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            Abstract
Gene translation depends on accurate decoding of mRNA, the structural mechanism of which remains poorly understood. Ribosomes decode mRNA codons by selecting cognate aminoacyl-tRNAs delivered by elongation factor Tu (EF-Tu). Here we present high-resolution structural ensembles of ribosomes with cognate or near-cognate aminoacyl-tRNAs delivered by EF-Tu. Both cognate and near-cognate tRNA anticodons explore the aminoacyl-tRNA-binding site (A site) of an open 30S subunit, while inactive EF-Tu is separated from the 50S subunit. A transient conformation of decoding-centre nucleotide G530 stabilizes the cognate codonâ€“anticodon helix, initiating step-wise â€˜latchingâ€™ of the decoding centre. The resulting closure of the 30S subunit docks EF-Tu at the sarcinâ€“ricin loop of the 50S subunit, activating EF-Tu for GTP hydrolysis and enabling accommodation of the aminoacyl-tRNA. By contrast, near-cognate complexes fail to induce the G530 latch, thus favouring open 30S pre-accommodation intermediates with inactive EF-Tu. This work reveals long-sought structural differences between the pre-accommodation of cognate and near-cognate tRNAs that elucidate the mechanism of accurate decoding.
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                    Figure 1: Cryo-EM structures of cognate or near-cognate ternary complex on the 70S ribosome.


Figure 2: Interactions of cognate ternary complex with the 30S subunit.


Figure 3: Decoding-centre rearrangements in structures Iâ€“III.


Figure 4: Activation of EF-Tu GTPase from structures Iâ€“III.


Figure 5: Differences between the cognate and near-cognate structures.


Figure 6: Structural mechanism of initial aminoacyl-tRNA selection during mRNA decoding.
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Extended data figures and tables

Extended Data Figure 1 Overview of classification procedures and resolution curves for all structures.
a, Scheme of refinement and classification procedures for the cognate dataset. b, Fourier shell correlation (FSC) curves for the cognate structures. c, Scheme of refinement and classification procedures for the near-cognate dataset. d, FSC curves for the near-cognate structures.


Extended Data Figure 2 Cryo-EM densities for ternary complex in each structure.
a, Cryo-EM density for ternary complex and codon in structure I is shown at 3Ïƒ after applying a B-factor of âˆ’36â€‰Ã…2. b, Cryo-EM density for cognate tRNA and codon in structure I is shown as in a. c, Cryo-EM density for the anticodon and codon, which are not base paired, in structure I is shown at 4Ïƒ after applying a B-factor of âˆ’36â€‰Ã…2. d, Cryo-EM density for ternary complex and codon in structure II is shown at 3Ïƒ after applying a B-factor of âˆ’50â€‰Ã…2. e, Cryo-EM density for cognate tRNA and codon in structure II is shown as in d. f, Cryo-EM density for the anticodon and codon, which are base paired, in structure II is shown at 4.5Ïƒ after applying a B-factor of âˆ’50â€‰Ã…2. g, Cryo-EM density for ternary complex and codon in structure III is shown at 4Ïƒ after applying a B-factor of âˆ’100â€‰Ã…2. h, Cryo-EM density for cognate tRNA and codon in structure II is shown as in g. i, Cryo-EM density for the anticodon and codon, which are base paired, in structure III is shown at 5Ïƒ after applying a B-factor of âˆ’150â€‰Ã…2. j, Cryo-EM density for ternary complex and codon in structure I-nc is shown at 3Ïƒ. k, Cryo-EM density for near-cognate tRNA and codon in structure I-nc is shown as in j. l, Cryo-EM density for the anticodon and codon, which are not base paired, in structure I-nc is shown at 3.5Ïƒ for T tRNA and 16S rRNA or 4Ïƒ for mRNA. m, Cryo-EM density for ternary complex and codon in structure II-nc is shown at 3Ïƒ after applying a B-factor of âˆ’25â€‰Ã…2. n, Cryo-EM density for near-cognate A*/T tRNA and codon in structure II-nc is shown as in m. o, Cryo-EM density for the anticodon and codon, which are interacting in structure II-nc is shown at 4.5Ïƒ after applying a B-factor of âˆ’25â€‰Ã…2. p, Cryo-EM density for ternary complex and codon in structure III-nc is shown at 4Ïƒ after applying a B-factor of âˆ’50â€‰Ã…2. q, Cryo-EM density for near-cognate tRNA and codon in structure II-nc is shown as in p. r, Cryo-EM density for the anticodon and codon, which are base paired, in structure III-nc is shown at 5.2Ïƒ after applying a B-factor of âˆ’60â€‰Ã…2.


Extended Data Figure 3 Local resolution of cryo-EM maps of the cognate and near-cognate complexes.
Local resolution of each cryo-EM map was determined using Blocres. a, An overview of the structure I map. The unsharpened map is shown at 5Ïƒ, coloured using a scale ranging from 3.5â€‰Ã… to 8.5â€‰Ã… (left). b, An overview of the structure II map shown as in a. c, An overview of the structure III map. The unsharpened map is shown at 5Ïƒ, coloured using a scale ranging from 3.0â€‰Ã… to 8.0â€‰Ã… (left). dâ€“f, Slab views at the ribosome interior in maps corresponding to structure I (d), structure II (e) and structure III (f), prepared and coloured as in a, b and c, respectively. g, Close-up view of decoding centre of structure I. The map was sharpened by applying a B-factor of âˆ’36â€‰Ã…2 and is shown at 4.5Ïƒ, coloured as in a. h, Close-up view of decoding centre of structure II. The map was sharpened by applying a B-factor of âˆ’50â€‰Ã…2 and is shown at 5Ïƒ, coloured as in a. i, Close-up view of decoding centre of structure III. The map was sharpened by applying a B-factor of âˆ’100â€‰Ã…2 and is shown at 4Ïƒ, coloured as in c. j, An overview of the structure I-nc map. The unsharpened map is shown at 5Ïƒ and is coloured using a scale ranging from 3.5â€‰Ã… to 8.5â€‰Ã… (left). k, An overview of the structure II-nc map, as in j. l, An overview of the structure III-nc map, as in j. mâ€“o, Slab views at the ribosome interior in maps corresponding to structure I-nc (m), structure II-nc (n) and structure III-nc (o), prepared and coloured as in j. p, Close-up view of decoding centre of structure I-nc. The unsharpened map is shown at 4.5Ïƒ, coloured as in j. q, Close-up view of decoding centre of structure II-nc. The map was sharpened by applying a B-factor of âˆ’25â€‰Ã…2 and is shown at 5Ïƒ, coloured as in j. r, Close-up view of the decoding centre of structure III-nc. The map was sharpened by applying a B-factor of âˆ’50â€‰Ã…2 and is shown at 5Ïƒ, coloured as in j.


Extended Data Figure 4 30S domain closure and aminoacyl-tRNA conformations in cognate and near-cognate complexes.
a, Comparison of the 30S conformations among structures I (magenta), II (grey) and III (multi-coloured). Superposition was achieved by structural alignment of 23S rRNA. b, Superposition of structure II (grey) and III (multi-coloured) highlighting the movement of the shoulder including the 530 loop towards the 30S body including h44. c, Different conformations of aminoacyl-tRNA in structures I and II: T tRNA (structure I) is relaxed, whereas A*/T tRNA (structure II) is kinked to base-pair with mRNA. d, Interaction of T tRNA in structure I with the decoding centre is shown in surface representation. All atoms within 15â€‰Ã… of residues 30â€“38 of T tRNA are shown except for 16S residues 950â€“964 and 984â€“985, which were omitted for clarity. e, Interaction of A*/T tRNA in structure II with the decoding centre is shown in surface representation as in d. f, Cognate tRNA anticodon samples positions between those in structures I and II. Additional focused classification into four classes revealed intermediate classes with A-site tRNA density midway between the T tRNA and A*/T tRNA conformations. The cryo-EM density, within 15â€‰Ã… of residues 30â€“38 of T or A*/T tRNA, is shown with exceptions as in d, at 3Ïƒ after applying a B-factor of +200â€‰Ã…2. g, Near-cognate tRNA anticodon samples positions between those in structure I-nc and structure II-nc. Additional focused classification into four classes revealed intermediate classes with A-site tRNA density midway between the T tRNA and A*/T tRNA conformations. The cryo-EM density is shown as in f.


Extended Data Figure 5 Sliding of tRNA elbow along the L11 stalk from structures Iâ€“III towards the P-site tRNA agrees with distance changes inferred from smFRET studies of tRNA decoding.
a, Overview of structure III with box highlighting the location of tRNA elbow and L11 stalk. b, tRNA elbow residues G19 and C57 slide along L11 stalk residues 1095 and 1067 from structure II (grey) to structure III (green). Superposition was achieved by aligning on residues 1095 and 1067 of L11 stalk. c, The elbow of T tRNA (green) and L11 stalk in structure I. d, The elbow of A*/T tRNA (green) and L11 stalk in structure II. e, The elbow of A/T tRNA (green) and L11 stalk in structure III. f, The distance between nucleotide 47 of T tRNA (magenta) and nucleotide 8 of P-site tRNA (orange) is shown. These locations were used in smFRET studies of tRNA decoding8,76. g, The distance between nucleotide 47 of A*/T tRNA (grey) and nucleotide 8 of P-site tRNA (orange) is shown. h, The distance between nucleotide 47 of A/T tRNA (green) and nucleotide 8 of P-site tRNA (orange) is shown. The distance changes between T or A*/T tRNA to A/T tRNA are consistent with the change from a low FRET value of 0.35 in the early tRNA decoding states to a mid-FRET value of 0.5 in the GTP activated tRNA decoding state, as described in the Methods.


Extended Data Figure 6 Conformational differences in the decoding centres of cognate and near-cognate structures Iâ€“III.
a, Cryo-EM density (shown as mesh) of the decoding centre in structure I. The map was sharpened by applying a B-factor of âˆ’36â€‰Ã…2 and density is shown at 3.5Ïƒ for mRNA and anticodon of T tRNA, 5.5Ïƒ for G530, 4.0Ïƒ for A1492, A1493 and A1913. b, Cryo-EM density for the G530 region in structure I is shown with two conformations of G530-syn (top) and G530-anti (bottom). Both conformations fit with similar local cross-correlation coefficients (Methods). The map was sharpened by applying a B-factor of âˆ’75â€‰Ã…2 and density is shown at 5Ïƒ. c, Cryo-EM density for the decoding centre in structure II. The map was sharpened by applying a B-factor of âˆ’75â€‰Ã…2 and density is shown at 5.5Ïƒ for G530 or at 4Ïƒ for the mRNA and the anticodon of A*/T tRNA, A1492, A1493 and A1913. Density for residue 1492 (shown in grey) is compatible with two conformations, in and out of h44. d, Cryo-EM density for the G530 region in structure II. The map was sharpened by applying a B-factor of âˆ’100â€‰Ã…2 and density is shown at 5Ïƒ. e, Cryo-EM density for the decoding centre in structure III. The map was sharpened by applying a B-factor of âˆ’150â€‰Ã…2 and density is shown at 4.5Ïƒ for the mRNA and the anticodon of A/T tRNA, G530, A1492, A1493 and A1913. f, Cryo-EM density for the G530 region in structure III. The map was sharpened by applying a B-factor of âˆ’150â€‰Ã…2 and density is shown at 5Ïƒ. g, Cryo-EM density (grey mesh) showing the anti-conformation of G530 (yellow model) in structure II. The map was sharpened by applying a B-factor of âˆ’100â€‰Ã…2 and density is shown at 5Ïƒ. h, i, Cryo-EM density showing the anti-conformation of G530 in structure III. The map was sharpened by applying a B-factor of âˆ’150â€‰Ã…2 and density is shown at 5Ïƒ. j, Cryo-EM density of the decoding centre in structure I-nc. The map was not B-factor sharpened and density is shown at 3.75Ïƒ for mRNA, the anticodon of T tRNA, A1492, A1493 and A1913, or at 5Ïƒ for G530. k, Cryo-EM density for the decoding centre in structure II-nc. The map was sharpened by applying a B-factor of âˆ’25â€‰Ã…2 and density is shown at 4.3Ïƒ for mRNA, the anticodon of tRNA, A1492, A1493 and A1913, or at 5.5Ïƒ for G530. l, Cryo-EM density of structure II-nc for the 30S shoulder including G530. The map was sharpened by applying a B-factor of âˆ’120â€‰Ã…2 and density is shown at 3.5Ïƒ. m, Cryo-EM density for the decoding centre in structure III-nc. The map was sharpened by applying a B-factor of âˆ’50â€‰Ã…2 and density is shown at 4.75Ïƒ for mRNA and the anticodon of tRNA, G530, A1492 and A1493, and at 4.5 for A1913. n, Cryo-EM density of structure III-nc for the 30S shoulder including G530. The map was sharpened by applying a B-factor of âˆ’100â€‰Ã…2 and density is shown at 4.5Ïƒ. o, Cryo-EM density showing the syn-conformation of G530 in structure II-nc. The map was sharpened by applying a B-factor of âˆ’120â€‰Ã…2 and density is shown at 3.7Ïƒ. p, q, Cryo-EM density showing the anti-conformation of G530 in structure III-nc. The map was sharpened by applying a B-factor of âˆ’120â€‰Ã…2 and density is shown at 3.3Ïƒ. r, Nucleotide 34 of the anticodon stacks on C1054 in the cognate structure II. s, Cryo-EM density (grey mesh) for the cognate structure II. The map was sharpened by applying a B-factor of âˆ’100â€‰Ã…2 and density is shown at 5Ïƒ. t, Cryo-EM density for the cognate structure III. The map was sharpened by applying a B-factor of âˆ’150â€‰Ã…2 and density is shown at 5.5Ïƒ. u, Nucleotide 34 of the near-cognate anticodon in structure II-nc is shifted by approximately 2â€‰Ã… from C1054, relative to its position in the cognate complex (shown in r). v, Cryo-EM density for the near-cognate structure II-nc. The map was sharpened by applying a B-factor of âˆ’120â€‰Ã…2 and density is shown at 3.5Ïƒ. w, Cryo-EM density for the near-cognate structure III-nc. The map was sharpened by applying a B-factor of âˆ’50â€‰Ã…2 and density is shown at 5.5Ïƒ. Modification of U34 of tRNALys to 5-methylaminomethyl-2-thiouridine (mnm5s2U34) is shown in uâ€“w.


Extended Data Figure 7 Anchoring of EF-Tu to the 30S shoulder in structures I, II and III and to the SRL in structures III and III-nc.
a, Overview of structure III with boxes highlighting locations of EF-Tu contacts to 30S shoulder (dashed box) and to SRL (solid box). b, The contacts of EF-Tu with the 30S shoulder are similar among structures I (purple), II (grey) and III (red). c, Cryo-EM density for EF-Tu (red) and 16S rRNA (pale yellow) in structure I. The map was sharpened by applying a B-factor of âˆ’36â€‰Ã…2 and is shown at 3Ïƒ. d, Cryo-EM density for EF-Tu and 16S rRNA in structure II. The map was sharpened by applying a B-factor of âˆ’75â€‰Ã…2 and is shown at 3.5Ïƒ. e, Cryo-EM density for EF-Tu and 16S rRNA in structure III. The map was sharpened by applying a B-factor of âˆ’100â€‰Ã…2 and is shown at 4.5Ïƒ. f, Cryo-EM density for EF-Tu (red) and the SRL of 23S rRNA (pale cyan) in structure III. The map was sharpened by applying a B-factor of âˆ’150â€‰Ã…2 and is shown at 4.5Ïƒ. g, Cryo-EM density for EF-Tu and SRL of 23S rRNA in structure III-nc. The map was sharpened by applying a B-factor of âˆ’50â€‰Ã…2 and is shown at 4.5Ïƒ.


Extended Data Figure 8 Modifications of A37 in tRNAPhe and tRNALys, and magnesium ion coordination near G530.
a, Cryo-EM density for the codonâ€“anticodon helix in structure II shows that the 2-methylthio moiety of 2-methylthio-N6-(2-isopentenyl)-adenosine at position 37 of tRNAPhe (ms2i6A37) stacks on U1 of the A-site codon. The map was sharpened by applying a B-factor of âˆ’75â€‰Ã…2 and density is shown at 4.8Ïƒ. b, Cryo-EM density for the codonâ€“anticodon helix in structure III shows that ms2i6A37 of tRNAPhe stacks on U1 similarly to that in structure II. The map was sharpened by applying a B-factor of âˆ’150â€‰Ã…2 and density is shown at 6Ïƒ. c, Cryo-EM density for the codonâ€“anticodon helix in structure III-nc shows that 6-threonylcarbamoyl adenosine at position 37 of tRNALys (t6A37) stacks on A1. The map was sharpened by applying a B-factor of âˆ’120â€‰Ã…2 and density is shown at 4.5Ïƒ. d, Cryo-EM density for structure II shows the N6 modification of ms2i6A37 of tRNAPhe in close proximity to U33. The map was sharpened by applying a B-factor of âˆ’75â€‰Ã…2 and density is shown at 4Ïƒ. e, Cryo-EM density for structure III shows the N6 modification of ms2i6A37 of tRNAPhe in close proximity to U33. The map was sharpened by applying a B-factor of âˆ’150â€‰Ã…2 and density is shown at 4Ïƒ. f, Cryo-EM density for structure III-nc shows the N6 modification of t6A37 of tRNALys. The map was sharpened by applying a B-factor of âˆ’120â€‰Ã…2 and density is shown at 3.5Ïƒ. g, In structure II, three magnesium ions (magenta) are coordinated (dotted lines) by G530 and codonâ€“anticodon helix (in some instances, the coordination probably occurs via water molecules). Density for magnesium ions (mesh) was sharpened by applying a B-factor of âˆ’75â€‰Ã…2, shown at 4Ïƒ. h, In structure III, the magnesium ions shift with G530. Density was sharpened by applying a B-factor of âˆ’150â€‰Ã…2, shown at 4Ïƒ. i, In structure III-nc, three magnesium ions are seen at equivalent position to those in structure III. Density was sharpened by applying a B-factor of âˆ’120â€‰Ã…2, shown at 3Ïƒ.


Extended Data Table 1 Refinement statistics for all structuresFull size table


Extended Data Table 2 Distances among cognate structures I to III and near-cognate structures I-nc to III-nc, reflecting movements of the 30S shoulder domain relative to the head and body of the 30S subunitFull size table
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Video 1: Animation showing the mechanism of tRNA discrimination by the ribosome, inferred from ensemble cryo-EM.
Rejection of a near-cognate tRNA (blue) is followed by acceptance of the cognate tRNA (green). Four scenes are shown: (1) A view of the complete 70S complex, as in Figure 1. Near-cognate ternary complex (EF-Tu is red) samples the A site of the open 30S subunit (Structures I-nc and II-nc), without inducing 30S subunit rearrangements. Cognate ternary complex samples the A site (I and II), resulting in the movement of the 30S shoulder (â€œ30S closedâ€�). This leads to tRNA stabilization and docking of EF-Tu at the SRL, resulting in a GTPase-activated state (III). (2) A close-up view of the 30S A site, showing the movement of the 30S shoulder upon stabilization of the cognate tRNA (III). (3) A close-up view of the decoding center. Near-cognate tRNA does not engage with G530, which remains in an OFF conformation (I-nc and II-nc). Cognate codon-anticodon helix induces G530 to switch to the SEMI-ON state (II; hydrogen bonds are shown by dotted lines). Stabilization of nucleotides A1492, A1493 and A1913 coincides with G530 movement into the ON state, latching the decoding center and shifting the 30S shoulder (III). (4) EF-Tu is at the 30S shoulder and separated from the SRL in the 30S-open states (I-nc, II-nc, I and II). EF-Tu docks at the SRL upon shoulder movement (III), activating catalytic residue H84 to hydrolyze GTP. EF-Tu rearrangement upon GTP hydrolysis (PDB: 5AFI) results in EF-Tu dissociation and accommodation of cognate tRNA into the 50S A site (not shown). (MOV 6892 kb)
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