Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From morphogen to morphogenesis and back

Abstract

A long-term aim of the life sciences is to understand how organismal shape is encoded by the genome. An important challenge is to identify mechanistic links between the genes that control cell-fate decisions and the cellular machines that generate shape, therefore closing the gap between genotype and phenotype. The logic and mechanisms that integrate these different levels of shape control are beginning to be described, and recently discovered mechanisms of cross-talk and feedback are beginning to explain the remarkable robustness of organ assembly. The 'full-circle' understanding of morphogenesis that is emerging, besides solving a key puzzle in biology, provides a mechanistic framework for future approaches to tissue engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: From patterning to morphogenesis in the Drosophila blastoderm.
Figure 2: Cellular regulation of apical constriction and cell intercalation.
Figure 3: Morphogenetic feedback mechanisms.

Similar content being viewed by others

References

  1. Thomasen, A. L. “Historia animalium” compared to “Gynaecia” in the literature of the Middle Ages. Clio Med. 15, 5–24 (1980).

    ADS  CAS  PubMed  Google Scholar 

  2. Keller, R. Physical biology returns to morphogenesis. Science 338, 201–203 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Heisenberg, C.-P. & Bellaïche, Y. Forces in tissue morphogenesis and patterning. Cell 153, 948–962 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Nüsslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980). The first systematic study on the genetic regulation of embryonic development; it remains unparalleled in impact and importance.

    Article  ADS  PubMed  Google Scholar 

  5. Lawrence, P. A. Morphogens: how big is the big picture? Nature Cell Biol. 3, E151–E154 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Green, J. B. A. & Sharpe, J. Positional information and reaction-diffusion: two big ideas in developmental biology combine. Development 142, 1203–1211 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Munro, E. M. & Odell, G. M. Polarized basolateral cell motility underlies invagination and convergent extension of the ascidian notochord. Development 129, 13–24 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Dawes-Hoang, R. E. et al. Folded gastrulation, cell shape change and the control of myosin localization. Development 132, 4165–4178 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Lecuit, T. Adhesion remodeling underlying tissue morphogenesis. Trends Cell Biol. 15, 34–42 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Settleman, J. & Baum, B. Cell shape and tissue morphogenesis. Semin. Cell Dev. Biol. 19, 213–214 (2008).

    Article  PubMed  Google Scholar 

  11. Zallen, J. A. & Blankenship, J. T. Multicellular dynamics during epithelial elongation. Semin. Cell Dev. Biol. 19, 263–270 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barrallo-Gimeno, A. & Nieto, M. A. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132, 3151–3161 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Revenu, C. & Gilmour, D. EMT 2.0: shaping epithelia through collective migration. Curr. Opin. Genet. Dev. 19, 338–342 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Thiery, J.-P., Acloque, H., Huang, R. Y. J. & Nieto, M. A. Epithelial–mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Friedl, P., Locker, J., Sahai, E. & Segall, J. E. Classifying collective cancer cell invasion. Nature Cell Biol. 14, 777–783 (2012).

    Article  PubMed  CAS  Google Scholar 

  16. Friedl, P. & Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nature Rev. Mol. Cell Biol. 10, 445–457 (2009).

    Article  CAS  Google Scholar 

  17. Keller, R. E. An experimental analysis of the role of bottle cells and the deep marginal zone in gastrulation of Xenopus laevis. J. Exp. Zool. 216, 81–101 (1981).

    Article  CAS  PubMed  Google Scholar 

  18. Martin, A. C. & Goldstein, B. Apical constriction: themes and variations on a cellular mechanism driving morphogenesis. Development 141, 1987–1998 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Leptin, M. & Grunewald, B. Cell shape changes during gastrulation in Drosophila. Development 110, 73–84 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Sweeton, D., Parks, S., Costa, M. & Wieschaus, E. Gastrulation in Drosophila: the formation of the ventral furrow and posterior midgut invaginations. Development 112, 775–789 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Martin, A. C., Kaschube, M. & Wieschaus, E. F. Pulsed contractions of an actin–myosin network drive apical constriction. Nature 457, 495–499 (2009). This paper shows that apical constriction in the Drosophila mesoderm is driven by a medially localized pulsatile actin–myosin network in incremental, contractile steps.

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Mason, F. M., Tworoger, M. & Martin, A. C. Apical domain polarization localizes actin–myosin activity to drive ratchet-like apical constriction. Nature Cell Biol. 15, 926–936 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Vasquez, C. G., Tworoger, M. & Martin, A. C. Dynamic myosin phosphorylation regulates contractile pulses and tissue integrity during epithelial morphogenesis. J. Cell Biol. 206, 435–450 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Solon, J., Kaya-Çopur, A., Colombelli, J. & Brunner, D. Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 137, 1331–1342 (2009).

    Article  PubMed  Google Scholar 

  25. Kölsch, V., Seher, T., Fernandez-Ballester, G. J., Serrano, L. & Leptin, M. Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2. Science 315, 384–386 (2007). This study identifies a target of Twist called T48 that recruits RhoGEF2 specifically to the apical membrane in ventral-furrow cells and elucidated the interplay between Rho1 signalling and Snail in the apical relocalization of adherens junctions.

    Article  ADS  PubMed  CAS  Google Scholar 

  26. Weng, M. & Wieschaus, E. Myosin-dependent remodeling of adherens junctions protects junctions from Snail-dependent disassembly. J. Cell Biol. 212, 219–229 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sawyer, J. K., Harris, N. J., Slep, K. C., Gaul, U. & Peifer, M. The Drosophila afadin homologue Canoe regulates linkage of the actin cytoskeleton to adherens junctions during apical constriction. J. Cell Biol. 186, 57–73 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oda, H., Tsukita, S. & Takeichi, M. Dynamic behavior of the cadherin-based cell–cell adhesion system during Drosophila gastrulation. Dev. Biol. 203, 435–450 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Leptin, M. twist and snail as positive and negative regulators during Drosophila mesoderm development. Genes Dev. 5, 1568–1576 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Nieto, M. A. Epithelial plasticity: a common theme in embryonic and cancer cells. Science 342, 1234850 (2013).

    Article  PubMed  CAS  Google Scholar 

  31. Chanet, S. & Schweisguth, F. Regulation of epithelial polarity by the E3 ubiquitin ligase Neuralized and the Bearded inhibitors in Drosophila. Nature Cell Biol. 14, 467–476 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Mathew, S. J., Rembold, M. & Leptin, M. Role for Traf4 in polarizing adherens junctions as a prerequisite for efficient cell shape changes. Mol. Cell. Biol. 31, 4978–4993 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Costa, M., Wilson, E. T. & Wieschaus, E. A putative cell signal encoded by the folded gastrulation gene coordinates cell shape changes during Drosophila gastrulation. Cell 76, 1075–1089 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Manning, A. J., Peters, K. A., Peifer, M. & Rogers, S. L. Regulation of epithelial morphogenesis by the G protein-coupled receptor mist and its ligand fog. Sci. Signal. 6, ra98 (2013). Refs 34 and 63 report the identification of the long sought-after receptors for Fog, which function additively in the mesoderm.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kim, H. Y., Varner, V. D. & Nelson, C. M. Apical constriction initiates new bud formation during monopodial branching of the embryonic chicken lung. Development 140, 3146–3155 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Plageman, T. F. et al. Pax6-dependent Shroom3 expression regulates apical constriction during lens placode invagination. Development 137, 405–415 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Plageman, T. F. et al. A Trio–RhoA–Shroom3 pathway is required for apical constriction and epithelial invagination. Development 138, 5177–5188 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eiraku, M., Adachi, T. & Sasai, Y. Relaxation–expansion model for self-driven retinal morphogenesis. Bioessays 34, 17–25 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Haigo, S. L., Hildebrand, J. D., Harland, R. M. & Wallingford, J. B. Shroom induces apical constriction and is required for hingepoint formation during neural tube closure. Curr. Biol. 13, 2125–2137 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Hildebrand, J. D. Shroom regulates epithelial cell shape via the apical positioning of an actomyosin network. J. Cell Sci. 118, 5191–5203 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Nishimura, T. & Takeichi, M. Shroom3-mediated recruitment of Rho kinases to the apical cell junctions regulates epithelial and neuroepithelial planar remodeling. Development 135, 1493–1502 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Hildebrand, J. D. & Soriano, P. Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice. Cell 99, 485–497 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Lee, C., Le, M. P. & Wallingford, J. B. The shroom family proteins play broad roles in the morphogenesis of thickened epithelial sheets. Dev. Dyn. 238, 1480–1491 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lang, R. A., Herman, K., Reynolds, A. B., Hildebrand, J. D. & Plageman, T. F. p120-catenin-dependent junctional recruitment of Shroom3 is required for apical constriction during lens pit morphogenesis. Development 141, 3177–3187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chung, M.-I., Nascone-Yoder, N. M., Grover, S. A., Drysdale, T. A. & Wallingford, J. B. Direct activation of Shroom3 transcription by Pitx proteins drives epithelial morphogenesis in the developing gut. Development 137, 1339–1349 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ernst, S. et al. Shroom3 is required downstream of FGF signalling to mediate proneuromast assembly in zebrafish. Development 139, 4571–4581 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Das, D. et al. The interaction between Shroom3 and Rho-kinase is required for neural tube morphogenesis in mice. Biol. Open 3, 850–860 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Irvine, K. D. & Wieschaus, E. Cell intercalation during Drosophila germband extension and its regulation by pair-rule segmentation genes. Development 120, 827–841 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Bertet, C., Sulak, L. & Lecuit, T. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429, 667–671 (2004). Using the Drosophila embryo, this paper reveals a mechanism of cell intercalation that was subsequently shown to drive tissue elongation in a variety of organs and organisms.

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Blankenship, J. T., Backovic, S. T., Sanny, J. S. P., Weitz, O. & Zallen, J. A. Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev. Cell 11, 459–470 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Lienkamp, S. S. et al. Vertebrate kidney tubules elongate using a planar cell polarity–dependent, rosette-based mechanism of convergent extension. Nature Genet. 44, 1382–1387 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Williams, M., Yen, W., Lu, X. & Sutherland, A. Distinct apical and basolateral mechanisms drive planar cell polarity-dependent convergent extension of the mouse neural plate. Dev. Cell 29, 34–46 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rozbicki, E. et al. Myosin-II-mediated cell shape changes and cell intercalation contribute to primitive streak formation. Nature Cell Biol. 17, 397–408 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Shih, J. & Keller, R. Cell motility driving mediolateral intercalation in explants of Xenopus laevis. Development 116, 901–914 (1992).

    Article  CAS  PubMed  Google Scholar 

  55. Keller, R. et al. Mechanisms of convergence and extension by cell intercalation. Phil. Trans. R. Soc. Lond. B 355, 897–922 (2000).

    Article  ADS  CAS  Google Scholar 

  56. Tada, M. & Heisenberg, C.-P. Convergent extension: using collective cell migration and cell intercalation to shape embryos. Development 139, 3897–3904 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Shindo, A. & Wallingford, J. B. PCP and septins compartmentalize cortical actomyosin to direct collective cell movement. Science 343, 649–652 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zallen, J. A. & Wieschaus, E. Patterned gene expression directs bipolar planar polarity in Drosophila. Dev. Cell 6, 343–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Rauzi, M., Verant, P., Lecuit, T. & Lenne, P.-F. Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nature Cell Biol. 10, 1401–1410 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Fernandez-Gonzalez, R. et al. Dynamics are regulated by tension in intercalating cells. Dev. Cell 17, 736–743 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Paré, A. C. et al. A positional Toll receptor code directs convergent extension in Drosophila. Nature 515, 523–527 (2014). The patterned expression of three Toll receptor family members is shown to link anterior–posterior tissue patterning to cellular behaviour that drives cell intercalation and germband elongation.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  62. Nishimura, T., Honda, H. & Takeichi, M. Planar cell polarity links axes of spatial dynamics in neural-tube closure. Cell 149, 1084–1097 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Kerridge, S. et al. Modular activation of Rho1 by GPCR signalling imparts polarized myosin II activation during morphogenesis. Nature Cell Biol. 18, 261–270 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Wang, Y.-C., Khan, Z., Kaschube, M. & Wieschaus, E. F. Differential positioning of adherens junctions is associated with initiation of epithelial folding. Nature 484, 390–393 (2012). This paper shows that epithelial folding in the Drosophila embryo can be initiated by the basal movement of adherens junctions, independently of myosin activity.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Turner, F. R. & Mahowald, A. P. Scanning electron microscopy of Drosophila melanogaster embryogenesis: II. gastrulation and segmentation. Dev. Biol. 57, 403–416 (1977).

    Article  CAS  PubMed  Google Scholar 

  66. Vincent, A., Blankenship, J. T. & Wieschaus, E. Integration of the head and trunk segmentation systems controls cephalic furrow formation in Drosophila. Development 124, 3747–3754 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Spencer, A. K., Siddiqui, B. A. & Thomas, J. H. Cell shape change and invagination of the cephalic furrow involves reorganization of F-actin. Dev. Biol. 402, 192–207 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Barrett, K., Leptin, M. & Settleman, J. The Rho GTPase and a putative RhoGEF mediate a signaling pathway for the cell shape changes in Drosophila gastrulation. Cell 91, 905–915 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Aigouy, B. et al. Cell flow reorients the axis of planar polarity in the wing epithelium of Drosophila. Cell 142, 773–786 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E. H. K. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007–1009 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Collinet, C., Rauzi, M., Lenne, P.-F. & Lecuit, T. Local and tissue-scale forces drive oriented junction growth during tissue extension. Nature Cell Biol. 17, 1247–1258 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Rauzi, M. et al. Embryo-scale tissue mechanics during Drosophila gastrulation movements. Nature Commun. 6, 8677 (2015).

    Article  ADS  CAS  Google Scholar 

  73. Desprat, N., Supatto, W., Pouille, P., Beaurepaire, E. & Farge, E. Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev. Cell 15, 470–477 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Butler, L. C. et al. Cell shape changes indicate a role for extrinsic tensile forces in Drosophila germ-band extension. Nature Cell Biol. 11, 859–864 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Lye, C. M. et al. Mechanical coupling between endoderm invagination and axis extension in Drosophila. PLoS Biol. 13, e1002292 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Martin, A. C., Gelbart, M., Fernandez-Gonzalez, R., Kaschube, M. & Wieschaus, E. F. Integration of contractile forces during tissue invagination. J. Cell Biol. 188, 735–749 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Spahn, P. & Reuter, R. A vertex model of Drosophila ventral furrow formation. PLoS ONE 8, e75051 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hashimoto, H., Robin, F. B., Sherrard, K. M. & Munro, E. M. Sequential contraction and exchange of apical junctions drives zippering and neural tube closure in a simple chordate. Dev. Cell 32, 241–255 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Alexandre, C., Baena-Lopez, A. & Vincent, J.-P. Patterning and growth control by membrane-tethered Wingless. Nature 505, 180–185 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Farin, H. F. et al. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature 530, 340–343 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Kornberg, T. B. Cytonemes and the dispersion of morphogens. Wiley Interdiscip. Rev. Dev. Biol. 3, 445–463 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Averbukh, I., Ben-Zvi, D., Mishra, S. & Barkai, N. Scaling morphogen gradients during tissue growth by a cell division rule. Development 141, 2150–2156 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Snijder, B. & Pelkmans, L. Origins of regulated cell-to-cell variability. Nature Rev. Mol. Cell Biol. 12, 119–125 (2011).

    Article  CAS  Google Scholar 

  84. Curto, M., Cole, B. K., Lallemand, D., Liu, C.-H. & McClatchey, A. I. Contact-dependent inhibition of EGFR signaling by Nf2/Merlin. J. Cell Biol. 177, 893–903 (2007). Refs 84–90 provide mechanistic insights into how changes in cell contact and density can feed back into the activity of key signalling pathways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Frechin, M. et al. Cell-intrinsic adaptation of lipid composition to local crowding drives social behaviour. Nature 523, 88–91 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Etoc, F. et al. A balance between secreted inhibitors and edge sensing controls gastruloid self-organization. Dev Cell 39, 302–315 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Klingner, C. et al. Isotropic actomyosin dynamics promote organization of the apical cell cortex in epithelial cells. J. Cell Biol. 207, 107–121 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Haag, A. et al. An in vivo EGF receptor localization screen in C. elegans identifies the Ezrin homolog ERM-1 as a temporal regulator of signaling. PLoS Genet. 10, e1004341 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Nallet-Staub, F. et al. Cell density sensing alters TGF-β signaling in a cell-type-specific manner, independent from Hippo pathway activation. Dev. Cell 32, 640–651 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Narimatsu, M., Samavarchi-Tehrani, P., Varelas, X. & Wrana, J. L. Distinct polarity cues direct Taz/Yap and TGFβ receptor localization to differentially control TGFβ-induced Smad signaling. Dev. Cell 32, 652–656 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Wang, H. et al. Rap–GEF signaling controls stem cell anchoring to their niche through regulating DE-Cadherin-mediated cell adhesion in the Drosophila testis. Dev. Cell 10, 117–126 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Michel, M., Raabe, I., Kupinski, A. P., Pérez-Palencia, R. & Bökel, C. Local BMP receptor activation at adherens junctions in the Drosophila germline stem cell niche. Nature Commun. 2, 415 (2011).

    Article  ADS  CAS  Google Scholar 

  93. Matusek, T. et al. The ESCRT machinery regulates the secretion and long-range activity of Hedgehog. Nature 516, 99–103 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  94. Harmansa, S., Hamaratoglu, F., Affolter, M. & Caussinus, E. Dpp spreading is required for medial but not for lateral wing disc growth. Nature 527, 317–322 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Nechiporuk, A. & Raible, D. W. FGF-dependent mechanosensory organ patterning in zebrafish. Science 320, 1774–1777 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  96. Lecaudey, V., Cakan-Akdogan, G., Norton, W. H. J. & Gilmour, D. Dynamic Fgf signaling couples morphogenesis and migration in the zebrafish lateral line primordium. Development 135, 2695–2705 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Harding, M. J. & Nechiporuk, A. V. Fgfr–Ras–MAPK signaling is required for apical constriction via apical positioning of Rho-associated kinase during mechanosensory organ formation. Development 139, 3130–3135 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Durdu, S. et al. Luminal signalling links cell communication to tissue architecture during organogenesis. Nature 515, 120–124 (2014). Refs 98 and 99 reveal crucial feedback roles for 3D tissue architecture in regulating cell fate and behaviour during organogenesis in vivo.

    Article  ADS  CAS  PubMed  Google Scholar 

  99. Shyer, A. E., Huycke, T. R., Lee, C., Mahadevan, L. & Tabin, C. J. Bending gradients: how the intestinal stem cell gets its home. Cell 161, 569–580 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Karlsson, L., Lindahl, P., Heath, J. K. & Betsholtz, C. Abnormal gastrointestinal development in PDGF-A and PDGFR-α deficient mice implicates a novel mesenchymal structure with putative instructive properties in villus morphogenesis. Development 127, 3457–3466 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Discher, D. E., Janmey, P. & Wang, Y.-L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  102. Bellas, E. & Chen, C. S. Forms, forces, and stem cell fate. Curr. Opin. Cell Biol. 31, 92–97 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Chanet, S. & Martin, A. C. Mechanical force sensing in tissues. Prog. Mol. Biol. Transl. Sci. 126, 317–352 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006). Refs 104 and 105 elegantly demonstrate that changes in substrate mechanics can influence lineage decisions in cultured stem cells.

    Article  CAS  PubMed  Google Scholar 

  105. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Buckley, C. D. et al. The minimal cadherin–catenin complex binds to actin filaments under force. Science 346, 1254211 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Mouilleron, S., Langer, C. A., Guettler, S., McDonald, N. Q. & Treisman, R. Structure of a pentavalent G-actin•MRTF-A complex reveals how G-actin controls nucleocytoplasmic shuttling of a transcriptional coactivator. Sci. Signal. 4, ra40 (2011).

    Article  PubMed  CAS  Google Scholar 

  109. Sero, J. E. et al. Cell shape and the microenvironment regulate nuclear translocation of NF-κB in breast epithelial and tumor cells. Mol. Syst. Biol. 11, 790 (2015).

    Article  PubMed  CAS  Google Scholar 

  110. Farge, E. Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr. Biol. 13, 1365–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011). The transcriptional regulators YAP and TAZ are shown to act as sensors and mediators of mechanical inputs, therefore providing a mechanism by which force can control gene expression and fate.

    Article  CAS  PubMed  Google Scholar 

  112. Wei, S. C. et al. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1–G3BP2 mechanotransduction pathway. Nature Cell Biol. 17, 678–688 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Piccolo, S., Dupont, S. & Cordenonsi, M. The biology of YAP/TAZ: Hippo signaling and beyond. Physiol. Rev. 94, 1287–1312 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Maître, J.-L. et al. Asymmetric division of contractile domains couples cell positioning and fate specification. Nature 536, 344–348 (2016). This study uncovers a role for mechanics in regulating the first cell-fate decision in the early mouse embryo.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  115. Brunet, T. et al. Evolutionary conservation of early mesoderm specification by mechanotransduction in Bilateria. Nature Commun. 4, 2821 (2013).

    Article  ADS  CAS  Google Scholar 

  116. Benham-Pyle, B. W., Pruitt, B. L. & Nelson, W. J. Mechanical strain induces E-cadherin-dependent Yap1 and β-catenin activation to drive cell cycle entry. Science 348, 1024–1027 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  117. Saha, A. et al. Determining physical properties of the cell cortex. Biophys. J. 110, 1421–1429 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  118. Etournay, R. et al. TissueMiner: a multiscale analysis toolkit to quantify how cellular processes create tissue dynamics. eLife 5, e14334 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Bielmeier, C. et al. Interface contractility between differently fated cells drives cell elimination and cyst formation. Curr. Biol. 26, 563–574 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Morelli, L. G., Uriu, K., Ares, S. & Oates, A. C. Computational approaches to developmental patterning. Science 336, 187–191 (2012).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  121. Eiraku, M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56 (2011). A groundbreaking study that describes the self-assembly of embryonic stem cells into optic-cup organoids in the absence of pre-patterned chemical or mechanical gradients.

    Article  ADS  CAS  PubMed  Google Scholar 

  122. Lancaster, M. A. & Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 1247125 (2014).

    Article  PubMed  CAS  Google Scholar 

  123. Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Davies, J. A. & Cachat, E. Synthetic biology meets tissue engineering. Biochem. Soc. Trans. 44, 696–701 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Morsut, L. et al. Engineering customized cell sensing and response behaviors using synthetic Notch receptors. Cell 164, 780–791 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Eiraku, M., Adachi, T. & Sasai, Y. Relaxation–expansion model for self-driven retinal morphogenesis. Bioessays 34, 17–25 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Turner, D. A., Baillie-Johnson, P. & Martinez Arias, A. Organoids and the genetically encoded self-assembly of embryonic stem cells. Bioessays 38, 181–191 (2016).

    Article  PubMed  Google Scholar 

  128. Parks, S. & Wieschaus, E. The Drosophila gastrulation gene concertina encodes a Gα-like protein. Cell 64, 447–458 (1991).

    Article  CAS  PubMed  Google Scholar 

  129. Kanesaki, T., Hirose, S., Grosshans, J. & Fuse, N. Heterotrimeric G protein signaling governs the cortical stability during apical constriction in Drosophila gastrulation. Mech. Dev. 130, 132–142 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Homem, C. C. F. & Peifer, M. Diaphanous regulates myosin and adherens junctions to control cell contractility and protrusive behavior during morphogenesis. Development 135, 1005–1018 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Fox, D. T. & Peifer, M. Abelson kinase (Abl) and RhoGEF2 regulate actin organization during cell constriction in Drosophila. Development 134, 567–578 (2006).

    Article  CAS  Google Scholar 

  132. Hampoelz, B., Hoeller, O., Bowman, S. K., Dunican, D. & Knoblich, J. A. Drosophila Ric-8 is essential for plasma-membrane localization of heterotrimeric G proteins. Nature Cell Biol. 7, 1099–1105 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Fuse, N., Yu, F. & Hirose, S. Gprk2 adjusts Fog signaling to organize cell movements in Drosophila gastrulation. Development 140, 4246–4255 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Spahn, P., Ott, A. & Reuter, R. The PDZ-GEF protein Dizzy regulates the establishment of adherens junctions required for ventral furrow formation in Drosophila. J. Cell Sci. 125, 3801–3812 (2012).

    CAS  PubMed  Google Scholar 

  135. Sawyer, J. K. et al. A contractile actomyosin network linked to adherens junctions by Canoe/afadin helps drive convergent extension. Mol. Biol. Cell 22, 2491–2508 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhang, Y. et al. The glucosyltransferase Xiantuan of the endoplasmic reticulum specifically affects E-Cadherin expression and is required for gastrulation movements in Drosophila. Dev. Biol. 390, 208–220 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Wang, Y.-C., Khan, Z. & Wieschaus, E. F. Distinct Rap1 activity states control the extent of epithelial invagination via β-catenin. Dev. Cell 25, 299–309 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Menzies, A. S. Mena and vasodilator-stimulated phosphoprotein are required for multiple actin-dependent processes that shape the vertebrate nervous system. J. Neurosci. 24, 8029–8038 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Nakajima, H. & Tanoue, T. Epithelial cell shape is regulated by Lulu proteins via myosin-II. J. Cell Sci. 123, 555 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Simões, S. de M. et al. Rho-kinase directs Bazooka/Par-3 planar polarity during Drosophila axis elongation. Dev. Cell 19, 377–388 (2010).

    Article  CAS  Google Scholar 

  141. Munjal, A., Philippe, J.-M., Munro, E. & Lecuit, T. A self-organized biomechanical network drives shape changes during tissue morphogenesis. Nature 524, 351–355 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  142. Tamada, M., Farrell, D. L. & Zallen, J. A. Abl regulates planar polarized junctional dynamics through β-catenin tyrosine phosphorylation. Dev. Cell 22, 309–319 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Levayer, R., Pelissier-Monier, A. & Lecuit, T. Spatial regulation of Dia and Myosin-II by RhoGEF2 controls initiation of E-cadherin endocytosis during epithelial morphogenesis. Nature Cell Biol. 13, 529–540 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. Simões, S. D. M., Mainieri, A. & Zallen, J. A. Rho GTPase and Shroom direct planar polarized actomyosin contractility during convergent extension. J. Cell Biol. 204, 575–589 (2014).

    Article  PubMed Central  CAS  Google Scholar 

  145. Turing, A. M. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to S. De Renzis, F. Peri and the Gilmour and Leptin groups for discussions. We thank C. Böckel, S. Durdu, A. Shyer and T. Hiiragi for help with Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Darren Gilmour or Maria Leptin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Reviewer Information Nature thanks C.-P. Heisenberg and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilmour, D., Rembold, M. & Leptin, M. From morphogen to morphogenesis and back. Nature 541, 311–320 (2017). https://doi.org/10.1038/nature21348

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature21348

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing