Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tracing the peopling of the world through genomics

Abstract

Advances in the sequencing and the analysis of the genomes of both modern and ancient peoples have facilitated a number of breakthroughs in our understanding of human evolutionary history. These include the discovery of interbreeding between anatomically modern humans and extinct hominins; the development of an increasingly detailed description of the complex dispersal of modern humans out of Africa and their population expansion worldwide; and the characterization of many of the genetic adaptions of humans to local environmental conditions. Our interpretation of the evolutionary history and adaptation of humans is being transformed by analyses of these new genomic data.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline of important milestones in human evolutionary genomics.
Figure 2: Simplified model of human evolutionary history.
Figure 3: Major human migrations across the world inferred through analyses of genomic data.

References

  1. Vigilant, L., Stoneking, M., Harpending, H., Hawkes, K. & Wilson, A. C. African populations and the evolution of human mitochondrial DNA. Science 253, 1503–1507 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Nordborg, M. On the probability of Neanderthal ancestry. Am. J. Hum. Genet. 63, 1237–1240 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meltzer, D. J. First Peoples in a New World (University of California Press, 2009).

    Book  Google Scholar 

  4. Ammerman, A. J. & Biagi, P. The Widening Harvest (Archaeological Institute of America, 2003).

    Google Scholar 

  5. Rasmussen, M. et al. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463, 757–762 (2010). This paper presents the first whole-genome sequence of an ancient human and demonstrates that there is a lack of genetic continuity between Arctic populations.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010). This paper reports the first whole-genome sequence of a Neanderthal and supplies the first convincing evidence for introgression between humans and Neanderthals.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. White, T. D. et al. Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature 423, 742–747 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. McDougall, I., Brown, F. H. & Fleagle, J. G. Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature 433, 733–736 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Grün, R. et al. U-series and ESR analyses of bones and teeth relating to the human burials from Skhul. J. Hum. Evol. 49, 316–334 (2005).

    Article  PubMed  Google Scholar 

  10. Liu, W. et al. The earliest unequivocally modern humans in southern China. Nature 526, 696–699 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Higham, T. et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306–309 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Rosenberg, N. A. et al. Genetic structure of human populations. Science 298, 2381–2385 (2002). This study demonstrates that the human population structure worldwide is correlated with geography and human history.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Tishkoff, S. A. et al. The genetic structure and history of Africans and African Americans. Science 324, 1035–1044 (2009). This article is a comprehensive investigation of genetic variation in Africa.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Busby, G. B. et al. Admixture into and within sub-Saharan Africa. eLife 5, e15266 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pickrell, J. K. et al. The genetic prehistory of southern Africa. Nature Commun. 3, 1143 (2012).

    Article  ADS  CAS  Google Scholar 

  16. Gurdasani, D. et al. The African Genome Variation Project shapes medical genetics in Africa. Nature 517, 327–332 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Bryc, K. et al. Genome-wide patterns of population structure and admixture in West Africans and African Americans. Proc. Natl Acad. Sci. USA 107, 786–791 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Schlebusch, C. M. et al. Genomic variation in seven Khoe-San groups reveals adaptation and complex African history. Science 338, 374–379 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beltrame, M. H., Rubel, M. A. & Tishkoff, S. A. Inferences of African evolutionary history from genomic data. Curr. Opin. Genet. Dev. 41, 159–166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gronau, I., Hubisz, M. J., Gulko, B., Danko, C. G. & Siepel, A. Bayesian inference of ancient human demography from individual genome sequences. Nature Genet. 43, 1031–1034 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Schlebusch, C. M. & Soodyall, H. Extensive population structure in San, Khoe, and mixed ancestry populations from southern Africa revealed by 44 short 5-SNP haplotypes. Hum. Biol. 84, 695–724 (2012).

    Article  PubMed  Google Scholar 

  22. Veeramah, K. R. et al. An early divergence of KhoeSan ancestors from those of other modern humans is supported by an ABC-based analysis of autosomal resequencing data. Mol. Biol. Evol. 29, 617–630 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Tishkoff, S. A. et al. History of click-speaking populations of Africa inferred from mtDNA and Y chromosome genetic variation. Mol. Biol. Evol. 24, 2180–2195 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Stringer, C. Human evolution: out of Ethiopia. Nature 423, 692–695 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Hammer, M. F., Woerner, A. E., Mendez, F. L., Watkins, J. C. & Wall, J. D. Genetic evidence for archaic admixture in Africa. Proc. Natl Acad. Sci. USA 108, 15123–15128 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hsieh, P. et al. Model-based analyses of whole-genome data reveal a complex evolutionary history involving archaic introgression in Central African Pygmies. Genome Res. 26, 291–300 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lachance, J. et al. Evolutionary history and adaptation from high-coverage whole-genome sequences of diverse African hunter-gatherers. Cell 150, 457–469 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hsieh, P. et al. Whole-genome sequence analyses of Western Central African Pygmy hunter-gatherers reveal a complex demographic history and identify candidate genes under positive natural selection. Genome Res. 26, 279–290 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ramachandran, S. et al. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc. Natl Acad. Sci. USA 102, 15942–15947 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jakobsson, M. et al. Genotype, haplotype and copy-number variation in worldwide human populations. Nature 451, 998–1003 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Clark, J. D. et al. Stratigraphic, chronological and behavioural contexts of Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature 423, 747–752 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Pickrell, J. K. et al. Ancient west Eurasian ancestry in southern and eastern Africa. Proc. Natl Acad. Sci. USA 111, 2632–2637 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Henn, B. M. et al. Hunter-gatherer genomic diversity suggests a southern African origin for modern humans. Proc. Natl Acad. Sci. USA 108, 5154–5162 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lahr, M. M. & Foley, R. A. Towards a theory of modern human origins: geography, demography, and diversity in recent human evolution. Am. J. Phys. Anthropol. 27 (suppl.), 137–176 (1998).

    Article  PubMed  Google Scholar 

  35. Groucutt, H. S. et al. Rethinking the dispersal of Homo sapiens out of Africa. Evol. Anthropol. 24, 149–164 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pugach, I., Delfin, F., Gunnarsdottir, E., Kayser, M. & Stoneking, M. Genome-wide data substantiate Holocene gene flow from India to Australia. Proc. Natl Acad. Sci. USA 110, 1803–1808 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reed, F. A. & Tishkoff, S. A. African human diversity, origins and migrations. Curr. Opin. Genet. Dev. 16, 597–605 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Quintana-Murci, L. et al. Genetic evidence of an early exit of Homo sapiens sapiens from Africa through eastern Africa. Nature Genet. 23, 437–441 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Gravel, S. et al. Demographic history and rare allele sharing among human populations. Proc. Natl Acad. Sci. USA 108, 11983–11988 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Harris, K. & Nielsen, R. Inferring demographic history from a spectrum of shared haplotype lengths. PLoS Genet. 9, e1003521 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nature Genet. 46, 919–925 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Scally, A. & Durbin, R. Revising the human mutation rate: implications for understanding human evolution. Nature Rev. Genet. 13, 745–753 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Malaspinas, A. S. et al. A genomic history of Aboriginal Australia. Nature 538, 207–214 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pagani, L. et al. Genomic analyses inform on migration events during the peopling of Eurasia. Nature 538, 238–242 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rasmussen, M. et al. An Aboriginal Australian genome reveals separate human dispersals into Asia. Science 334, 94–98 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49 (2014).

    Article  ADS  PubMed  CAS  Google Scholar 

  49. Wall, J. D. et al. Higher levels of neanderthal ancestry in East Asians than in Europeans. Genetics 194, 199–209 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vernot, B. & Akey, J. M. Complex history of admixture between modern humans and Neandertals. Am. J. Hum. Genet. 96, 448–453 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sankararaman, S. et al. The genomic landscape of Neanderthal ancestry in present-day humans. Nature 507, 354–357 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sankararaman, S., Patterson, N., Li, H., Pääbo, S. & Reich, D. The date of interbreeding between Neandertals and modern humans. PLoS Genet. 8, e1002947 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vernot, B. & Akey, J. M. Resurrecting surviving Neandertal lineages from modern human genomes. Science 343, 1017–1021 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Kim, B. Y. & Lohmueller, K. E. Selection and reduced population size cannot explain higher amounts of Neandertal ancestry in East Asian than in European human populations. Am. J. Hum. Genet. 96, 454–461 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Skoglund, P. et al. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science 336, 466–469 (2012). The first multi-individual study of ancient genomes; it supports the idea that migration drove the Neolithic transition in Europe.

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015). This study uses SNP data from 69 Europeans who lived 3–8 kyr ago to point to the origin of Indo-European languages.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gamba, C. et al. Genome flux and stasis in a five millennium transect of European prehistory. Nature Commun. 5, 5257 (2014).

    Article  ADS  CAS  Google Scholar 

  60. Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015). This study uses the sequencing of 101 ancient genomes to identify population movements in the Bronze Age.

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Günther, T. & Jakobsson, M. Genes mirror migrations and cultures in prehistoric Europe — a population genomic perspective. Curr. Opin. Genet. Dev. 41, 115–123 (2016).

    Article  PubMed  CAS  Google Scholar 

  62. Benazzi, S. et al. Early dispersal of modern humans in Europe and implications for Neanderthal behaviour. Nature 479, 525–528 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016). By sequencing the genomes of 51 Eurasian people who lived 7–45 kyr ago, this study finds turnover in the population composition of Europeans.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Asouti, E. & Fuller, D. Q. A contextual approach to the emergence of agriculture in Southwest Asia. Curr. Anthropol. 54, 299–345 (2013).

    Article  Google Scholar 

  65. Günther, T. et al. Ancient genomes link early farmers from Atapuerca in Spain to modern-day Basques. Proc. Natl Acad. Sci. USA 112, 11917–11922 (2015).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  66. Skoglund, P. et al. Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers. Science 344, 747–750 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Cohen, M. N. & Armelagos, G. J. (eds) Paleopathology at the Origins of Agriculture (Academic, 1984).

    Google Scholar 

  68. Jones, E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nature Commun. 6, 8912 (2015).

    Article  ADS  CAS  Google Scholar 

  69. Bouckaert, R. et al. Mapping the origins and expansion of the Indo-European language family. Science 337, 957–960 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Novembre, J. et al. Genes mirror geography within Europe. Nature 456, 98–101 (2008). This study identifies fine-scale population structure in Europe that is highly correlated with geography.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lao, O. et al. Correlation between genetic and geographic structure in Europe. Curr. Biol. 18, 1241–1248 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Auton, A. et al. Global distribution of genomic diversity underscores rich complex history of continental human populations. Genome Res. 19, 795–803 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 87–91 (2014). This study sequences the genome of a 24-kyr-old Eurasian individual and shows that modern Native Americans are the descendants of a population admixed between Western Eurasians (represented by the sequenced sample) and an ancestral East Asian population.

    Article  ADS  PubMed  CAS  Google Scholar 

  74. Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014). This study sequences DNA from a 45 kyr old Siberian person who was more closely related to modern Asians than to modern Europeans.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Seguin-Orlando, A. et al. Genomic structure in Europeans dating back at least 36,200 years. Science 346, 1113–1118 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Clarkson, C. et al. The archaeology, chronology and stratigraphy of Madjedbebe (Malakunanja II): a site in northern Australia with early occupation. J. Hum. Evol. 83, 46–64 (2015).

    Article  PubMed  Google Scholar 

  77. O'Connell, J. F. & Allen, J. The process, biotic impact, and global implications of the human colonization of Sahul about 47,000 years ago. J. Archaeol. Sci. 56, 73–84 (2015).

    Article  Google Scholar 

  78. Thorne, A. G. & Wolpoff, M. H. Regional continuity in Australasian Pleistocene hominid evolution. Am. J. Phys. Anthropol. 55, 337–349 (1981).

    Article  CAS  PubMed  Google Scholar 

  79. Wollstein, A. et al. Demographic history of Oceania inferred from genome-wide data. Curr. Biol. 20, 1983–1992 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Skoglund, P. et al. Genomic insights into the peopling of the Southwest Pacific. Nature 538, 510–513 (2016).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  81. Storey, A. A. et al. Radiocarbon and DNA evidence for a pre-Columbian introduction of Polynesian chickens to Chile. Proc. Natl Acad. Sci. USA 104, 10335–10339 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gongora, J. et al. Indo-European and Asian origins for Chilean and Pacific chickens revealed by mtDNA. Proc. Natl Acad. Sci. USA 105, 10308–10313 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Malaspinas, A.-S. et al. Two ancient human genomes reveal Polynesian ancestry among the indigenous Botocudos of Brazil. Curr. Biol. 24, R1035–R1037 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Moreno-Mayar, J. V. et al. Genome-wide ancestry patterns in Rapanui suggest pre-European admixture with Native Americans. Curr. Biol. 24, 2518–2525 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Jenkins, D. L. et al. Clovis age Western Stemmed projectile points and human coprolites at the Paisley Caves. Science 337, 223–228 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Pedersen, M. W. et al. Postglacial viability and colonization in North America's ice-free corridor. Nature 537, 45–49 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Heintzman, P. D. et al. Bison phylogeography constrains dispersal and viability of the Ice Free Corridor in western Canada. Proc. Natl Acad. Sci. USA 113, 8057–8063 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. González-José, R. et al. Craniometric evidence for Palaeoamerican survival in Baja California. Nature 425, 62–65 (2003).

    Article  ADS  PubMed  CAS  Google Scholar 

  89. Stanford, D. J. & Bradley, B. A. Across Atlantic Ice (University of California Press, 2012).

    Book  Google Scholar 

  90. Owsley, D. W. & Jantz, R. L. (eds) Kennewick Man (Texas A&M University Press, 2014).

    Google Scholar 

  91. Rasmussen, M. et al. The genome of a Late Pleistocene human from a Clovis burial site in western Montana. Nature 506, 225–229 (2014). This study sequences a 12.6 kyr old individual from the Clovis culture, finding that people from this culture are ancestors of modern Native Americans.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rasmussen, M. et al. The ancestry and affiliations of Kennewick Man. Nature 523, 455–458 (2015).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  93. Raghavan, M. et al. Genomic evidence for the Pleistocene and recent population history of Native Americans. Science 349, aab3884 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Skoglund, P. et al. Genetic evidence for two founding populations of the Americas. Nature 525, 104–108 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Reich, D. et al. Reconstructing Native American population history. Nature 488, 370–374 (2012).

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  96. Gilbert, M. T. P. et al. Paleo-Eskimo mtDNA genome reveals matrilineal discontinuity in Greenland. Science 320, 1787–1789 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Raghavan, M. et al. The genetic prehistory of the New World Arctic. Science 345, 1255832 (2014).

    Article  PubMed  CAS  Google Scholar 

  98. Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060 (2010). This study reports the draft Denisovan genome sequence.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sawyer, S. et al. Nuclear and mitochondrial DNA sequences from two Denisovan individuals. Proc. Natl Acad. Sci. USA 112, 15696–15700 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stringer, C. B. & Barnes, I. Deciphering the Denisovans. Proc. Natl Acad. Sci. USA 112, 15542–15543 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  101. Skoglund, P. & Jakobsson, M. Archaic human ancestry in East Asia. Proc. Natl Acad. Sci. USA 108, 18301–18306 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vernot, B. et al. Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals. Science 352, 235–239 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  103. Huerta-Sánchez, E. et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512, 194–197 (2014).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  104. Kuhlwilm, M. et al. Ancient gene flow from early modern humans into Eastern Neanderthals. Nature 530, 429–433 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wilde, S. et al. Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5,000 y. Proc. Natl Acad. Sci. USA 111, 4832–4837 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jablonski, N. G. & Chaplin, G. Human skin pigmentation as an adaptation to UV radiation. Proc. Natl Acad. Sci. USA 107, 8962–8968 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lamason, R. L. et al. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310, 1782–1786 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  109. Norton, H. L. et al. Genetic evidence for the convergent evolution of light skin in Europeans and East Asians. Mol. Biol. Evol. 24, 710–722 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Beall, C. M. Andean, Tibetan, and Ethiopian patterns of adaptation to high-altitude hypoxia. Integr. Comp. Biol. 46, 18–24 (2006).

    Article  PubMed  Google Scholar 

  111. Yi, X. et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329, 75–78 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  112. Beall, C. M. et al. Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concentration in Tibetan highlanders. Proc. Natl Acad. Sci. USA 107, 11459–11464 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  113. Simonson, T. S. et al. Genetic evidence for high-altitude adaptation in Tibet. Science 329, 72–75 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  114. Bigham, A. et al. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. PLoS Genet. 6, e1001116 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Bersaglieri, T. et al. Genetic signatures of strong recent positive selection at the lactase gene. Am. J. Hum. Genet. 74, 1111–1120 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tishkoff, S. A. et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nature Genet. 39, 31–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Ranciaro, A. et al. Genetic origins of lactase persistence and the spread of pastoralism in Africa. Am. J. Hum. Genet. 94, 496–510 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mathias, R. A. et al. Adaptive evolution of the FADS gene cluster within Africa. PLoS ONE 7, e44926 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ameur, A. et al. Genetic adaptation of fatty-acid metabolism: a human-specific haplotype increasing the biosynthesis of long-chain omega-3 and omega-6 fatty acids. Am. J. Hum. Genet. 90, 809–820 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fumagalli, M. et al. Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science 349, 1343–1347 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  121. Kothapalli, K. S. D. et al. Positive selection on a regulatory insertion–deletion polymorphism in FADS2 influences apparent endogenous synthesis of arachidonic acid. Mol. Biol. Evol. 33, 1726–1739 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Fumagalli, M. et al. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet. 7, e1002355 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Traherne, J. A. Human MHC architecture and evolution: implications for disease association studies. Int. J. Immunogenet. 35, 179–192 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kwiatkowski, D. P. How malaria has affected the human genome and what human genetics can teach us about malaria. Am. J. Hum. Genet. 77, 171–192 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Piel, F. B. et al. Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis. Nature Commun. 1, 104 (2010).

    Article  ADS  CAS  Google Scholar 

  126. Fan, S., Hansen, M. E. B., Lo, Y. & Tishkoff, S. A. Going global by adapting local: a review of recent human adaptation. Science 354, 54–59 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hamblin, M. T. & Di Rienzo, A. Detection of the signature of natural selection in humans: evidence from the Duffy blood group locus. Am. J. Hum. Genet. 66, 1669–1679 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Simonti, C. N. et al. The phenotypic legacy of admixture between modern humans and Neandertals. Science 351, 737–741 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  129. Racimo, F., Sankararaman, S., Nielsen, R. & Huerta-Sanchez, E. Evidence for archaic adaptive introgression in humans. Nature Rev. Genet. 16, 359–371 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Abi-Rached, L. et al. The shaping of modern human immune systems by multiregional admixture with archaic humans. Science 334, 89–94 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ding, Q. et al. Neanderthal origin of the haplotypes carrying the functional variant Val92Met in the MC1R in modern humans. Mol. Biol. Evol. 31, 1994–2003 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Karlsson, E. K., Kwiatkowski, D. P. & Sabeti, P. C. Natural selection and infectious disease in human populations. Nature Rev. Genet. 15, 379–393 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Bigham, A. W. & Lee, F. S. Human high-altitude adaptation: forward genetics meets the HIF pathway. Genes Dev. 28, 2189–2204 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Pritchard, J. K., Pickrell, J. K. & Coop, G. The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation. Curr. Biol. 20, R208–R215 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Turchin, M. C. et al. Evidence of widespread selection on standing variation in Europe at height-associated SNPs. Nature Genet. 44, 1015–1019 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Berg, J. J. & Coop, G. A population genetic signal of polygenic adaptation. PLoS Genet. 10, e1004412 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Zoledziewska, M. et al. Height-reducing variants and selection for short stature in Sardinia. Nature Genet. 47, 1352–1356 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Field, Y. et al. Detection of human adaptation during the past 2,000 years. Science 354, 760–764 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gibbons, A. A new view of the birth of Homo sapiens. Science 331, 392–394 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  140. Harris, K. & Nielsen, R. The genetic cost of Neanderthal introgression. Genetics 203, 881–891 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Renfrew, C. Before Civilization: Radiocarbon Revolution and Prehistoric Europe (Pimlico, 1973).

    Google Scholar 

  142. Childe, V. G. The Dawn of European Civilization (Kegan Paul, 1925).

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by: US National Institutes of Health (NIH) grant R01GM110068 (J.M.A.); the European Research Council, the Knut and Alice Wallenberg Foundation and the Swedish Research Council (M.J.); the Danish National Research Foundation and the Lundbeck Foundation and KU2016 initiative (E.W.); and NIH grants R01GM116044 (R.N.), 1R01DK104339-01 and 1R01GM113657-01 (S.T.). We also thank S. Moon, S. Tucci, A. Sapfo-Malaspinas, M. Raghavan and M. W. Pedersen for discussions or for help in preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasmus Nielsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Reviewer Information Nature thanks D. Lambert, J. Novembre, S. Schiffels and C. Stringer for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nielsen, R., Akey, J., Jakobsson, M. et al. Tracing the peopling of the world through genomics. Nature 541, 302–310 (2017). https://doi.org/10.1038/nature21347

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature21347

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research