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            Abstract
Small, approximately 10-kilobase microhomology-mediated tandem duplications are abundant in the genomes of BRCA1-linked but not BRCA2-linked breast cancer. Here we define the mechanism underlying this rearrangement signature. We show that, in primary mammalian cells, BRCA1, but not BRCA2, suppresses the formation of tandem duplications at a site-specific chromosomal replication fork barrier imposed by the binding of Tus proteins to an array of Ter sites. BRCA1 has no equivalent role at chromosomal double-stranded DNA breaks, indicating that tandem duplications form specifically at stalled forks. Tandem duplications in BRCA1 mutant cells arise by a replication restart-bypass mechanism terminated by end joining or by microhomology-mediated template switching, the latter forming complex tandem duplication breakpoints. Solitary DNA ends form directly at Tusâ€“Ter, implicating misrepair of these lesions in tandem duplication formation. Furthermore, BRCA1 inactivation is strongly associated with ~10 kilobase tandem duplications in ovarian cancer. This tandem duplicator phenotype may be a general signature of BRCA1-deficient cancer.
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                    Figure 1: BRCA1 suppresses Tusâ€“Ter-induced GFPâˆ’RFP+ repair products.[image: ]


Figure 2: Tusâ€“Ter-induced GFPâˆ’RFP+ repair products are microhomology-mediated tandem duplications.[image: ]


Figure 3: Candidate mechanisms of Tusâ€“Ter-induced TDs.[image: ]


Figure 4: A replicative mechanism involving classical non-homologous end joining mediates Tusâ€“Ter-induced TDs.[image: ]


Figure 5: Solitary DNA ends form at Tusâ€“Ter-stalled forks.[image: ]
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Extended data figures and tables

Extended Data Figure 1 BRCA1 suppresses RAD51-independent Tusâ€“Ter-induced GFPâ€“RFP+ repair outcomes.
a, Repair frequencies in Brca1fl/exon11 and Brca1Î”/exon11 6Ã—Ter-HR reporter cells transfected with Tus or I-SceI and with either control Luciferase siRNA (siLUC) or Brca1 SMARTpool (siBRCA1). Columns represent mean of technical duplicate samples from ten independent experiments (that is, nâ€‰=â€‰10). Error bars denote s.e.m. Tus-induced HR, Brca1fl/exon11 cells, t-test siBRCA1 versus siLUC: all measurements Pâ€‰<â€‰0.01; Brca1Î”/exon11 cells, siBRCA1 versus siLUC: total HR: Pâ€‰=â€‰0.0470; STGC: Pâ€‰=â€‰0.0003; LTGC: not significant; LTGC/total HR: Pâ€‰<â€‰0.0001; GFPâ€“RFP+: Pâ€‰=â€‰0.0010. I-SceI-induced HR, Brca1fl/exon11 cells, t-test siBRCA1 versus siLUC: all measurements Pâ€‰<â€‰0.05; Brca1Î”/exon11 cells, t-test siBRCA1 versus siLUC: all measurements Pâ€‰<â€‰0.02. b, Representative primary FACS data for Brca1fl/exon11 and Brca1Î”/exon11 6Ã—Ter-HR reporter cells transfected with empty vector, Tus or I-SceI and with siLUC or siBRCA1. Tus-transfected samples reproduced from Fig. 1b. FACS plots produced from pooled data of technical duplicate samples from three independent experiments. Numbers represent percentages. c, RTâ€“qPCR analysis of Brca1 mRNA in siRNA-treated cells. Data normalized to Gapdh and expressed as fold difference from siLUC sample from the same experiment (xâ€‰=â€‰âˆ’2Î”Î”Ct
, with Î”Î”Ctâ€‰=â€‰[Cttargetâ€‰âˆ’â€‰CtGapdh]â€‰âˆ’â€‰[CtsiLUCâ€‰âˆ’â€‰CtsiGAPDH]). Error bars denote s.d. of Î”Ct value (s.d.â€‰=â€‰âˆš[s.d.target2 + s.d.Gapdh2]). d, Frequencies of GFPâ€“RFP+ events in Brca1fl/exon11 and Brca1Î”/exon11 6Ã—Ter-HR reporter cells transfected with Tus or I-SceI and with siLUC, siBRCA1, or Rad51 SMARTpool (siRAD51). Columns represent mean of technical duplicate samples, nâ€‰=â€‰5. Error bars denote s.e.m. Tus-induced GFPâ€“RFP+, Brca1fl/exon11 cells, t-test: all comparisons Pâ€‰<â€‰0.05. Tus-induced GFPâ€“RFP+, Brca1Î”/exon11 cells, t-test: all comparisons Pâ€‰<â€‰0.03. Abundance of RAD51 protein in siRNA-treated Brca1fl/exon11 and Brca1Î”/exon11 6Ã—Ter-HR reporter ES cells. For gel source data, see Supplementary Fig. 1.


Extended Data Figure 2 Examples of breakpoint sequence analysis of Tusâ€“Ter-induced GFPâ€“RFP+ products.
Class 1 and class 2 rearrangements are microhomology-mediated TDs. a, Structure of the GFPâ€“RFP+ class 1 rearrangement marked with red asterisk in Fig. 2. Cartoon elements as in Figs 1 and 2; orange triangle represents 6Ã—Ter array. Right cartoon denote schematic of TD breakpoint. Grey number denote site of Ter-proximal breakpoint relative to Ter array. In this TD clone, this breakpoint is located 333 bp upstream of the first nucleotide of the first Ter site encountered by the rightward replication fork (that is, position âˆ’333). Black number denotes number of base pairs of microhomology at the breakpoint (in this clone, microhomologyâ€‰=â€‰2). Grey arrows identify the orientation of the segments of the TD, relative to the reporter. Top text box, the direct sequence of the TD breakpoint. Green bold text denotes fragments of GFP open reading frame (ORF). Red bold letters denote 2-bp microhomology breakpoint. Black text denotes other reporter sequences. Bottom text box, overlay of TD breakpoint ends (green bold for GFP sequences and red bold for 2-bp microhomology breakpoint) on full-length wild-type GFP (grey). b, Structure of the GFPâ€“RFP+ class 2 rearrangement marked with blue asterisk in Fig. 2. Blue letter â€˜Bâ€™ indicates a BglII site retained within the TD breakpoint. Right cartoon, schematic of TD breakpoint, elements as in a. In this TD clone, the Ter-proximal TD breakpoint is located 8 bp downstream of the first nucleotide of the first Ter site encountered by the rightward replication fork (that is, position +8). Text box, direct sequence of TD breakpoint. Green bold text denotes fragments of GFP ORF. Orange highlighting: 8-bp fragment of first Ter element retained within the TD breakpoint. Red bold letter denotes 1-bp microhomology breakpoint. Blue highlighting denotes BglII site retained within the TD breakpoint. Black text denotes other reporter sequences.


Extended Data Figure 3 Specificity of BRCA1 loss on Tusâ€“Ter-induced TDs.
a, Tusâ€“Ter-induced and I-SceI-induced TD (GFPâˆ’RFP+) products in Brca1fl/exon11 or Brca1âˆ†/exon11 6Ã—Ter-HR cells depleted of indicated repair proteins. Induction of repair products was calculated relative to siLUC controls (which therefore score as 1). Data represents mean of between eight and ten independent experiments, each experimental data point collected as technical duplicates (replicates: siBRCA1, nâ€‰=â€‰10; siBARD1, nâ€‰=â€‰9; siCtIP, nâ€‰=â€‰9; siBLM, nâ€‰=â€‰8; siFANCM, nâ€‰=â€‰9; siBRCA2, nâ€‰=â€‰8; siFANCA, nâ€‰=â€‰9; siFANCD2, nâ€‰=â€‰10; siRAD51, nâ€‰=â€‰9; siSLX4, nâ€‰=â€‰9). Error bars denote s.e.m. b, Tus-induced and I-SceI-induced STGC (GFP+RFPâ€“) products in Brca1fl/exon11 or Brca1âˆ†/exon11 6Ã—Ter-HR cells depleted of repair proteins indicated. Replicates and error bars as in a. c, Representative primary FACS data for Brca1Î”/exon11 6Ã—Ter-HR reporter cells co-transfected with empty vector (EV), Tus or I-SceI expression vectors (as shown) and siRNAs as shown. FACS plots pooled from technical duplicate samples of four independent experiments. Numbers represent percentages. d, RTâ€“qPCR analysis of Blm, Fancm, Brca2, Fanca, Slx4, Ctip and Bard1 mRNA. Data normalized to Gapdh and expressed as a fold difference from siLUC-treated sample from the same experiment (xâ€‰=â€‰âˆ’2Î”Î”Ct
, with Î”Î”Ctâ€‰=â€‰[Cttargetâ€‰âˆ’â€‰CtGapdh]â€‰âˆ’â€‰[CtsiLUCâ€‰âˆ’â€‰CtsiGAPDH]). Error bars represent the s.d. of the Î”Ct value (s.d.â€‰=â€‰âˆš[s.d.target2 + s.d.Gapdh2]).


Extended Data Figure 4 Tusâ€“Ter-induced TDs in FANCM- or BLM-depleted Brca1Î”/exon11 6Ã—Ter-HR reporter cells.
a, Southern blot analysis of Tusâ€“Ter-induced LTGC and GFPâˆ’RFP+ TD products in FANCM or BLM-depleted Brca1Î”/exon11 6Ã—Ter-HR reporter cells (BglII digest, GFP probe). M, molecular mass marker lane. TD breakpoints were identified by PCR product sequencing. b, Repair frequencies in Brca1fl/exon11 and Brca1Î”/exon11 6Ã—Ter-HR reporter cells transfected with siLUC, siFANCM, siBLM or siFANCM plus siBLM in combination. Columns represent mean of technical duplicate samples, nâ€‰=â€‰7. Error bars denote s.e.m. Tusâ€“Ter-induced total HR, Brca1fl/exon11 cells, t-test: siFANCM versus siLUC and siBLM versus all others Pâ€‰<â€‰0.0001; Brca1âˆ†/exon11 cells, t-test: siBLM or siFANCM plus siBLM versus siLUC: Pâ€‰<â€‰0.005. Tusâ€“Ter-induced STGC, Brca1fl/exon11 cells, t-test: siFANCM versus siLUC and siBLM versus all others Pâ€‰<â€‰0.0010; Brca1âˆ†/exon11 cells, t-test: siFANCM plus siBLM versus siLUC: Pâ€‰=â€‰0.01. Tusâ€“Ter-induced LTGC, Brca1fl/exon11 cells, t-test: siFANCM or siBLM versus siLUC: Pâ€‰<â€‰0.0001; siFANCM+siBLM versus all others Pâ€‰<â€‰0.005; Brca1âˆ†/exon11 cells, t-test: siFANCM or siBLM versus siLUC: Pâ€‰<â€‰0.01; siFANCM plus siBLM versus all others Pâ€‰<â€‰0.03. Tusâ€“Ter-induced ratio of LTGC:total HR, Brca1fl/exon11 cells, t-test: all siFANCM samples versus those with no siFANCM: Pâ€‰<â€‰0.001; Brca1âˆ†/exon11 cells, t-test: all samples versus siLUC: Pâ€‰<â€‰0.002; siFANCM versus siFANCM plus siBLM: Pâ€‰=â€‰0.0420; siBLM versus siFANCM plus siBLM: Pâ€‰=â€‰0.0294. Tusâ€“Ter-induced TD, Brca1âˆ†/exon11 cells, t-test: siFANCM or siBLM versus siLUC: Pâ€‰<â€‰0.002; siFANCM versus siBLM: not significant; siFANCM plus siBLM versus all others: Pâ€‰<â€‰0.0001. I-SceI-induced total HR, Brca1fl/exon11 cells, t-test: siFANCM versus siBLM: Pâ€‰=â€‰0.0265. I-SceI-induced STGC, Brca1fl/exon11 cells, t-test: siFANCM versus siLUC or siBLM: Pâ€‰<â€‰0.05; siBLM versus siFANCM plus siBLM: Pâ€‰=â€‰0.0445. I-SceI-induced LTGC: not significant. I-SceI-induced ratio LTGC:total HR, Brca1fl/exon11 cells, t-test: all samples versus siLUC: Pâ€‰<â€‰0.03; siFANCM versus siFANCM plus siBLM: Pâ€‰=â€‰0.0305; Brca1âˆ†/exon11 cells, t-test: all samples versus siLUC: Pâ€‰<â€‰0.05; siFANCM versus siBLM: Pâ€‰=â€‰0.0245. I-SceI-induced TD, Brca1âˆ†/exon11 cells, t-test: all samples versus siLUC: Pâ€‰<â€‰0.02. For gel source data, see Supplementary Fig. 1.


Extended Data Figure 5 BRCA2 is not a major suppressor of Tusâ€“Ter-induced TDs.
a, GFPâ€“RFP+ products in Brca1fl/exon11 6Ã—Ter-HR cells transfected with siFANCM or siBLM alone or together with siBRCA1, siBARD1, siBRCA2 or siRAD51. Columns represent mean of technical duplicate samples, nâ€‰=â€‰5. Error bars denote s.e.m. Tus-induced TDs, t-test: siFANCM plus siBRCA1 or siBARD1 versus all other samples: Pâ€‰<â€‰0.01. siBLM plus siBRCA1 or siBARD1 versus all other samples: Pâ€‰<â€‰0.03. I-SceI-induced TDs, t-test: all comparisons not significant. b, GFPâ€“RFP+ products in Brca1fl/exon11 6Ã—Ter-HR cells after depletion of CtIP. Columns represent mean of technical duplicate samples, nâ€‰=â€‰11. Error bars denote s.e.m. Tus-induced TD t-test: all samples versus siLUC: Pâ€‰<â€‰0.01; siFANCM plus siCtIP versus siCtIP or siFANCM: Pâ€‰<â€‰0.001; siFANCM plus siBRCA1 versus all other siFANCM samples: Pâ€‰<â€‰0.0001; siBLM plus siCtIP versus siBLM: Pâ€‰<â€‰0.0001; siBLM plus siBRCA1 versus all other siBLM samples: Pâ€‰<â€‰0.0001. I-SceI-induced TD t-test: all samples versus siLUC: Pâ€‰<â€‰0.05; siFANCM plus siCtIP versus siCtIP: Pâ€‰=â€‰0.0311; siFANCM plus siBRCA1 versus all other siFANCM samples: Pâ€‰<â€‰0.01; siFANCM plus siCtIP versus siFANCM: not significant; siBLM plus siBRCA1 versus all other siBLM samples: Pâ€‰<â€‰0.01; siBLM plus siCtIP versus siBLM: not significant. c, GFPâ€“RFP+ products in two independently derived Brca2lex1/lex2 single-copy 6Ã—Ter-HR reporter clones transfected with siRNAs as shown. Columns represent mean of technical duplicate samples, nâ€‰=â€‰8. Error bars denote s.e.m. Clone #3 Tus-induced TD t-test: siFANCM plus siBRCA1 versus all other samples: Pâ€‰<â€‰0.01; siLUC versus siFANCM plus siBRCA2: Pâ€‰=â€‰0.0131; siFANCM versus siFANCM plus siBRCA2: not significant. Clone #56 Tus-induced TD t-test: siFANCM plus siBRCA1 versus all other samples: Pâ€‰<â€‰0.003; siFANCM versus siFANCM plus siBRCA2: not significant. Clone #3 and clone #56 I-SceI-induced TD: not significant. d, RTâ€“qPCR analysis of siRNA-treated Brca2lex1/lex2 6Ã—Ter-HR cells. Data normalized to Gapdh and expressed as a fold difference from siLUC sample (xâ€‰=â€‰âˆ’2Î”Î”Ct, with Î”Î”Ctâ€‰=â€‰[Cttargetâ€‰âˆ’â€‰CtGapdh]â€‰âˆ’â€‰[CtsiLUCâ€‰âˆ’â€‰CtsiGAPDH]). Error bars denote s.d. of the Î”Ct value (s.d.â€‰=â€‰âˆš[s.d.target2 + s.d.Gapdh2]). e, Brca2 gene structure in Brca2lex1/lex2 reporter cells. Grey boxes denote Brca2 exons. PCR primers a, b, and c indicated by arrows. neo denotes neomycin-resistance gene. Asterisk denotes partial deletion of exon 26. For gel source data, see Supplementary Fig. 1.


Extended Data Figure 6 Tusâ€“Ter-induced TDs arise by a replicative mechanism involving canonical end-joining.
a, Southern blot analysis of aneuploid TD clones (AseI digest of gDNA, full-length GFP probe). Same data as Fig. 4b. Parental Ter-HR reporter (P) marks size of unaltered reporter. b, Southern blot analysis of 19 reclones of aneuploid TD clones (AseI digest of gDNA, full-length GFP probe) that contained a second reporter copy. M, molecular mass; R, original aneuploid clone. Lanes 3â€“20, 19 independent re-clones. For parental and TD structure, see Fig. 4b. c, Tusâ€“Ter-induced TDs in FANCM-depleted Xrcc4fl/fl (#8) and Xrcc4Î”/Î” (#11) cells co-transfected with siRNAs shown. Mean of technical duplicates, nâ€‰=â€‰5. Error bars denote s.e.m. P values from a Studentâ€™s t-test apply to #8 and #11 data unless otherwise stated. siFANCM plus siBRCA1 or siFANCM plus siBARD1 versus all other samples: Pâ€‰<â€‰0.02, except for clone #11; siFANCM plus siBRCA1 versus siFANCM plus siRAD51: not significant; siFANCM plus siBRCA1 versus siFANCM plus siBARD1: not significant; siFANCM plus siBRCA2 or siFANCM plus siRAD51 versus siLUC or siFANCM: not significant. d, Tusâ€“Ter-induced TDs in BLM-depleted Xrcc4fl/fl (#8) and Xrcc4Î”/Î” (#11) cells co-transfected with siRNAs shown. Mean of technical duplicates, nâ€‰=â€‰5. Error bars denote s.e.m. P values from a Studentâ€™s t-test apply to both #8 and #11 data unless otherwise stated. siBLM plus siBRCA1 or siBLM plus siBARD1 versus all other samples in clone #8: Pâ€‰<â€‰0.05. In clone #11, siBLM plus siBRCA1 or siBLM plus siBARD1 versus siBLM plus siRAD51 or siBLM plus siBRCA2: not significant; siBLM plus siBRCA1 versus siBLM plus siBARD1: not significant. siBLM plus siBRCA2 or siBLM plus siRAD51 versus: siLUC or siBLM: not significant. e, RAD51 western blot in siRNA-treated #8 and #11 cells. f, RTâ€“qPCR analysis of Fancm, Brca1, Bard1, Blm, and Brca2 mRNA in siRNA-treated #8 and #11 cells. Data normalized to Gapdh and expressed as fold difference from siLUC sample (xâ€‰=â€‰âˆ’2Î”Î”Ct
, with Î”Î”Ctâ€‰=â€‰[Cttargetâ€‰âˆ’â€‰CtGapdh]â€‰âˆ’â€‰[CtsiLUCâ€‰âˆ’â€‰CtsiGAPDH]). Error denote bars s.d. of Î”Ct value (s.d.â€‰=â€‰âˆš[s.d.target2 + s.d.Gapdh2]). g, RTâ€“qPCR analysis of Brca1, Fancm and Blm mRNA in siRNA-treated Xrcc4Î”/Î” (#11) cells lentivirally transduced with pHIV-EV or pHIV-mXRCC4 (X4). See f for normalization and error bar details. For gel source data, see Supplementary Fig. 1.


Extended Data Figure 7 Breakpoint analysis of Tusâ€“Ter-induced TDs.
a, Span of TDs in Brca1Î”/exon11 6Ã—Ter-HR reporter siFANCM (121 independent TDs), siBRCA1 (44 independent TDs), or siBLM (66 independent TDs) treatment groups. b, Microhomology usage at breakpoint of Tusâ€“Ter-induced TDs for Brca1âˆ†/exon11 cells depleted of FANCM, BRCA1 or BLM. Numbers denote total number of breakpoints with microhomology â‰¤ 5, excluding untemplated insertions. Grey line denotes expected microhomology usage by chance alone. c, Strand preference of mismatch correction in 14 homeologous breakpoints (that is, microhomology with internal mismatches) of Tusâ€“Ter-induced TDs from Brca1Î”/exon11 cells transfected with siRNAs shown. â€˜C/Tâ€™ indicates Câ€“T mismatch. A TD site (that is, Ter-proximal or upstream) that underwent mismatch correction is noted. d, Template switches associated with six TD breakpoints. Cartoon format as in Extended Data Fig. 2a. Light grey arrows identify orientation of TD segments relative to the parental reporter. Grey numbers denote position of Ter-proximal sites relative to first Ter site encountered by rightward fork. Black numbers denote breakpoint microhomology use (bp). Template switch insertions as shown. e, Distribution of Ter-proximal sites of TD breakpoints in Brca1âˆ†/exon11 cells for each treatment group, relative to first Ter site encountered by rightward fork. 10-bp binned data. Grey area/orange triangles denote 6Ã— Ter array. Bottom, distribution of Ter-proximal TD sites in Brca1Î”/exon11 6Ã—Ter-HR reporter cells transfected with siFANCM, siBRCA1 or siBLM. The source data are identical to that used for histograms in the top panels, but has been re-presented as â€˜survivalâ€™ curves, scoring the probability that a Ter-proximal TD site will be positioned to the right of the nucleotide in question. Hence, all groups at nucleotide position âˆ’800 are at 100% and all reach 0% by position +300. Mantelâ€“Cox log-rank statistical tests between all pairs are not significant. f, Distribution of â€˜upstreamâ€™ sites of TD breakpoints in Brca1âˆ†/exon11 cells for each treatment group, relative to splice acceptor of RFP exon B. 100-bp binned data.


Extended Data Figure 8 Analysis of TD and HTGTS breakpoints.
a, Microhomology usage in HTGTS (+) end breakpoints for Tusâ€“Ter-induced translocations from Brca1âˆ†/exon11 cells treated with siLUC (655), siFANCM (612), siBRCA1 (548) or siBLM (633) or Brca1fl/exon11 cells treated with siLUC control (636) siFANCM (658), siBRCA1 (403) or siBLM (405) or I-SceI-induced HTGTS breakpoints for Brca1âˆ†/exon11 cells treated with siFANCM (all: 954; +: 506; âˆ’: 403). Breakpoints with insertions or with microhomology use >6 were not included in this analysis. Note that HTGTS breakpoints at Tusâ€“Ter are microhomology skewed in comparison to HTGTS breakpoints at I-SceI. b, Comparison of distributions of Ter-proximal TD sites and HTGTS (+) end breakpoint distribution for Brca1Î”/exon11 6Ã—Ter cells treated with siFANCM (679), siBRCA1 (630), or siBLM (724). Mantelâ€“Cox log-rank test for TD versus HTGTS: siFANCM, Pâ€‰<â€‰0.0001; siBRCA1, Pâ€‰<â€‰0.0001; siBLM, Pâ€‰<â€‰0.0001. Gehanâ€“Breslowâ€“Wilcoxon log-rank statistical test: siFANCM TD versus HTGTS, Pâ€‰<â€‰0.0001; siBRCA1 TD versus HTGTS, Pâ€‰<â€‰0.0001; siBLM TD versus HTGTS, Pâ€‰<â€‰0.0001. Right panel, distribution of Tus-induced HTGTS (+) end breakpoint distributions relative to the Ter array in Brca1Î”/exon11 6Ã—Ter cells transfected with siLUC (786). Mantelâ€“Cox log-rank test for HTGTS: siLUC versus siFANCM, Pâ€‰=â€‰0.0171; siLUC versus siBRCA1, Pâ€‰=â€‰0.0003; siLUC versus siBLM, Pâ€‰<â€‰0.0001; siFANCM versus siBRCA1, Pâ€‰=â€‰0.1528; siFANCM versus siBLM, Pâ€‰=â€‰0.0017; siBLM versus siBRCA1, Pâ€‰=â€‰0.1213. Gehanâ€“Breslowâ€“Wilcoxon log-rank test for HTGTS: siLUC versus siFANCM, Pâ€‰=â€‰0.3108; siLUC versus siBRCA1, Pâ€‰=â€‰0.0009; siLUC versus siBLM, Pâ€‰<â€‰0.0001; siFANCM versus siBRCA1, Pâ€‰=â€‰0.0166; siFANCM versus siBLM, Pâ€‰<â€‰0.0001; siBLM versus siBRCA1, Pâ€‰=â€‰0.0751. 6Ã—Ter array indicated by the grey-shaded region. Orange triangles denote individual Ter sites within the 6Ã—Ter array. Nucleotide position 0 represents first nucleotide of first Ter site encountered by the rightward fork. For all Brca1âˆ†/exon11 treatment groups and Brca1fl/exon11 cells depleted of FANCM, each sample group represents pooled data from three independent biological replicates. For all other Brca1fl/exon11 treatment groups, data shown are from two pooled biological replicates.


Extended Data Figure 9 BRCA1 loss in ovarian and breast carcinomas is associated with widespread TDs of approximately 10 kb (group 1 TDs).
a, Analysis of 92 human ovarian carcinoma genomes (available through the Australian Ovarian Cancer Study (AOCS); http://www.aocstudy.org) and 560 breast carcinoma (BC) genomes (available through the Wellcome Trust Sanger Institute; http://cancer.sanger.ac.uk/cosmic), including 163 triple-negative breast cancer (TNBC) genomes. For each dataset, samples are sorted on the x axis based on increasing number of somatic TDs. y axis: log10 of TD span (in kilobases) within each cancer genome, with median marked with circle. Samples featuring a TDP group 1 profile are indicated in orange. Abrogation of BRCA1 and BRCA2 (by germline mutation, somatic mutation or promoter methylation), and of CDK12 (by somatic mutation) is noted according to key. b, Top, exact numbers of samples analysed for each dataset and each genetic/genomic subgroup indicated in boxes, with digits colour-coded according to key in a. Orange boxes denote group 1 TDP; white boxes denote not group 1 TDP. The numbers comprise only samples for which the relevant genetic annotation is available. Bar charts show percentages of cancer samples with abrogation of BRCA1 (red) or BRCA2 (blue) among the two cancer subsets with or without a TDP group 1 profile; P values calculated by Fisherâ€™s exact test. c, Percentages of cancer samples with (orange) or without (grey) a TDP group 1 profile among the entire datasets and the subsets of samples showing abrogation of BRCA1 (B1m) or BRCA2 (B2m); P values calculated by probability mass function.


Extended Data Figure 10 Downregulation of BRCA1 expression is the most prominent and consistent transcriptional feature of ovarian and breast carcinomas associated with TDP group 1 profile.
Box plots comparing expression levels between cancer samples with (orange) or without (grey) a TDP group 1 profile, relative to nine DNA replication/repair genes, for which a role as potential contributors to the widespread TD formation in cancer has been investigated or suggested. Numbers under each dataset represent number of cancers for which expression data are available. P values calculated by Studentâ€™s t-test.
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