Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Desymmetrization of cyclohexanes by site- and stereoselective C–H functionalization

Abstract

Carbon–hydrogen (C–H) bonds have long been considered unreactive and are inert to traditional chemical reagents, yet new methods for the transformation of these bonds are continually being developed1,2,3,4,5,6,7,8,9. However, it is challenging to achieve such transformations in a highly selective manner, especially if the C–H bonds are unactivated10 or not adjacent to a directing group11,12,13. Catalyst-controlled site-selectivity—in which the inherent reactivities of the substrates14 can be overcome by choosing an appropriate catalyst—is an appealing concept, and substantial effort has been made towards catalyst-controlled C–H functionalization6,15,16,17, in particular methylene C–H bond functionalization. However, although several new methods have targeted these bonds in cyclic alkanes, the selectivity has been relatively poor18,19,20. Here we illustrate an additional level of sophistication in catalyst-controlled C–H functionalization, whereby unactivated cyclohexane derivatives can be desymmetrized in a highly site- and stereoselective manner through donor/acceptor carbene insertion. These studies demonstrate the potential of catalyst-controlled site-selectivity to govern which C–H bond will react, which could enable new strategies for the production of fine chemicals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Background to the C–H functionalization of unactivated alkanes and its relationship to the current work.
Fig. 2: Scope of the reaction with respect to substrates and aryldiazoacetates.
Fig. 3: Functionalization of disubstituted cyclohexanes.
Fig. 4: Rationalization of the observed selectivities.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 1855619, 1855620 and 1855295. Copies of the data can be obtained free of charge from www.ccdc.cam.ac.uk/data_request/cif. Complete experimental procedures and compound characterization data are available in the Supplementary Information, or from the corresponding author upon request.

References

  1. Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51, 8960–9009 (2012).

    Article  CAS  Google Scholar 

  2. Davies, H. M. L. & Morton, D. Recent advances in C–H functionalization. J. Org. Chem. 81, 343–350 (2016).

    Article  CAS  Google Scholar 

  3. Gutekunst, W. R. & Baran, P. S. C–H functionalization logic in total synthesis. Chem. Soc. Rev. 40, 1976–1991 (2011).

    Article  CAS  Google Scholar 

  4. Wencel-Delord, J. & Glorius, F. C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem. 5, 369–375 (2013).

    Article  CAS  Google Scholar 

  5. Fier, P. S. & Hartwig, J. F. Synthesis and late-stage functionalization of complex molecules through C–H fluorination and nucleophilic aromatic substitution. J. Am. Chem. Soc. 136, 10139–10147 (2014).

    Article  CAS  Google Scholar 

  6. Liao, K. et al. Site-selective and stereoselective functionalization of non-activated tertiary C–H bonds. Nature 551, 609–613 (2017).

    ADS  CAS  PubMed  Google Scholar 

  7. McMurray, L., O’Hara, F. & Gaunt, M. J. Recent developments in natural product synthesis using metal-catalysed C–H bond functionalisation. Chem. Soc. Rev. 40, 1885–1898 (2011).

    Article  CAS  Google Scholar 

  8. Newhouse, T. & Baran, P. S. If C–H bonds could talk: selective C–H bond oxidation. Angew. Chem. Int. Ed. 50, 3362–3374 (2011).

    Article  CAS  Google Scholar 

  9. Davies, H. M. L. & Manning, J. R. Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).

    Article  ADS  CAS  Google Scholar 

  10. Davies, H. M. L., Hansen, T. & Churchill, M. R. Catalytic asymmetric C–H activation of alkanes and tetrahydrofuran. J. Am. Chem. Soc. 122, 3063–3070 (2000).

    Article  CAS  Google Scholar 

  11. He, J., Wasa, M., Chan, K. S. L., Shao, Q. & Yu, J. Q. Palladium-catalyzed transformations of alkyl C–H bonds. Chem. Rev. 117, 8754–8786 (2017).

    Article  CAS  Google Scholar 

  12. Colby, D. A., Bergman, R. G. & Ellman, J. A. Rhodium-catalyzed C–C bond formation via heteroatom-directed C–H bond activation. Chem. Rev. 110, 624–655 (2010).

    Article  CAS  Google Scholar 

  13. Hartwig, J. F. & Larsen, M. A. Undirected, homogeneous C–H bond functionalization: challenges and opportunities. ACS Cent. Sci. 2, 281–292 (2016).

    Article  CAS  Google Scholar 

  14. Davies, H. M. L. & Morton, D. Guiding principles for site selective and stereoselective intermolecular C–H functionalization by donor/acceptor rhodium carbenes. Chem. Soc. Rev. 40, 1857–1869 (2011).

    Article  CAS  Google Scholar 

  15. Liao, K., Negretti, S., Musaev, D. G., Bacsa, J. & Davies, H. M. L. Site-selective and stereoselective functionalization of unactivated C–H bonds. Nature 533, 230–234 (2016).

    Article  ADS  CAS  Google Scholar 

  16. Qin, C. et al. D 2-symmetric dirhodium catalyst derived from a 1,2,2-triarylcyclopropanecarboxylate ligand: design, synthesis and application. J. Am. Chem. Soc. 133, 19198–19204 (2011).

    Article  CAS  Google Scholar 

  17. Qin, C. & Davies, H. M. L. Role of sterically demanding chiral dirhodium catalysts in site-selective C–H functionalization of activated primary C–H bonds. J. Am. Chem. Soc. 136, 9792–9796 (2014).

    Article  CAS  Google Scholar 

  18. Chen, M. S. & White, M. C. Combined effects on selectivity in Fe-catalyzed methylene oxidation. Science 327, 566–571 (2010).

    Article  ADS  CAS  Google Scholar 

  19. Czaplyski, W. L., Na, C. G. & Alexanian, E. J. C–H Xanthylation: a synthetic platform for alkane functionalization. J. Am. Chem. Soc. 138, 13854–13857 (2016).

    Article  CAS  Google Scholar 

  20. Schmidt, V. A., Quinn, R. K., Brusoe, A. T. & Alexanian, E. J. Site-selective aliphatic C–H bromination using N-bromoamides and visible light. J. Am. Chem. Soc. 136, 14389–14392 (2014).

    Article  CAS  Google Scholar 

  21. Quinn, R. K. et al. Site-selective aliphatic C–H chlorination using N-chloroamides enables a synthesis of chlorolissoclimide. J. Am. Chem. Soc. 138, 696–702 (2016).

    Article  CAS  Google Scholar 

  22. Wasa, M. et al. Ligand-enabled methylene C(sp3)–H bond activation with a Pd(ii) catalyst. J. Am. Chem. Soc. 134, 18570–18572 (2012).

    Article  CAS  Google Scholar 

  23. Chen, K., Eschenmoser, A. & Baran, P. S. Strain release in C–H bond activation? Angew. Chem. Int. Ed. 48, 9705–9708 (2009).

    Article  CAS  Google Scholar 

  24. Dondi, D. et al. Regio- and stereoselectivity in the decatungstate photocatalyzed alkylation of alkenes by alkylcyclohexanes. Chem. Eur. J. 15, 7949–7957 (2009).

    Article  CAS  Google Scholar 

  25. Liao, K. et al. Design of catalysts for site-selective and enantioselective functionalization of non-activated primary C–H bonds. Nat. Chem. 10, 1048–1055 (2018).

    Article  CAS  Google Scholar 

  26. Guptill, D. M. & Davies, H. M. L. 2,2,2-Trichloroethyl aryldiazoacetates as robust reagents for the enantioselective C–H functionalization of methyl ethers. J. Am. Chem. Soc. 136, 17718–17721 (2014).

    Article  CAS  Google Scholar 

  27. Saito, H. et al. Enantio- and diastereoselective synthesis of cis-2-aryl-3-methoxycarbonyl-2,3-dihydrobenzofurans via the Rh(ii)-catalyzed C–H insertion process. Org. Lett. 4, 3887–3890 (2002).

    Article  CAS  Google Scholar 

  28. Kitagaki, S. et al. Enantiocontrol in tandem carbonyl ylide formation and intermolecular 1,3-dipolar cycloaddition of α-diazo ketones mediated by chiral dirhodium(ii) carboxylate catalyst. J. Am. Chem. Soc. 121, 1417–1418 (1999).

    Article  CAS  Google Scholar 

  29. DeAngelis, A. et al. The chiral crown conformation in paddlewheel complexes. Chem. Commun. 46, 4541–4543 (2010).

    Article  CAS  Google Scholar 

  30. Nakamura, E., Yoshikai, N. & Yamanaka, M. Mechanism of C–H bond activation/C–C bond formation reaction between diazo compound and alkane catalyzed by dirhodium tetracarboxylate. J. Am. Chem. Soc. 124, 7181–7192 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Science Foundation (NSF) under the CCI Center for Selective C–H Functionalization (CHE-1700982). D.G.M. gratefully acknowledges NSF MRI-R2 grant (CHE-0958205) and the use of the resources of the Cherry Emerson Center for Scientific Computation. NMR and X-ray instrumentation used in this work was supported by the NSF (CHE-1531620 and CHE-1626172).

Reviewer information

Nature thanks V. Gevorgyan and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

J.F. performed the synthetic experiments. Z.R. and D.G.M. conducted the computational studies. J.B. conducted the X-ray crystallographic studies. J.F. and H.M.L.D. designed and analysed the synthetic experiments and prepared the manuscript.

Corresponding author

Correspondence to Huw M. L. Davies.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Structures of previously established catalysts.

We have previously shown that, through catalyst-directed C–H functionalization, the most accessible primary, secondary and tertiary C–H bonds within a linear alkane substrate could be selectively functionalized by using catalyst 2, 3 or 4.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data Sections 1-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Ren, Z., Bacsa, J. et al. Desymmetrization of cyclohexanes by site- and stereoselective C–H functionalization. Nature 564, 395–399 (2018). https://doi.org/10.1038/s41586-018-0799-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0799-2

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing