07302 (2006).

    ADS  Google Scholar 

  17. Lee, A. et al. Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes. J. Geophys. Res. 111, D17305 (2006).

    Article  ADS  Google Scholar 

  18. Ng, N. L. et al. Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes. Atmos. Chem. Phys. 7, 5159–5174 (2007).

    Article  ADS  CAS  Google Scholar 

  19. Kiendler-Scharr, A. et al. New particle formation in forests inhibited by isoprene emissions. Nature 461, 381–384 (2009).

    Article  ADS  CAS  Google Scholar 

  20. Kanawade, V. P. et al. Isoprene suppression of new particle formation in a mixed deciduous forest. Atmos. Chem. Phys. 11, 6013–6027 (2011).

    Article  ADS  CAS  Google Scholar 

  21. Lee, S. H. et al. Isoprene suppression of new particle formation: Potential mechanisms and implications. J. Geophys. Res. Atmos. 121, 14621–14635 (2016).

    Article  Google Scholar 

  22. Ehn, M. et al. A large source of low-volatility secondary organic aerosol. Nature 506, 476–479 (2014).

    Article  ADS  CAS  Google Scholar 

  23. Jenkin, M. E., Derwent, R. G. & Wallington, T. J. Photochemical ozone creation potentials for volatile organic compounds: rationalization and estimation. Atmos. Environ. 163, 128–137 (2017).

    Article  ADS  CAS  Google Scholar 

  24. Odum, J. R. et al. Gas/particle partitioning and secondary organic aerosol yields. Environ. Sci. Technol. 30, 2580–2585 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Hoffmann, T. et al. Formation of organic aerosols from the oxidation of biogenic hydrocarbons. J. Atmos. Chem. 26, 189–222 (1997).

    Article  CAS  Google Scholar 

  26. Seinfeld, J. H. & Pankow, J. F. Organic atmospheric particulate material. Annu. Rev. Phys. Chem. 54, 121–140 (2003).

    Article  ADS  CAS  Google Scholar 

  27. Matsunaga, A. & Ziemann, P. J. Gas-wall partitioning of organic compounds in a Teflon film chamber and potential effects on reaction product and aerosol yield measurements. Aerosol Sci. Technol. 44, 881–892 (2010).

    Article  ADS  CAS  Google Scholar 

  28. Zhang, X. et al. Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol. Proc. Natl Acad. Sci. USA 111, 5802–5807 (2014).

    Article  ADS  CAS  Google Scholar 

  29. Zhang, X. et al. Vapor wall deposition in Teflon chambers. Atmos. Chem. Phys. 15, 4197–4214 (2015).

    Article  ADS  CAS  Google Scholar 

  30. Krechmer, J. E., Pagonis, D., Ziemann, P. J. & Jimenez, J. L. Quantification of gas-wall partitioning in Teflon environmental chambers using rapid bursts of low-volatility oxidized species generated in situ. Environ. Sci. Technol. 50, 5757–5765 (2016).

    Article  ADS  CAS  Google Scholar 

  31. Sarrafzadeh, M. et al. Impact of NOx and OH on secondary organic aerosol formation from β-pinene photooxidation. Atmos. Chem. Phys. 16, 11237–11248 (2016).

    Article  ADS  CAS  Google Scholar 

  32. Eddingsaas, N. C. et al. Alpha-pinene photooxidation under controlled chemical conditions—Part 2: SOA yield and composition in low- and high-NOx environments. Atmos. Chem. Phys. 12, 7413–7427 (2012).

    Article  ADS  CAS  Google Scholar 

  33. Zhang, X., Pandis, S. N. & Seinfeld, J. H. Diffusion-limited versus quasi-equilibrium aerosol growth. Aerosol Sci. Technol. 46, 874–885 (2012).

    Article  ADS  CAS  Google Scholar 

  34. O’Meara, S., Topping, D. O. & McFiggans, G. The rate of equilibration of viscous aerosol particles. Atmos. Chem. Phys. 16, 5299–5313 (2016).

    Article  ADS  Google Scholar 

  35. Surratt, J. D. et al. Effect of acidity on secondary organic aerosol formation from isoprene. Environ. Sci. Technol. 41, 5363–5369 (2007).

    Article  ADS  CAS  Google Scholar 

  36. Gaston, C. J. et al. Reactive uptake of an isoprene-derived epoxydiol to submicron aerosol particles. Environ. Sci. Technol. 48, 11178–11186 (2014).

    Article  ADS  CAS  Google Scholar 

  37. Riva, M. et al. Effect of organic coatings, humidity and aerosol acidity on multiphase chemistry of isoprene epoxydiols. Environ. Sci. Technol. 50, 5580–5588 (2016).

    Article  ADS  CAS  Google Scholar 

  38. Berndt, T. et al. Accretion product formation from self- and cross-reactions of RO2 radicals in the atmosphere. Angew. Chem. Int. Ed. 57, 3820–3824 (2018).

    Article  CAS  Google Scholar 

  39. Tröstl, J. et al. The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature 533, 527–531 (2016).

    Article  ADS  Google Scholar 

  40. Mohr, C. et al. Ambient observations of dimers from terpene oxidation in the gas phase: implications for new particle formation and growth. Geophys. Res. Lett. 44, 2958–2966 (2017).

    Article  ADS  CAS  Google Scholar 

  41. Yan, C. et al. Source characterization of highly oxidized multifunctional compounds in a boreal forest environment using positive matrix factorization. Atmos. Chem. Phys. 16, 12715–12731 (2016).

    Article  ADS  CAS  Google Scholar 

  42. Wennberg, P. O. et al. Gas-phase reactions of isoprene and its major oxidation products. Chem. Rev. 118, 3337–3390 (2018).

    Article  CAS  Google Scholar 

  43. Simpson, D. et al. The EMEP MSC-W chemical transport model—technical description. Atmos. Chem. Phys. 12, 7825–7865 (2012).

    Article  ADS  CAS  Google Scholar 

  44. Stadtler, S. et al. Ozone impacts of gas-aerosol uptake in global chemistry-transport models. Atmos. Chem. Phys. 18, 3147–3171 (2018).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The EMEP modelling work was funded partially by EMEP under UNECE. Computer time for EMEP model runs was supported by the Research Council of Norway through the NOTUR project EMEP (NN2890K) for the central processing unit (CPU) time, and NorStore project European Monitoring and Evaluation Programme (NS9005K) for storage of data. The research presented is a contribution to the Swedish strategic research area ‘ModElling the Regional and Global Earth system’ (MERGE). This work was supported by Formas (grant numbers 214-2010-1756 and 942-2015-1537); the Swedish Research Council (grant number 2014-5332) and the European Research Council (Starting grant number 638703, ‘COALA’). Å.M.H. acknowledges Formas (grant number 214-2013-1430) and Vinnova, Sweden’s Innovation Agency (grant number 2013-03058), including support for her research stay at Forschungszentrum Jülich. The participation of the Manchester group was facilitated by the UK Natural Environment Research Council (NERC)-funded CCN-Vol project (NE/L007827/1) and National Centre for Atmospheric Science (NCAS) funding. J.A.T. was supported by a grant from the U.S. Department of Energy Office of Science: DE-SC0018221.

Reviewer information

Nature thanks F. Yu, P. Ziemann and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

G.M., T.F.M. and J.W. edited the manuscript and Supplementary Information. G.M., T.F.M., J.W., A.K.-S., M.H., D.S. and M.E.J. conceptualized and planned the study, and conducted data interpretation. J.W., I.P., S.K., E.K., S.S., M.S., R.T., C.W., D.Z., C.F., M.L.B., Å.M.H., M.R.A., T.J.B., C.J.P., M.P. and D.T. conducted data collection and analysis. D.S., R.B. and M.E.J. contributed the global model calculations. J.A.T., M.E., Å.M.H. and M.H. provided specific inputs to the manuscript and Supplementary Information. All co-authors discussed the results and commented on the manuscript and Supplementary Information.

Corresponding author

Correspondence to Thomas F. Mentel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Supplementary Information

The supplement contains one single pdf file. The material is ordered in 9 sections, which describe in detail the experiments and the applied methods. It contains Figures (17) and Tables (5), and additional references (69). The supplement provides all additional information which informed our findings

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McFiggans, G., Mentel, T.F., Wildt, J. et al. Secondary organic aerosol reduced by mixture of atmospheric vapours. Nature 565, 587–593 (2019). https://doi.org/10.1038/s41586-018-0871-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0871-y

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing