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            Abstract
Eukaryotic transcription-coupled repair (TCR) is an important and well-conserved sub-pathway of nucleotide excision repair that preferentially removes DNA lesions from the template strand that block translocation of RNA polymerase II (Pol II)1,2. Cockayne syndrome group B (CSB, also known as ERCC6) protein in humans (or its yeast orthologues, Rad26 in Saccharomyces cerevisiae and Rhp26 in Schizosaccharomyces pombe) is among the first proteins to be recruited to the lesion-arrested Pol II during the initiation of eukaryotic TCR1,3,4,5,6,7,8,9,10. Mutations in CSB are associated with the autosomal-recessive neurological disorder Cockayne syndrome, which is characterized by progeriod features, growth failure and photosensitivity1. The molecular mechanism of eukaryotic TCR initiation remains unclear, with several long-standing unanswered questions. How cells distinguish DNA lesion-arrested Pol II from other forms of arrested Pol II, the role of CSB in TCR initiation, and how CSB interacts with the arrested Pol II complex are all unknown. The lack of structures of CSB or the Pol IIâ€“CSB complex has hindered our ability to address these questions. Here we report the structure of the S. cerevisiae Pol IIâ€“Rad26 complex solved by cryo-electron microscopy. The structure reveals that Rad26 binds to the DNA upstream of Pol II, where it markedly alters its path. Our structural and functional data suggest that the conserved Swi2/Snf2-family core ATPase domain promotes the forward movement of Pol II, and elucidate key roles for Rad26 in both TCR and transcription elongation.
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                    Figure 1: Rad26 helps Pol II to discriminate among different transcription obstacles.[image: ]


Figure 2: Cryo-electron microscopy structure of the Pol II EC bound to Rad26.[image: ]


Figure 3: Rad26 binds to the upstream DNA and bubble fork of Pol II EC and bends the upstream DNA.[image: ]


Figure 4: Rad26 translocates along the template strand towards Pol II.[image: ]


Figure 5: Rad26 resolves Pol II backtracking in an ATP-dependent manner.[image: ]



                


                
                    
                        
        
            
                Similar content being viewed by others

                
                    
                        
                            
                                
                                    [image: ]

                                
                                
                                    
                                        Structural basis of human transcriptionâ€“DNA repair coupling
                                        
                                    

                                    
                                        Article
                                         Open access
                                         15 September 2021
                                    

                                

                                Goran Kokic, Felix R. Wagner, â€¦ Patrick Cramer

                            
                        

                    
                        
                            
                                
                                    [image: ]

                                
                                
                                    
                                        Mechanism of Rad26-assisted rescue of stalled RNA polymerase II in transcription-coupled repair
                                        
                                    

                                    
                                        Article
                                         Open access
                                         01 December 2021
                                    

                                

                                Chunli Yan, Thomas Dodd, â€¦ Ivaylo Ivanov

                            
                        

                    
                        
                            
                                
                                    [image: ]

                                
                                
                                    
                                        The cooperative action of CSB, CSA, and UVSSA target TFIIH to DNA damage-stalled RNA polymerase II
                                        
                                    

                                    
                                        Article
                                         Open access
                                         30 April 2020
                                    

                                

                                Yana van der Weegen, Hadar Golan-Berman, â€¦ Martijn S. Luijsterburg

                            
                        

                    
                

            
        
            
        
    
                    
                
            

            
                Accession codes

              
              
                Primary accessions

                
                  Electron Microscopy Data Bank
	
                    
                        7038
                      

                  
	
                    
                        8735
                      

                  
	
                    
                        8736
                      

                  
	
                    
                        8737
                      

                  
	
                    
                        8885
                      

                  


                  Protein Data Bank
	
                    
                        5VVR
                      

                  
	
                    
                        5VVS
                      

                  


                
              
              
                Referenced accessions

                
                  Protein Data Bank
	
                    
                        1Y77
                      

                  
	
                    
                        2JA6
                      

                  
	
                    
                        5C4X
                      

                  
	
                    
                        5FLM
                      

                  
	
                    
                        5X0Y
                      

                  


                
              
            

References
	Hanawalt, P. C. & Spivak, G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat. Rev. Mol. Cell Biol. 9, 958â€“970 (2008)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	Svejstrup, J. Q. Contending with transcriptional arrest during RNAPII transcript elongation. Trends Biochem. Sci. 32, 165â€“171 (2007)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	Troelstra, C. et al. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayneâ€™s syndrome and preferential repair of active genes. Cell 71, 939â€“953 (1992)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	van Gool, A. J. et al. RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. EMBO J. 13, 5361â€“5369 (1994)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	van Gool, A. J. et al. The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex. EMBO J. 16, 5955â€“5965 (1997)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	Tantin, D., Kansal, A. & Carey, M. Recruitment of the putative transcription-repair coupling factor CSB/ERCC6 to RNA polymerase II elongation complexes. Mol. Cell. Biol. 17, 6803â€“6814 (1997)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	Selby, C. P. & Sancar, A. Human transcription-repair coupling factor CSB/ERCC6 is a DNA-stimulated ATPase but is not a helicase and does not disrupt the ternary transcription complex of stalled RNA polymerase II. J. Biol. Chem. 272, 1885â€“1890 (1997)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	Sarker, A. H. et al. Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne Syndrome. Mol. Cell 20, 187â€“198 (2005)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	LainÃ©, J. P. & Egly, J. M. Initiation of DNA repair mediated by a stalled RNA polymerase IIO. EMBO J. 25, 387â€“397 (2006)
ArticleÂ 
    PubMedÂ 
    PubMed CentralÂ 
    CASÂ 
    
                    Google ScholarÂ 
                

	Fousteri, M., Vermeulen, W., van Zeeland, A. A. & Mullenders, L. H. Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo. Mol. Cell 23, 471â€“482 (2006)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	Lindsey-Boltz, L. A. & Sancar, A. RNA polymerase: the most specific damage recognition protein in cellular responses to DNA damage? Proc. Natl Acad. Sci. USA 104, 13213â€“13214 (2007)
ArticleÂ 
    ADSÂ 
    CASÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	Saxowsky, T. T. & Doetsch, P. W. RNA polymerase encounters with DNA damage: transcription-coupled repair or transcriptional mutagenesis? Chem. Rev. 106, 474â€“488 (2006)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	Belotserkovskii, B. P., Mirkin, S. M. & Hanawalt, P. C. DNA sequences that interfere with transcription: implications for genome function and stability. Chem. Rev. 113, 8620â€“8637 (2013)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	Xu, L. et al. RNA polymerase II senses obstruction in the DNA minor groove via a conserved sensor motif. Proc. Natl Acad. Sci. USA 113, 12426â€“12431 (2016)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	Sigurdsson, S., Dirac-Svejstrup, A. B. & Svejstrup, J. Q. Evidence that transcript cleavage is essential for RNA polymerase II transcription and cell viability. Mol. Cell 38, 202â€“210 (2010)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	Selby, C. P. & Sancar, A. Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc. Natl Acad. Sci. USA 94, 11205â€“11209 (1997)
ArticleÂ 
    ADSÂ 
    CASÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	Brueckner, F., Hennecke, U., Carell, T. & Cramer, P. CPD damage recognition by transcribing RNA polymerase II. Science 315, 859â€“862 (2007)
ArticleÂ 
    ADSÂ 
    CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	Hantsche, M. & Cramer, P. Conserved RNA polymerase II initiation complex structure. Curr. Opin. Struct. Biol. 47, 17â€“22 (2017)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	Xu, L. et al. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications. Crit. Rev. Biochem. Mol. Biol. 50, 503â€“519 (2015)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	Martinez-Rucobo, F. W. & Cramer, P. Structural basis of transcription elongation. Biochim. Biophys. Acta 1829, 9â€“19 (2013)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	ThomÃ¤, N. H. et al. Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54. Nat. Struct. Mol. Biol. 12, 350â€“356 (2005)
ArticleÂ 
    PubMedÂ 
    CASÂ 
    
                    Google ScholarÂ 
                

	Liu, X., Li, M., Xia, X., Li, X. & Chen, Z. Mechanism of chromatin remodelling revealed by the Snf2â€“nucleosome structure. Nature 544, 440â€“445 (2017)
ArticleÂ 
    ADSÂ 
    CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	Ehara, H. et al. Structure of the complete elongation complex of RNA polymerase II with basal factors. Science 357, 921â€“924 (2017)
ArticleÂ 
    ADSÂ 
    CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	Li, W., Giles, C. & Li, S. Insights into how Spt5 functions in transcription elongation and repressing transcription coupled DNA repair. Nucleic Acids Res. 42, 7069â€“7083 (2014)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	Jansen, L. E. et al. Spt4 modulates Rad26 requirement in transcription-coupled nucleotide excision repair. EMBO J. 19, 6498â€“6507 (2000)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	Charlet-Berguerand, N. et al. RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors. EMBO J. 25, 5481â€“5491 (2006)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	Muftuoglu, M. et al. Cockayne syndrome group B protein has novel strand annealing and exchange activities. Nucleic Acids Res. 34, 295â€“304 (2006)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	Bernecky, C., Herzog, F., Baumeister, W., Plitzko, J. M. & Cramer, P. Structure of transcribing mammalian RNA polymerase II. Nature 529, 551â€“554 (2016)
ArticleÂ 
    ADSÂ 
    CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	Deaconescu, A. M. et al. Structural basis for bacterial transcription-coupled DNA repair. Cell 124, 507â€“520 (2006)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	Li, C. L. et al. Tripartite DNA lesion recognition and verification by XPC, TFIIH, and XPAin nucleotide excision repair. Mol. Cell 59, 1025â€“1034 (2015)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	Wang, D., Bushnell, D. A., Westover, K. D., Kaplan, C. D. & Kornberg, R. D. Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 127, 941â€“954 (2006)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	Wang, L. et al. Molecular basis for 5-carboxycytosine recognition by RNA polymerase II elongation complex. Nature 523, 621â€“625 (2015)
ArticleÂ 
    ADSÂ 
    CASÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	Kireeva, M. L., Komissarova, N., Waugh, D. S. & Kashlev, M. The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex. J. Biol. Chem. 275, 6530â€“6536 (2000)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41â€“60 (2005)
CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	Plaschka, C. et al. Transcription initiation complex structures elucidate DNA opening. Nature 533, 353â€“358 (2016)
ArticleÂ 
    ADSÂ 
    CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	Plaschka, C. et al. Architecture of the RNA polymerase IIâ€“Mediator core initiation complex. Nature 518, 376â€“380 (2015)
ArticleÂ 
    ADSÂ 
    CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331â€“332 (2017)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334â€“347 (2003)
ArticleÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	Voss, N. R., Yoshioka, C. K., Radermacher, M., Potter, C. S. & Carragher, B. DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. J. Struct. Biol. 166, 205â€“213 (2009)
CASÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519â€“530 (2012)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	Bharat, T. A. & Scheres, S. H. Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION. Nat. Protocols 11, 2054â€“2065 (2016)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	Roseman, A. M. FindEMâ€”a fast, efficient program for automatic selection of particles from electron micrographs. J. Struct. Biol. 145, 91â€“99 (2004)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	Lander, G. C. et al. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol. 166, 95â€“102 (2009)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	Kimanius, D., Forsberg, B. O., Scheres, S. H. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. eLife 5, e18722 (2016)
ArticleÂ 
    PubMedÂ 
    PubMed CentralÂ 
    CASÂ 
    
                    Google ScholarÂ 
                

	Cianfrocco, M. A. & Leschziner, A. E. Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud. eLife 4, e06664 (2015)
ArticleÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	Kettenberger, H., Armache, K.-J. & Cramer, P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol. Cell 16, 955â€“965 (2004)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	Scheres, S. H. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853â€“854 (2012)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	Henderson, R. et al. Outcome of the first electron microscopy validation task force meeting. Structure 20, 205â€“214 (2012)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24â€“35 (2013)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	Bai, X. C., Rajendra, E., Yang, G., Shi, Y. & Scheres, S. H. Sampling the conformational space of the catalytic subunit of human Î³-secretase. eLife 4, e11182 (2015)
ArticleÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216â€“221 (2015)
ArticleÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290â€“296 (2017)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	Wang, R. Y. et al. Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta. eLife 5, e17219 (2016)
ArticleÂ 
    PubMedÂ 
    PubMed CentralÂ 
    CASÂ 
    
                    Google ScholarÂ 
                

	Song, Y. et al. High-resolution comparative modeling with RosettaCM. Structure 21, 1735â€“1742 (2013)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	DiMaio, F. et al. Atomic-accuracy models from 4.5-Ã… cryo-electron microscopy data with density-guided iterative local refinement. Nat. Methods 12, 361â€“365 (2015)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	SÃ¶ding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244â€“W248 (2005)
ArticleÂ 
    PubMedÂ 
    PubMed CentralÂ 
    CASÂ 
    
                    Google ScholarÂ 
                

	Barnes, C. O. et al. Crystal structure of a transcribing RNA polymerase II complex reveals a complete transcription bubble. Mol. Cell 59, 258â€“269 (2015)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                

	Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213â€“221 (2010)

                    Google ScholarÂ 
                

	Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12â€“21 (2010)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	Pettersen, E. F. et al. UCSF Chimeraâ€“a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605â€“1612 (2004)
CASÂ 
    PubMedÂ 
    
                    Google ScholarÂ 
                

	Pintilie, G. D., Zhang, J., Goddard, T. D., Chiu, W. & Gossard, D. C. Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions. J. Struct. Biol. 170, 427â€“438 (2010)
ArticleÂ 
    CASÂ 
    PubMedÂ 
    PubMed CentralÂ 
    
                    Google ScholarÂ 
                


Download references




Acknowledgements
We thank the Wang and Leschziner laboratories for discussions. D.W., A.E.L. and P.B.D. were supported by National Institutes of Health (NIH) grants GM102362, GM102362-S1 (D.W.), GM092895 (A.E.L.), and GM27681 (P.B.D.). M.A.C. acknowledges support from the Damon Runyon Cancer Research Foundation. We thank the UCSD cryo-EM Facility, where all data was collected. We used the Extreme Science and Engineering Discovery Environment (XSEDE) for computing allocations (MCB160121 to D.W.), supported by NSF grant ACI-1548562.


Author information
Author notes	Michael A. Cianfrocco
Present address: Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA

	Jun Xu and Indrajit Lahiri: These authors contributed equally to this work.

	Andres E. Leschziner and Dong Wang: These authors jointly supervised this work.


Authors and Affiliations
	Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, 92093, California, USA
Jun Xu,Â Wei Wang,Â Jenny ChongÂ &Â Dong Wang

	Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, 92093, California, USA
Indrajit Lahiri,Â Adam Wier,Â Michael A. Cianfrocco,Â Andres E. LeschzinerÂ &Â Dong Wang

	Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, 91125, California, USA
Alissa A. HareÂ &Â Peter B. Dervan

	Department of Biochemistry, University of Washington, Seattle, 98195, Washington, USA
Frank DiMaio

	Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, 92093, California, USA
Andres E. Leschziner


Authors	Jun XuView author publications
You can also search for this author in
                        PubMedÂ Google Scholar



	Indrajit LahiriView author publications
You can also search for this author in
                        PubMedÂ Google Scholar



	Wei WangView author publications
You can also search for this author in
                        PubMedÂ Google Scholar



	Adam WierView author publications
You can also search for this author in
                        PubMedÂ Google Scholar



	Michael A. CianfroccoView author publications
You can also search for this author in
                        PubMedÂ Google Scholar



	Jenny ChongView author publications
You can also search for this author in
                        PubMedÂ Google Scholar



	Alissa A. HareView author publications
You can also search for this author in
                        PubMedÂ Google Scholar



	Peter B. DervanView author publications
You can also search for this author in
                        PubMedÂ Google Scholar



	Frank DiMaioView author publications
You can also search for this author in
                        PubMedÂ Google Scholar



	Andres E. LeschzinerView author publications
You can also search for this author in
                        PubMedÂ Google Scholar



	Dong WangView author publications
You can also search for this author in
                        PubMedÂ Google Scholar





Contributions
J.X. prepared the proteins with help from W.W. and J.C. and performed the biochemical analyses. A.H. and P.D.B. provided the Py-Im chemical agent. I. L. collected the EM data with help from A.W. I.L. performed data processing and refinement with help from M.A.C. I.L. and F.D. generated the atomic models with homology models generated by J.X., W.W. and D.W. D.W. and A.E.L. wrote the manuscript with help from all laboratory members. D.W. and A.E.L. directed and supervised the research.
Corresponding authors
Correspondence to
                Andres E. Leschziner or Dong Wang.


Ethics declarations

              
                Competing interests

                The authors declare no competing financial interests.

              
            

Additional information
Reviewer Information Nature thanks A. Conconi and the other anonymous reviewer(s) for their contribution to the peer review of this work.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Extended data figures and tables

Extended Data Figure 1 Sequence alignment of the ATPase core domains of CSB family members.
Protein sequences from the CSB ATPase core region from S. cerevisiae, S. pombe, Arabidopsis thaliana, Danio rerio, Mus musculus and Homo sapiens were aligned using Clustal Omega. Residues are numbered based on the sequence of the S. cerevisiae CSB orthologue Rad26. Conserved residues are highlighted in red and helicase-specific motifs are boxed in black and labelled with roman numerals. The flexible disordered loop regions that were not built into the cryo-EM density are indicated, as are the Swi2/Snf2-specific domains HD1 and HD2.


Extended Data Figure 2 Cryo-EM reconstructions of the Pol IIâ€“Rad26 and Pol II EC complexes.
a, Representative micrograph of Pol IIâ€“Rad26 complexes. Scale bar, 100â€‰nm. b, Power spectrum of the micrograph in a showing Thon rings out to 3.4â€‰Ã…. c, Representative 2D class averages of the Pol IIâ€“Rad26 complex. d, Schematic representation of the strategy used to sort out the datasets into Pol II EC and Pol IIâ€“Rad26 complex structures. Unless otherwise noted, 3D classification was performed without image alignment. Coloured, segmented maps indicate classes in which particles were used for further processing. The colour scheme used in the segmented maps is as follows: Pol II (grey), Rad26 (orange), transcription scaffold (green). Black lines follow the classification scheme used to extract homogeneous Pol IIâ€“Rad26 particles; blue lines follow the classification scheme used to extract homogeneous Pol II EC particles. The refined maps for the higher-resolution Pol IIâ€“Rad26 complex (with fragmented Rad26 density), final Pol IIâ€“Rad26 complex and Pol II EC are highlighted with green, black and blue boxes, respectively. The indicated resolution corresponds to the 0.143 Fourier shell correlation (FSC) based on gold-standard FSC curves. The number of particles contributing to each selected structure is indicated. The percentages shown are relative to the total number of particles selected after 2D classification. eâ€“g, Front and back views of locally filtered maps coloured by local resolution. h, Euler angle distribution of particle images for the maps shown in eâ€“g. i, FSC plots for the higher-resolution Pol IIâ€“Rad26 complex (with fragmented Rad26 density), final Pol IIâ€“Rad26 complex and Pol II EC maps with the resolution at 0.143 FSC indicated. j, Representative near-atomic resolution regions in Pol II from the locally filtered higher-resolution (4.5 Ã…) Pol IIâ€“Rad26 map. The density is shown in transparent grey with the atomic model for Pol IIâ€“Rad26 complex fitted in the map. The Î²-sheet corresponds to residues 346â€“356, 440â€“446 and 486â€“493 in Rpb1, and 1104â€“1107 in Rpb2. The portion of the bridge helix shown here corresponds to residues 810â€“829 in Rpb1.


Extended Data Figure 3 Validation of Rosetta models for the Pol IIâ€“Rad26 complex and Pol II EC.
a, Table summarizing the main statistics from data collection, refinement and model validation. b, c, The r.m.s.d. values of the protein backbones among the top five conformations (based on Rosetta energy) of the Pol IIâ€“Rad26 complex (b) and Pol II EC (c) generated by RosettaCM. In both cases the best Rosetta energy model is shown as a worm model, with thickness and colour representing the backbone r.m.s.d. value. The transcription scaffolds were not included in the r.m.s.d. calculation and were omitted for clarity. d, Backbone r.m.s.d. values between the atomic models of Pol IIâ€“Rad26 complex and Pol II EC shown on the atomic model of Pol IIâ€“Rad26 complex using the same representation as in b and c. The models were globally aligned to each other in Chimera (UCSF) and only those parts of the model for which r.m.s.d. calculation could be performed are shown. e, f, FSC curves between the atomic model and cryo-EM maps for the Pol IIâ€“Rad26 complex (e) and Pol II EC (f). In e, FSCwork and FSCfree values were calculated using half maps from the higher-resolution Pol IIâ€“Rad26 complex structure. The 0.5 FSC line is shown. g, h, Three different views of the Pol IIâ€“Rad26 map with models docked in (g), and close-up views of the Pol IIâ€“Rad26 interface (h).


Extended Data Figure 4 Cryo-EM reconstruction of a Pol II EC containing a CPD lesion.
a, Representative micrograph of Pol II EC (CPD). b, Power spectrum of the micrograph in a. c, Representative 2D class averages of the Pol II EC (CPD) complex. d, FSC plot for the final Pol II EC (CPD) map with the resolution at 0.5 FSC indicated. e, Euler angle distribution of particle images. f, Table summarizing data collection statistics. gâ€“k, Strategy for generating difference map between Pol IIâ€“Rad26 and Pol II EC (CPD). We took the model for the Pol IIâ€“Rad26 complex (g), removed Rad26 (h), and converted the resulting model into a cryo-EM-like density (i). From this, we subtracted the Pol II EC (CPD) map (j) to obtain the difference map (k). l, Two views of the Pol II EC (CPD) map. m, Model of the Pol II EC complex after removal of Rad26 (h) docked into the Pol II EC (CPD) map. n, Same as in m, with the difference map superimposed.


Extended Data Figure 5 Alignment of the HD2-1 region of CSB and non-CSB members of the Swi2/Snf2 superfamily of ATPases.
The HD2-1 region corresponds to the wedge motif in the Pol IIâ€“Rad26 structure (see Fig. 3e). See Extended Data Fig. 1 for the location of the HD2-1 region within the full ATPase domain. Residues are coloured (according to physicochemical properties) when conserved in at least half of the sequences.


Extended Data Figure 6 The strength of base pairing at the upstream fork of the transcription bubble, not CPD lesions at downstream fork, affects the interaction of Rad26 with Pol II EC.
a, The sequence of the scaffold used in this study. The nucleotides labelled as XXX and YYY were varied in these experiments to control the strength of the base pairing at the upstream fork of the transcription bubble. b, Electrophoretic mobility shift assay (EMSA) between Rad26 and Pol II EC with an AT-rich sequence at the upstream fork of the DNA bubble. c, EMSA between Rad26 and Pol II EC with a GC-rich sequence at the upstream fork of the DNA bubble. d, Quantification of the assays shown in b, c. Data are mean and s.d. (nâ€‰=â€‰3). *Pâ€‰<â€‰0.05; **Pâ€‰<â€‰0.01; ***Pâ€‰<â€‰0.001; ****Pâ€‰<â€‰0.0001, two-tailed Studentâ€™s t-test. Precise P values shown in Extended Data Table 1. e, Modelled structure of Pol II in complex with the mini-scaffold. Rad26, from the Pol IIâ€“Rad26 complex structure, was included as a semi-transparent ribbon diagram to indicate the lack of interaction between it and the mini-scaffold. Mini-scaffolds that eliminate the upstream DNA to which Rad26 binds were used to form elongation complexes (mini-ECs) with Pol II, and the interaction between these mini-ECs and Rad26 was tested using EMSA. f, DNA/RNA scaffolds used in this experiment. To rule out the possibility that Rad26 may bind to dsDNA in a non-specific manner, a scaffold with only RNA and template strand (scaffold 2) was also tested. g, h, EMSA with scaffold 1 (g) and scaffold 2 (h) showing formation of a Pol II mini-ECâ€“Rad26 complex. The experiment was repeated independently twice with similar results. i, Scaffolds with or without a CPD lesion (see Methods for details) were used to form elongation complexes with Pol II, and the interaction between them and Rad26 was tested using EMSA. j, Quantification of data in i. Data are mean and s.d. (nâ€‰=â€‰3). All biochemical experiments were repeated independently 3 times with similar results, except 2 times for g and h. For gel source data, see Supplementary Fig. 1.


Extended Data Figure 7 Overlap between the binding sites of Rad26 and Spt4â€“Spt5 on Pol II.
a, c, Structure of the Pol IIâ€“Rad26 complex, with Rad26 and the DNA/RNA scaffold shown in surface representation. b, d, Structure of Pol II EC bound to Spt4â€“Spt5 and TFIIS (PDB accession 5XON), with Spt4 and Spt5 shown in surface representation. The different domains of Spt5 are indicated. e, Rad26 and the DNA/RNA scaffold from a are superimposed on Spt4â€“Spt5 from b. f, Rotated view of e. g, Rad26 and the DNA/RNA scaffold from c are superimposed on Spt4â€“Spt5 from d. h, Rotated view of g. The bicolour arrows indicate clashes between Rad26 or the DNA/RNA scaffold and Spt4â€“Spt5.


Extended Data Figure 8 Alignment between Snf2 and Rad26.
a, This panel is identical to Fig. 4b and is included here as a reference. b, Superposition between Rad26, bound to the transcription scaffold, and Snf2 from the cryo-EM structure of the Snf2â€“nucleosome complex (PDB accession 5X0Y), with the nucleosome included in the image. This is the same alignment shown in Fig. 4aâ€“c and in a, and was driven exclusively by Snf2 and Rad26. This view is rotated by 180Â° about the vertical axis relative to a. The dashed box marks the portion of the structure equivalent to that shown in a. The back gyre of the nucleosome was faded out for clarity. c, Same view as in b, with Snf2 and Rad26 removed to illustrate the superposition of the Rad26-bound portion of the transcription scaffold and the nucleosomal DNA. dâ€“g, Alignment of Rad26 and Snf2. The superimposed structures are shown in two orientations (d, f), with d corresponding to the direction indicated by the symbol in a. A worm model is used to represent the similarity between the two structures (e, g), with thickness and colour indicating the backbone r.m.s.d. value. The thin wire corresponds to regions in the Rad26 model that are not present in Snf2.


Extended Data Figure 9 Unified model for three-step DNA lesion recognition and verification for both TCR and GG-NER.
Check step 1: for GG-NER, XPC or HR23B detects base-pair disruption and helix distortion and binds to the DNA strand opposite that carrying the lesion. This constitutes the initial lesion recognition. For TCR, CSB is recruited to a stalled Pol II to discriminate genuine DNA lesion-induced transcription arrest from other forms of transcriptional arrest. At this step, CSB acts in conjunction with Pol II to mediate the initial recognition of DNA lesions that block transcription translocation. Check step 2: core TFIIH is recruited to verify the DNA lesion further. In GG-NER, the XPD and XPB helicases in core TFIIH translocate the complex towards the lesion. This is the result of XPD tracking along the damage-containing strand in a 5â€²-to-3â€² direction, and XPB tracking along the opposite (non-damaged) strand in a 3â€²-to-5â€² direction. In TCR, TFIIH is loaded downstream of the arrested Pol IIâ€“CSB complex, with XPD and XPB tracking the template and non-template strands, respectively. The XPD and XPB helicases in core TFIIH translocate towards the lesion, as is the case for GG-NER. As a result, Pol IIâ€“CSB is pushed upstream by TFIIH to expose the DNA lesion. Check step 3: XPA is recruited for a final validation of the TFIIH-recognized lesion and to ensure that only genuine NER lesions are subjected to dual incision by endonucleases ERCC1â€“XPF and XPG and downstream repair synthesis.
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Transcription-coupled DNA repair removes DNA lesions from the template strand that present obstacles to the translocation of RNA polymerase II (Pol II). The process is initiated by the recruitment of the Cockayne syndrome group B (CSB) protein in humansâ€”or the equivalent Rad26 in the yeast (Saccharomyces cerevisiae)â€”to the arrested polymerase complex. Here, Andres Leschziner, Dong Wang and colleagues have used cryo-electron microscopy to solve the structure of a complex of S. cerevisiae Rad26 bound to Pol II. Rad26 binds to DNA upstream of Pol II and causes marked bending of the DNA, and the Swi2/Snf2-family ATPase domain of Rad26 is proposed to promote forward movement of Pol II. The authors suggest a mechanistic model whereby Rad26 ensures transcription-coupled recognition of DNA lesions while also functioning as a transcription elongation factor.
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