New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens

Journal name:
Nature
Volume:
546,
Pages:
289–292
Date published:
DOI:
doi:10.1038/nature22336
Received
Accepted
Published online

Fossil evidence points to an African origin of Homo sapiens from a group called either H. heidelbergensis or H. rhodesiensis. However, the exact place and time of emergence of H. sapiens remain obscure because the fossil record is scarce and the chronological age of many key specimens remains uncertain. In particular, it is unclear whether the present day ‘modern’ morphology rapidly emerged approximately 200 thousand years ago (ka) among earlier representatives of H. sapiens1 or evolved gradually over the last 400 thousand years2. Here we report newly discovered human fossils from Jebel Irhoud, Morocco, and interpret the affinities of the hominins from this site with other archaic and recent human groups. We identified a mosaic of features including facial, mandibular and dental morphology that aligns the Jebel Irhoud material with early or recent anatomically modern humans and more primitive neurocranial and endocranial morphology. In combination with an age of 315 ± 34 thousand years (as determined by thermoluminescence dating)3, this evidence makes Jebel Irhoud the oldest and richest African Middle Stone Age hominin site that documents early stages of the H. sapiens clade in which key features of modern morphology were established. Furthermore, it shows that the evolutionary processes behind the emergence of H. sapiens involved the whole African continent.

At a glance

Figures

  1. Facial reconstruction of Irhoud 10.
    Figure 1: Facial reconstruction of Irhoud 10.

    a, b, Frontal (a) and basal (b) views. This superimposition of Irhoud 10 (beige) and Irhoud 1 (light blue) represents one possible alignment of the facial bones of Irhoud 10. Nine alternative reconstructions were included in the statistical shape analysis of the face (see Methods and Fig. 3). The maxilla, zygomatic bone and supra-orbital area of Irhoud 10 are more robust than for Irhoud 1. Scale bar, 20 mm.

  2. Irhoud 11 mandible (lateral and occlusal views).
    Figure 2: Irhoud 11 mandible (lateral and occlusal views).

    See Methods for the reconstruction. The bi-condylar breadth of the Irhoud 11 mandible fits the width of the corresponding areas on the Irhoud 2 skull exactly. Scale bar, 20 mm.

  3. Comparative shape analysis.
    Figure 3: Comparative shape analysis.

    a, Principal component analysis (PCA) of the facial shape. EMH (black) and RMH (blue) are well separated from Neanderthals and archaic Middle Pleistocene hominins. Irhoud (Ir) 1 and all nine alternative reconstructions of Irhoud 10 (pink stars and pink 99% confidence ellipse, see Methods) fall within the RMH variation. b, PCA of the endocranial shape. RMH (blue), Neanderthals (red) and Homo erectus (green) are separated. Archaic Middle Pleistocene hominins (orange) plot with Neanderthals. Irhoud 1 and 2 (pink stars) and some EMH (black) fall outside the RMH variation. Shape differences are visualized in Extended Data Fig. 5a. Sample compositions and abbreviations can be found in the Methods.

  4. Mandibular morphology.
    Extended Data Fig. 1: Mandibular morphology.

    a, Symphyseal section of the Irhoud 11 mandible showing the mental angle. b, Mental area of Irhoud 11 before virtual reconstruction (top) and Irhoud 3 (bottom). Both images are surface models generated from micro-computed tomography data. c, Bivariate plot of mandibular corpus breadth versus height at the mental foramen. Irhoud 11 (pink star) falls within the EMH distribution and has one of the largest corpus heights among Middle to Late Pleistocene hominins. Values are in mm. n indicates sample size. Data sources and sample compositions can be found in the Methods. Scale bar, 20 mm.

  5. Dental morphology.
    Extended Data Fig. 2: Dental morphology.

    a, Shape–space PCA plot of Late Early and Middle Pleistocene archaic Homo, Neanderthals and RMH M1 crown outlines. The deformed mean crown outlines in the four directions of the PCs are drawn at the extremity of each axis. Sample compositions and abbreviations can be found in the Methods. b, EDJ morphology of the M2 and P4. Top left, the PCA analysis of the EDJ shape of the M2 places Irhoud 11 intermediate between H. erectus and RMH (along with other north Africa fossil humans) and distinct from Neanderthals. Surface models illustrate EDJ shape changes along PC1 (bottom left) and PC2 (top right); the former separating H. erectus from RMH, Neanderthals and north African EMH and the latter separating Neanderthals from RMH and north African EMH. Bottom right, a PCA analysis of the EDJ shape of the P4 groups Irhoud 11 with modern and fossil humans.

  6. Shape analysis of I2 roots.
    Extended Data Fig. 3: Shape analysis of I2 roots.

    A between-group PCA shows a complete separation between Neanderthals and a worldwide sample of recent modern humans based on subtle shape differences. Irhoud 11 (pink star) plots at the fringes of RMH, close to the EMH from Contrebandiers 1 (Tem). Colour-coded Procrustes group mean shapes are plotted in the same orientation as the I2 root surface of Irhoud 11. Although Irhoud 11 is more similar, overall, to Neanderthals in terms of root size, its root shape is clearly modern. The H. erectus specimen KNM-WT 15000 and hypothetical EMH Tabun C2 have incisor root shapes similar to Neanderthals, suggesting that roots that are labially more convex than in RMH represent a conserved primitive condition with limited taxonomical value. Sample compositions and abbreviations can be found in the Methods.

  7. Shape analysis of the external vault.
    Extended Data Fig. 4: Shape analysis of the external vault.

    a, PC scores of PC1 and PC2 of external braincase shape in H. erectus, archaic Middle Pleistocene Homo, geographically diverse RMH and Neanderthals. Results are consistent with the analysis of endocranial shape (Fig. 3a). However, several EMH and Upper Palaeolithic specimens fall outside the RMH variation. This is probably owing to the projecting supraorbital tori in these specimens. b, Shape changes associated with PC1 (two standard deviations in either direction) shown as thin-plate spline deformation grids in lateral and oblique view. PC1 captures a contrast between elongated braincases with projecting supraorbital tori (low scores, in black) and a more globular braincase with gracile supraorbital tori (high scores, in red). Sample compositions and abbreviations can be found in the Methods.

  8. Facial and endocranial shape differences among Homo groups.
    Extended Data Fig. 5: Facial and endocranial shape differences among Homo groups.

    Visualizations of GMM shape analyses in Fig. 3. a, Average endocranial shape differences between H. erectus, recent H. sapiens and Neanderthals. Thin-plate spline grids are exaggerated. b, Visualization of shape changes along PC1 in Fig. 3b in frontal, lateral and superior view; two standard deviations in either direction from the mean shape (grey, negative; black, positive). c, Shape changes along PC2. All recent and fossil modern humans (low scores along PC2) share smaller, orthognathic faces, that differ from the larger, robust and prognathic faces of the Middle Pleistocene humans and Neanderthals (high scores along PC1). Arrow length is colour-coded (short, blue; long, red). As these visualizations are affected by the Procrustes superimposition, we also show grids for the maxilla and the supraorbital area. The arrow points to the plane of the maxillary thin-plate spline (red) in the template configuration.

Tables

  1. List of hominin specimens
    Extended Data Table 1: List of hominin specimens
  2. Measurements of the Irhoud 11 mandible after reconstruction
    Extended Data Table 2: Measurements of the Irhoud 11 mandible after reconstruction
  3. Dental measurements (upper dentition)
    Extended Data Table 3: Dental measurements (upper dentition)
  4. Dental measurements (lower dentition)
    Extended Data Table 4: Dental measurements (lower dentition)
  5. Morphological dental trait comparison
    Extended Data Table 5: Morphological dental trait comparison

References

  1. Stringer, C. Modern human origins: progress and prospects. Phil. Trans. R. Soc. B 357, 563579 (2002)
  2. Bräuer, G. The origin of modern anatomy: by speciation or intraspecific evolution? Evol. Anthropol. 17, 2237 (2008)
  3. Richter, D. et al. The age of the Jebel Irhoud (Morocco) hominins and the origins of the Middle Stone Age. Nature http://dx.doi.org/10.1038/nature22335 (2017)
  4. Ennouchi, E. Le deuxième crâne de l’homme d’Irhoud. Annales de Paléontologie (Vértébrés) LIV, 117128 (1968)
  5. Hublin, J.-J. & Tillier, A. M. in Aspects of Human Evolution Vol. 21 Symposia of the Society for the study of Human Biology, Volume XXI (ed. Stringer, C. B.) 167186 (Taylor & Francis, 1981)
  6. Hublin, J.-J., Tillier, A. M. & Tixier, J. L’humerus d’enfant moustérien (Homo 4) du Jebel Irhoud (Maroc) dans son contexte archéologique. Bull. Mem. Soc. Anthropol. Paris 4, 115141 (1987)
  7. Tixier, J., Brugal, J.-P., Tillier, A.-M., Bruzeket, J. & Hublin, J.-J. in Actes des 1ères Journées Nationales d’Archéologie et du Patrimoine. Préhistoire Vol. 1 149153 (Société Marocaine d’Archéologie et du Patrimoine, 2001)
  8. Amani, F. & Geraads, D. Le gisement moustérien du Djebel Irhoud, Maroc: précisions sur la faune et la biochronologie, et description d’un nouveau reste humain. Comptes Rendus à l'Académie des Sciences de Paris 316, 847852 (1993)
  9. Ennouchi, E. Un Néanderthalien: l’homme du Jebel Irhoud (Maroc). Anthropologie 66, 279299 (1962)
  10. Stringer, C. B in Recent advances in Primatology. (eds Chivers, D. J. & Joysey, K. A.) 395418 (Academic, 1978)
  11. Hublin, J.-J. Recent human evolution in northwestern Africa. Phil. Trans. R. Soc. B 337, 185191 (1992)
  12. Geraads, D. et al. The rodents from the late middle Pleistocene hominid-bearing site of J’bel Irhoud, Morocco, and their chronological and paleoenvironmental implications. Quat. Res. 80, 552561 (2013)
  13. Smith, T. M. et al. Earliest evidence of modern human life history in North African early Homo sapiens. Proc. Natl Acad. Sci. USA 104, 61286133 (2007)
  14. Gonder, M. K., Mortensen, H. M., Reed, F. A., de Sousa, A. & Tishkoff, S. A. Whole-mtDNA genome sequence analysis of ancient African lineages. Mol. Biol. Evol. 24, 757768 (2007)
  15. McDougall, I., Brown, F. H. & Fleagle, J. G. Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature 433, 733736 (2005)
  16. White, T. D. et al. Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature 423, 742747 (2003)
  17. Smith, F. H. in Continuity or Replacement, Controversies in Homo sapiens evolution (eds Bräuer, G. & Smith, F. H.) 145156 (A. A. Balkema, Zagreb, 1992)
  18. Bruner, E. & Pearson, O. Neurocranial evolution in modern humans: the case of Jebel Irhoud 1. Anthropol. Sci. 121, 3141 (2013)
  19. Bermúdez de Castro, J. M. & Martinón-Torres, M. Evolutionary interpretation of the modern human-like facial morphology of the Atapuerca Gran Dolina-TD6 hominins. Anthropol. Sci. 122, 149155 (2014)
  20. Schwartz, J. H. & Tattersall, I. The human chin revisited: what is it and who has it? J. Hum. Evol. 38, 367409 (2000)
  21. Trinkaus, E. Dental remains from the Shanidar adult Neanderthals. J. Hum. Evol. 7, 369382 (1978)
  22. Gunz, P. et al. A uniquely modern human pattern of endocranial development. Insights from a new cranial reconstruction of the Neandertal newborn from Mezmaiskaya. J. Hum. Evol. 62, 300313 (2012)
  23. Klein, R. G. The Human Career: Human Biological and Cultural Origins 3rd edn (Chicago Univ. Press, 2009)
  24. Grün, R. et al. Direct dating of Florisbad hominid. Nature 382, 500501 (1996)
  25. Stringer, C. The Origin of Our Species. (Allen Lane, Penguin, 2011)
  26. Harvati, K. et al. The later Stone Age calvaria from Iwo Eleru, Nigeria: morphology and chronology. PLoS ONE 6, e24024 (2011)
  27. Gunz, P. et al. Early modern human diversity suggests subdivided population structure and a complex out-of-Africa scenario. Proc. Natl Acad. Sci. USA 106, 60946098 (2009)
  28. Arsuaga, J. L. et al. Neandertal roots: cranial and chronological evidence from Sima de los Huesos. Science 344, 13581363 (2014)
  29. Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222226 (2012)
  30. Weaver, T. D. Did a discrete event 200,000–100,000 years ago produce modern humans? J. Hum. Evol. 63, 121126 (2012)
  31. Wollny, G. et al. MIA - a free and open source software for gray scale medical image analysis. Source Code Biol. Med. 8, 20 (2013)
  32. Bookstein, F. L. Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med. Image Anal. 1, 225243 (1997)
  33. Gunz, P., Mitteroecker, P. & Bookstein, F. L. in Modern Morphometrics in Physical Anthropology. (ed. Slice, D.E.) 7398 (Kluwer Academic/Plenum Publishers, 2005)
  34. Gunz, P. & Mitteroecker, P. Semilandmarks: a method for quantifying curves and surfaces. Hystrix 24, 103109 (2013)
  35. Wiley, D. F. et al. Evolutionary Morphing. In 16th IEEE Visualization Conference (VIS 2005) 55, 431438 (American Journal of Physical Anthropology, 2005)
  36. Freidline, S. E., Gunz, P., Harvati, K. & Hublin, J.-J. Middle Pleistocene human facial morphology in an evolutionary and developmental context. J. Hum. Evol. 63, 723740 (2012)
  37. Neubauer, S., Gunz, P. & Hublin, J.-J. The pattern of endocranial ontogenetic shape changes in humans. J. Anat. 215, 240255 (2009)
  38. Harvati, K., Gunz, P. & Grigorescu, D. Cioclovina (Romania): affinities of an early modern European. J. Hum. Evol. 53, 732746 (2007)
  39. Benazzi, S. et al. Early dispersal of modern humans in Europe and implications for Neanderthal behaviour. Nature 479, 525528 (2011)
  40. Bailey, S. E., Benazzi, S. & Hublin, J.-J. Allometry, merism, and tooth shape of the upper deciduous M2 and permanent M1. Am. J. Phys. Anthropol. 154, 104114 (2014)
  41. Benazzi, S. et al. Cervical and crown outline analysis of worn Neanderthal and modern human lower second deciduous molars. Am. J. Phys. Anthropol. 149, 537546 (2012)
  42. Skinner, M. M., Gunz, P., Wood, B. A. & Hublin, J.-J. Enamel–dentine junction (EDJ) morphology distinguishes the lower molars of Australopithecus africanus and Paranthropus robustus. J. Hum. Evol. 55, 979988 (2008)
  43. Skinner, M. M., Gunz, P., Wood, B. A., Boesch, C. & Hublin, J.-J. Discrimination of extant Pan species and subspecies using the enamel–dentine junction morphology of lower molars. Am. J. Phys. Anthropol. 140, 234243 (2009)
  44. Spoor, F. et al. Reconstructed Homo habilis type OH 7 suggests deep-rooted species diversity in early Homo. Nature 519, 8386 (2015)
  45. Beucher, S. & Lantuéjoul, C. in International Workshop on Image Processing: Real-Time Edge and Motion Detection 2.12.12 (Rennes, France, 1979)
  46. Le Cabec, A., Gunz, P., Kupczik, K., Braga, J. & Hublin, J.-J. Anterior tooth root morphology and size in Neanderthals: taxonomic and functional implications. J. Hum. Evol. 64, 169193 (2013)
  47. Mitteroecker, P. & Gunz, P. Advances in geometric morphometrics. Evol. Biol. 36, 235247 (2009)
  48. Gunz, P., Mitteroecker, P., Neubauer, S., Weber, G. W. & Bookstein, F. L. Principles for the virtual reconstruction of hominin crania. J. Hum. Evol. 57, 4862 (2009)
  49. Rohlf, F. J. & Slice, D. Extensions of the procrustes method for the optimal superimposition of landmarks. Syst. Zool. 39, 4059 (1990)
  50. Mitteroecker, P. & Bookstein, F. Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evol. Biol. 38, 100114 (2011)
  51. R Development Core Team. R: a language and environment for statistical computing http://www.r-project.org(R Foundation for Statistical Computing, Vienna, Austria, 2012)
  52. Arambourg, C. & Biberson, P. The fossil human remains from the Paleolithic site of Sidi Abderrahman (Morocco). Am. J. Phys. Anthropol. 14, 467489 (1956)
  53. Sausse, F. La mandibule atlanthropienne de la carrière Thomas I (Casablanca). Anthropologie 79, 81112 (1975)
  54. Rightmire, G. P. Comparative studies of Late Pleistocene human remains from Klasies River Mouth, South Africa. J. Hum. Evol. 20, 131156 (1991)
  55. Stewart, T. D. in Annual Report of the Smithsonian Institution 521533 (US Government Printing Office, Washington, 1962)
  56. Tillier, A.-M. in Le Squelette moustérien de Kébara 2 97112 (Centre National de la Recherche Scientifique, Paris, 1991)
  57. Stewart, T. D. The Neanderthal skeletal remains from Shanidar Cave, Iraq: a summary of findings to date. Proc. Am. Phil. Soc. 121, 121165 (1977)
  58. Trinkaus, E. The Shanidar Neanderthals (Academic, 1983)
  59. Leroi-Gourhan, A. Étude des Restes Humains Fossiles provenant des Grottes d’Arcy-sur-Cure (Masson et Cie, 1958)
  60. Daura, J. et al. A Neandertal mandible from the Cova del Gegant (Sitges, Barcelona, Spain). J. Hum. Evol. 49, 5670 (2005)
  61. Topinard, P. Les caracteres simiens de la machoire de la Naulette. Rev. Antropol. 15, 385431 (1886)
  62. Blake, C. C. On a human jaw from the cave of La Naulette, near Dinant, Belgium. Anthropol. Rev. 5, 294303 (1867)
  63. Leguebe, A. & Toussaint, M. La Mandibule et les Cubitus de la Naulette: Morphologie et Morphométrie 15 (Editions du Centre National de la Recherche Scientifique, 1988)
  64. Heim, J. L. Les hommes fossiles de La Ferrassie (Dordogne) et le problem de la definition des Neandertaliens classiques. III. Squelette céphalique. Anthropologie 78, 321378 (1974)
  65. de Lumley, M.-A. Les Néandertaliens de la grotte de l’Hortus. Etudes Quaternaires 1, 375385 (1972)
  66. Condemi, S. et al. Possible interbreeding in late Italian Neanderthals? New data from the Mezzena jaw (Monti Lessini, Verona, Italy). PLoS ONE 8, e59781 (2013)
  67. Corrain, C. Resti scheletrici umani del ‘Riparo Mezzena’. Memorie del Museo civico di Storia naturale di Verona 16, 97101 (1968)
  68. Walker, M. J., Lombardi, A. V., Zapata, J. & Trinkaus, E. Neandertal mandibles from the Sima de las Palomas del Cabezo Gordo, Murcia, southeastern Spain. Am. J. Phys. Anthropol. 142, 261272 (2010)
  69. Martin, H. Machoire humaine moustérienne trouvée dans la station de La Quina. L’homme préhistorique 13, 321 (1926)
  70. Martin, H. Position stratigraphique des Ossements humains recueillis dans le Moustérien de La Quina de 1908 à 1912. Bull. Soc. Préhistorique 9, 700709 (1912)
  71. Martin, H. L’Homme fossile de la Quina. (Libraire Octave Doin, 1923)
  72. Pap, I., Tillier, A. M., Arensburg, B. & Chech, M. The Subalyuk Neanderthal remains (Hungary): a re-examination. Ann. Hist. Nat. Mus. Natl. Hung. 88, 233270 (1996)
  73. Sanchez, F. Comparative biometrical study of the Mousterian mandible from Cueva del Boquete de Zafarraya (Málaga, Spain). Hum. Evol. 14, 125138 (1999)
  74. Vlcˇek, E. Fossile Menschenfunde von Weimar-Ehringsdorf, Weimarer Monographien zur Ur- und Frühgeschichte Vol. 30 (Landesamt für Archäologische Denkmalpflege, 1993)
  75. Condemi, S. Les néandertaliens de La Chaise: abri Bourgeois-Delaunay. Comité des travaux historiques et scientifiques (CTHS, 2001)
  76. Bar-Yosef, O. & Vandermeersch, B. (eds) Le squelette moustérien de Kébara 2. (Editions du Centre National de la Recherche Scientifique, 1991)
  77. Arambourg, C. & Hoffstetter, R. Le gisement de Ternifine Vol. 1. (Masson, 1963)
  78. Hooton, E.A., Hencken, H.O & Snow, Ch. E. The ancient Palestinian: Skhu¯ l V reconstruction. 17, 510 (American School of Prehistoric Research, 1953)
  79. Sollas, W. J. The Chancelade skull. J. R. Anthropol. Inst. 57, 89122 (1927)
  80. Martin, H. Caractères des squelettes humains quaternaires de la vallée du Roc (Charente). Bull. Mem. Soc. Anthropol. Paris 8, 103129 (1927)
  81. Vercellotti, G., Alciati, G., Richards, M. P. & Formicola, V. The Late Upper Paleolithic skeleton Villabruna 1 (Italy): a source of data on biology and behavior of a 14,000 year-old hunter. J. Anthropol. Sci. 86, 143163 (2008)
  82. Formicola, V. Una mandibola umana dal deposito dell’Epigravettiano finale delle Arene Candite (scavi 197O). Rev. Antropol. 64, 271278 (1986)
  83. Odano, A. M. & Riquet, R. Le gisement préhistorique de Dar-es-Soltane 2. Champ de tir de El Menzeh à Rabat (Maroc). Note préliminaire. 2-Étude anthropologique des restes post-atériens. Bull. d’Archéologie Marocaine 11, 2563 (1978)
  84. Debénath, A. Nouveaux restes humains atériens du Maroc. CR Acad. Sci. Paris 290, 851852 (1980)
  85. Crognier, E. & Dupouy-Madre, M. Les Natoufiens du Nahal Oren (Ouadi Fallah) Etude anthropologique. Paéorient 2, 103121 (1974)
  86. Henke, W. Vergleichend-morphologische Kennzeichnung der Jungpaläolithiker von Oberkassel bei Bonn. Z. Morphol. Anthropol. 75, 2744 (1984)
  87. Hershkovitz, I. et al. Ohalo II H2: a 19,000-year-old skeleton from a water-logged site at the Sea of Galilee, Israel. Am. J. Phys. Anthropol. 96, 215234 (1995)
  88. Soficaru, A., Dobos, A. & Trinkaus, E. Early modern humans from the Pestera Muierii, Baia de Fier, Romania. Proc. Natl Acad. Sci. USA 103, 1719617201 (2006)
  89. Crevecoeur, I. Etude anthropologique des restes humains de Nazlet Khater (Paléolithique Superieur, Egypte). PhD Thesis, Université Sciences et Technologies Bordeaux I (2006)
  90. Thoma, A. Morphology and affinities of the Nazlet Khater man. J. Hum. Evol. 13, 287296 (1984)
  91. Anderson, J. E. In The Prehistory of Nubia Vol. 2 (ed. Wendorf, F.) 9961040 (Southern Methodist Univ. Press,1968)
  92. Crevecoeur, I. From the Nile to the Danube: a comparison of the Nazlet Khater 2 and Oase 1 early modern human mandibles. Anthropologie 42, 203213 (2004)
  93. Trinkaus, E. et al. An early modern human from the Pes¸ tera cu Oase, Romania. Proc. Natl Acad. Sci. USA 100, 1123111236 (2003)
  94. Trinkaus, E. & Svoboda, J. (eds) Early Modern Human Evolution in Central Europe. The People of Dolní Veˇ stonice and Pavlov. The Dolni Vestonice Studies Vol. 12 (Oxford Univ. Press, 2006)
  95. Sládek, V., Trinkaus, E., Hillson, S. W. & Holliday, T. W. The People of the Pavlovian. Skeletal Catalogue and Osteometrics of the Gravettian Fossil Hominids from Dolni Vestonice and Pavlov. The Dolni Vestonice Studies Vol. 5 1244 (BRNO, 2000)
  96. Drozdová, E. The evaluation of a rediscovered fragment of human lower jaw, No 21 from Prˇedmostí u Prˇerova. Archeologické rozhledy 53, 452460 (2001)
  97. Dutour, O. Palimpseste paléoanthropologique sur l’«Homme fossile d’Asselar» (Sahara). Travaux du Laboratoire d’Anthropologie et de Préhistoire des Pays de la Méditerranée Occidentale 1, 7383 (1992)
  98. Gambier, D. Vestiges humains du gisement d’Isturitz (Pyrénées—Atlantiques): étude anthropologique et analyse des traces d’action humaine intentionelle. Antiquités nationales 22–23, 926 (1990)
  99. Bräuer, G. & Mehlman, M. J. Hominid molars from a middle Stone Age level at the Mumba Rock Shelter, Tanzania. Am. J. Phys. Anthropol. 75, 6976 (1988)
  100. Protsch, R. R. R. Di Archäologischen und Anthropologischen Ergebnisse der Kohl-Larsen-Expeditionen in Nord-Tanzania 19331939. (Institut für Urgeschichte der Universität Tübingen, 1981)
  101. Wood, B. A. & Van Noten, F. L. Preliminary observations on the BK 8518 mandible from Baringo, Kenya. Am. J. Phys. Anthropol. 69, 117127 (1986)
  102. Rightmire, G. P. Middle Pleistocene hominids from Olduvai Gorge, northern Tanzania. Am. J. Phys. Anthropol. 53, 225241 (1980)
  103. Bermúdez de Castro, J. M. Dental remains from Atapuerca (Spain) I. Metrics. J. Hum. Evol. 15, 265287 (1986)
  104. Grine, F. E. & Franzen, J. L. Fossil hominid teeth from the Sangiran Dome (Java, Indonesia). Courier Forschungsinstitut Senckenberg 171, 75103 (1994)
  105. Le Cabec, A., Gunz, P., Kupczik, K., Braga, J. & Hublin, J.-J. Anterior tooth root morphology and size in Neanderthals: taxonomic and functional implications. J. Hum. Evol. 64, 169193 (2013)
  106. Turner, C. G. II, Nichol, C. R. & Scott, G. R. Advances in Dental Anthropology (eds Kelley, M., & Larsen, C.) 1331 (Wiley Liss, 1991)
  107. Bailey, S. E. Neandertal Dental Morphology: Implications for modern human origins. PhD thesis, Arizona State Univ. (2002)

Download references

Author information

Affiliations

  1. Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany

    • Jean-Jacques Hublin,
    • Sarah E. Freidline,
    • Simon Neubauer,
    • Inga Bergmann,
    • Adeline Le Cabec &
    • Philipp Gunz
  2. Chaire Internationale de Paléoanthropologie, Collège de France, Paris, France

    • Jean-Jacques Hublin
  3. Institut National des Sciences de l’Archéologie et du Patrimoine, Rabat, Morocco

    • Abdelouahed Ben-Ncer
  4. Department of Anthropology, Center for the Study of Human Origins, New York University, New York, New York 10003, USA

    • Shara E. Bailey
  5. School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NR, UK

    • Matthew M. Skinner
  6. Department of Cultural Heritage, University of Bologna, Ravenna 48121, Italy

    • Stefano Benazzi
  7. Paleoanthropology, Senckenberg Center for Human Evolution and Paleoenvironment, and DFG Center for Advanced Studies: “Words, Bones, Genes, Tools”, Eberhard Karls Universität, Tübingen, Germany

    • Katerina Harvati

Contributions

The study was conceived by J.-J.H., A.B.-N. and P.G. Cranial metrical and non-metrical data were compiled and analysed by J.-J.H., A.B.-N., S.E.F., S.N., K.H. and P.G. Mandibular metrical and non-metrical data were compiled and analysed by J.-J.H. and I.B. Dental metrical and non-metrical data were compiled and analysed by S.E.B., M.M.S., A.L.C. and S.B. J.-J.H. and P.G. wrote the manuscript with contributions from all other authors.

Competing financial interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to:

Reviewer Information Nature thanks R. G. Klein, C. Stringer and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

Extended data figures and tables

Extended Data Figures

  1. Extended Data Figure 1: Mandibular morphology. (138 KB)

    a, Symphyseal section of the Irhoud 11 mandible showing the mental angle. b, Mental area of Irhoud 11 before virtual reconstruction (top) and Irhoud 3 (bottom). Both images are surface models generated from micro-computed tomography data. c, Bivariate plot of mandibular corpus breadth versus height at the mental foramen. Irhoud 11 (pink star) falls within the EMH distribution and has one of the largest corpus heights among Middle to Late Pleistocene hominins. Values are in mm. n indicates sample size. Data sources and sample compositions can be found in the Methods. Scale bar, 20 mm.

  2. Extended Data Figure 2: Dental morphology. (227 KB)

    a, Shape–space PCA plot of Late Early and Middle Pleistocene archaic Homo, Neanderthals and RMH M1 crown outlines. The deformed mean crown outlines in the four directions of the PCs are drawn at the extremity of each axis. Sample compositions and abbreviations can be found in the Methods. b, EDJ morphology of the M2 and P4. Top left, the PCA analysis of the EDJ shape of the M2 places Irhoud 11 intermediate between H. erectus and RMH (along with other north Africa fossil humans) and distinct from Neanderthals. Surface models illustrate EDJ shape changes along PC1 (bottom left) and PC2 (top right); the former separating H. erectus from RMH, Neanderthals and north African EMH and the latter separating Neanderthals from RMH and north African EMH. Bottom right, a PCA analysis of the EDJ shape of the P4 groups Irhoud 11 with modern and fossil humans.

  3. Extended Data Figure 3: Shape analysis of I2 roots. (71 KB)

    A between-group PCA shows a complete separation between Neanderthals and a worldwide sample of recent modern humans based on subtle shape differences. Irhoud 11 (pink star) plots at the fringes of RMH, close to the EMH from Contrebandiers 1 (Tem). Colour-coded Procrustes group mean shapes are plotted in the same orientation as the I2 root surface of Irhoud 11. Although Irhoud 11 is more similar, overall, to Neanderthals in terms of root size, its root shape is clearly modern. The H. erectus specimen KNM-WT 15000 and hypothetical EMH Tabun C2 have incisor root shapes similar to Neanderthals, suggesting that roots that are labially more convex than in RMH represent a conserved primitive condition with limited taxonomical value. Sample compositions and abbreviations can be found in the Methods.

  4. Extended Data Figure 4: Shape analysis of the external vault. (111 KB)

    a, PC scores of PC1 and PC2 of external braincase shape in H. erectus, archaic Middle Pleistocene Homo, geographically diverse RMH and Neanderthals. Results are consistent with the analysis of endocranial shape (Fig. 3a). However, several EMH and Upper Palaeolithic specimens fall outside the RMH variation. This is probably owing to the projecting supraorbital tori in these specimens. b, Shape changes associated with PC1 (two standard deviations in either direction) shown as thin-plate spline deformation grids in lateral and oblique view. PC1 captures a contrast between elongated braincases with projecting supraorbital tori (low scores, in black) and a more globular braincase with gracile supraorbital tori (high scores, in red). Sample compositions and abbreviations can be found in the Methods.

  5. Extended Data Figure 5: Facial and endocranial shape differences among Homo groups. (243 KB)

    Visualizations of GMM shape analyses in Fig. 3. a, Average endocranial shape differences between H. erectus, recent H. sapiens and Neanderthals. Thin-plate spline grids are exaggerated. b, Visualization of shape changes along PC1 in Fig. 3b in frontal, lateral and superior view; two standard deviations in either direction from the mean shape (grey, negative; black, positive). c, Shape changes along PC2. All recent and fossil modern humans (low scores along PC2) share smaller, orthognathic faces, that differ from the larger, robust and prognathic faces of the Middle Pleistocene humans and Neanderthals (high scores along PC1). Arrow length is colour-coded (short, blue; long, red). As these visualizations are affected by the Procrustes superimposition, we also show grids for the maxilla and the supraorbital area. The arrow points to the plane of the maxillary thin-plate spline (red) in the template configuration.

Extended Data Tables

  1. Extended Data Table 1: List of hominin specimens (176 KB)
  2. Extended Data Table 2: Measurements of the Irhoud 11 mandible after reconstruction (232 KB)
  3. Extended Data Table 3: Dental measurements (upper dentition) (189 KB)
  4. Extended Data Table 4: Dental measurements (lower dentition) (273 KB)
  5. Extended Data Table 5: Morphological dental trait comparison (222 KB)

Additional data