Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sustainable polymers from renewable resources

Abstract

Renewable resources are used increasingly in the production of polymers. In particular, monomers such as carbon dioxide, terpenes, vegetable oils and carbohydrates can be used as feedstocks for the manufacture of a variety of sustainable materials and products, including elastomers, plastics, hydrogels, flexible electronics, resins, engineering polymers and composites. Efficient catalysis is required to produce monomers, to facilitate selective polymerizations and to enable recycling or upcycling of waste materials. There are opportunities to use such sustainable polymers in both high-value areas and in basic applications such as packaging. Life-cycle assessment can be used to quantify the environmental benefits of sustainable polymers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Options for replacing petrochemicals as raw materials in the manufacture of polymers.
Figure 2: Upcycling of carbon dioxide into sustainable polymers of high value.
Figure 3: Sustainable polymers produced from terpenes and terpenoids.
Figure 4: Sustainable polymers produced from vegetable oils.
Figure 5: Sustainable polymers produced from polysaccharides.

Similar content being viewed by others

References

  1. van der Ploeg, F. Natural resources: curse or blessing? J. Econ. Lit. 49, 366–420 (2011).

    Google Scholar 

  2. Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    ADS  CAS  PubMed  Google Scholar 

  3. Philp, J. C., Bartsev, A., Ritchie, R. J., Baucher, M.-A. & Guy, K. Bioplastics science from a policy vantage point. New Biotechnol. 30, 635–646 (2013).

    CAS  Google Scholar 

  4. Shen, L., Worrell, E. & Patel, M. Present and future development in plastics from biomass. Biofuel. Bioprod. Bior. 4, 25–40 (2010).

    CAS  Google Scholar 

  5. Talon, O. in Environmental Impact of Polymers (eds Hamaide, T., Deterre, R., & Feller, J.-F.) Ch. 6, 91–107 (John Wiley, 2014).

    Google Scholar 

  6. Lee, S. H., Cyriac, A., Jeon, J. Y. & Lee, B. Y. Preparation of thermoplastic polyurethanes using in situ generated poly(propylene carbonate)-diols. Polym. Chem. 3, 1215–1220 (2012). This paper demonstrates the use of polycarbonate polyols produced using carbon dioxide as a monomer to make polyurethanes.

    CAS  Google Scholar 

  7. von der Assen, N., Voll, P., Peters, M. & Bardow, A. Life cycle assessment of CO2 capture and utilization: a tutorial review. Chem. Soc. Rev. 43, 7982–7994 (2014).

    CAS  PubMed  Google Scholar 

  8. Markewitz, P. et al. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2 . Energy Environ. Sci. 5, 7281–7305 (2012).

    CAS  Google Scholar 

  9. Ren, W. M., Liu, Z. W., Wen, Y. Q., Zhang, R. & Lu, X. B. Mechanistic aspects of the copolymerization of CO2 with epoxides using a thermally stable single-site cobalt(III) catalyst. J. Am. Chem. Soc. 131, 11509–11518 (2009).

    CAS  PubMed  Google Scholar 

  10. Ellis, W. C. et al. Copolymerization of CO2 and meso epoxides using enantioselective β-diiminate catalysts: a route to highly isotactic polycarbonates. Chem. Sci. 5, 4004–4011 (2014).

    CAS  Google Scholar 

  11. Chapman, A. M., Keyworth, C., Kember, M. R., Lennox, A. J. J. & Williams, C. K. Adding value to power station captured CO2: tolerant Zn and Mg homogeneous catalysts for polycarbonate polyol production. ACS Catal. 5, 1581–1588 (2015). This paper highlights the use of carbon dioxide captured from a power station in the United Kingdom in the production of polycarbonate polyols.

    CAS  Google Scholar 

  12. Hauenstein, O., Reiter, M., Agarwal, S., Rieger, B. & Greiner, A. Bio-based polycarbonate from limonene oxide and CO2 with high molecular weight, excellent thermal resistance, hardness and transparency. Green Chem. 18, 760–770 (2016). This paper demonstrates the production and scale-up of fully bio-based polylimonene carbonate, prepared through the copolymerization of carbon dioxide with epoxide, and evaluates its properties.

    CAS  Google Scholar 

  13. Inoue, S., Koinuma, H. & Tsuruta, T. Copolymerization of carbon dioxide and epoxide. J. Polym. Sci. B 7, 287–292 (1969).

    CAS  Google Scholar 

  14. Paul, S. et al. Ring-opening copolymerization (ROCOP): synthesis and properties of polyesters and polycarbonates. Chem. Commun. 51, 6459–6479 (2015).

    CAS  Google Scholar 

  15. Darensbourg, D. J. Making plastics from carbon dioxide: salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2 . Chem. Rev. 107, 2388–2410 (2007).

    CAS  PubMed  Google Scholar 

  16. Lu, X. B., Ren, W. M. & Wu, G. P. CO2 copolymers from epoxides: catalyst activity, product selectivity, and stereochemistry control. Acc. Chem. Res. 45, 1721–1735 (2012).

    CAS  PubMed  Google Scholar 

  17. Klaus, S., Lehenmeier, M. W., Anderson, C. E. & Rieger, B. Recent advances in CO2/epoxide copolymerization — new strategies and cooperative mechanisms. Coordin. Chem. Rev. 255, 1460–1479 (2011).

    CAS  Google Scholar 

  18. Coates, G. W. & Moore, D. R. Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: discovery, reactivity, optimization, and mechanism. Angew. Chem. Int. Edn Engl. 43, 6618–6639 (2004).

    CAS  Google Scholar 

  19. Nozaki, K., Nakano, K. & Hiyama, T. Optically active polycarbonates: asymmetric alternating copolymerization of cyclohexene oxide and carbon dioxide. J. Am. Chem. Soc. 121, 11008–11009 (1999).

    CAS  Google Scholar 

  20. Darensbourg, D. J. & Wu, G. P. A. One-pot synthesis of a triblock copolymer from propylene oxide/carbon dioxide and lactide: intermediacy of polyol initiators. Angew. Chem. Int. Edn Engl. 52, 10602–10606 (2013).

    CAS  Google Scholar 

  21. Jeske, R. C., Rowley, J. M. & Coates, G. W. Pre-rate-determining selectivity in the terpolymerization of epoxides, cyclic anhydrides, and CO2: a one-step route to diblock copolymers. Angew. Chem. Int. Edn Engl. 47, 6041–6044 (2008).

    CAS  Google Scholar 

  22. Jeon, J. Y., Eo, S. C., Varghese, J. K. & Lee, B. Y. Copolymerization and terpolymerization of carbon dioxide/propylene oxide/phthalic anhydride using a (salen)Co(III) complex tethering four quaternary ammonium salts. Beilstein J. Org. Chem. 10, 1787–1795 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. Zhu, Y., Romain, C. & Williams, C. K. Selective polymerization catalysis: controlling the metal chain end group to prepare block copolyesters. J. Am. Chem. Soc. 137, 12179–12182 (2015).

    CAS  PubMed  Google Scholar 

  24. Luinstra, G. A. Poly(propylene carbonate), old copolymers of propylene oxide and carbon dioxide with new interests: catalysis and material properties. Pol. Rev. 48, 192–219 (2008).

    CAS  Google Scholar 

  25. von der Assen, N. & Bardow, A. Life cycle assessment of polyols for polyurethane production using CO2 as feedstock: insights from an industrial case study. Green Chem. 16, 3272–3280 (2014). This paper presents a life-cycle assessment that compares the production of polyols for polyurethane manufacture from petrochemical sources or through partial substitution with carbon dioxide.

    CAS  Google Scholar 

  26. Byrne, C. M., Allen, S. D., Lobkovsky, E. B. & Coates, G. W. Alternating copolymerization of limonene oxide and carbon dioxide. J. Am. Chem. Soc. 126, 11404–11405 (2004).

    CAS  PubMed  Google Scholar 

  27. Winkler, M., Romain, C., Meier, M. A. R. & Williams, C. K. Renewable polycarbonates and polyesters from 1,4-cyclohexadiene. Green Chem. 17, 300–306 (2015).

    CAS  Google Scholar 

  28. Li, C., Sablong, R. J. & Koning, C. E. Synthesis and characterization of fully-biobased α,ω-dihydroxyl poly(limonene carbonate)s and their initial evaluation in coating applications. Eur. Polym. J. 67, 449–458 (2015).

    CAS  Google Scholar 

  29. Auriemma, F. et al. Stereocomplexed poly(limonene carbonate): a unique example of the cocrystallization of amorphous enantiomeric polymers. Angew. Chem. Int. Edn Engl. 54, 1215–1218 (2015). This paper demonstrates the production of polylimonene carbonate stereocomplexes through efficient catalysis.

    CAS  Google Scholar 

  30. Klemm, D., Heublein, B., Fink, H. P. & Bohn, A. Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Edn Engl. 44, 3358–3393 (2005).

    CAS  Google Scholar 

  31. Pang, J. et al. Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET. Green Chem. 18, 342–359 (2016).

    CAS  Google Scholar 

  32. Zhang, M. & Yu, Y. Dehydration of ethanol to ethylene. Ind. Eng. Chem. Res. 52, 9505–9514 (2013).

    ADS  CAS  Google Scholar 

  33. Welle, F. Twenty years of PET bottle to bottle recycling — an overview. Resour. Conserv. Recycling 55, 865–875 (2011).

    Google Scholar 

  34. Fukushima, K. et al. Organocatalytic depolymerization of poly(ethylene terephthalate). J. Polym. Sci. A 49, 1273–1281 (2011).

    CAS  Google Scholar 

  35. Crank, M. et al. Techno-economic Feasibility of Large-scale Production of Bio-based Polymers in Europe. Technical Report EUR 22103 EN (European Communities, 2005).

    Google Scholar 

  36. Winnacker, M. & Rieger, B. Recent progress in sustainable polymers obtained from cyclic terpenes: synthesis, properties, and application potential. ChemSusChem 8, 2455–2471 (2015).

    CAS  PubMed  Google Scholar 

  37. Gandini, A. & Lacerda, T. M. From monomers to polymers from renewable resources: recent advances. Prog. Polym. Sci. 48, 1–39 (2015).

    CAS  Google Scholar 

  38. Gandini, A. The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chem. 13, 1061–1083 (2011).

    CAS  Google Scholar 

  39. Ciriminna, R., Lomeli-Rodriguez, M., Demma Cara, P., Lopez-Sanchez, J. A. & Pagliaro, M. Limonene: a versatile chemical of the bioeconomy. Chem. Commun. 50, 15288–15296 (2014).

    CAS  Google Scholar 

  40. Wilbon, P. A., Chu, F. & Tang, C. Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol. Rapid Commun. 34, 8–37 (2013).

    CAS  PubMed  Google Scholar 

  41. Satoh, K. et al. Sustainable cycloolefin polymer from pine tree oil for optoelectronics material: living cationic polymerization of β-pinene and catalytic hydrogenation of high-molecular-weight hydrogenated poly(β-pinene). Polym. Chem. 5, 3222–3230 (2014).

    CAS  Google Scholar 

  42. Sharma, S. & Srivastava, A. K. Alternating copolymers of limonene with methyl methacrylate: kinetics and mechanism. J. Macromol. Sci. A 40, 593–603 (2003).

    Google Scholar 

  43. Hearon, K. et al. A high-performance recycling solution for polystyrene achieved by the synthesis of renewable poly(thioether) networks derived from D-limonene. Adv. Mater. 26, 1552–1558 (2014).

    CAS  PubMed  Google Scholar 

  44. Albertsson, A.-C., Voepel, J., Edlund, U., Dahlman, O. & Soderqvist-Lindblad, M. Design of renewable hydrogel release systems from fiberboard mill wastewater. Biomacromolecules 11, 1406–1411 (2010).

    CAS  PubMed  Google Scholar 

  45. Shin, J., Lee, Y., Tolman, W. B. & Hillmyer, M. A. Thermoplastic elastomers derived from menthide and tulipalin A. Biomacromolecules 13, 3833–3840 (2012). This paper describes how a monomer derived from wild mint ( Mentha arvesis ) can be copolymerized with one from a tulip ( Tulipa gesneriana ) to produce fully bio-based block copolyester thermoplastic elastomers.

    CAS  PubMed  Google Scholar 

  46. Bolton, J. M., Hillmyer, M. A. & Hoye, T. R. Sustainable thermoplastic elastomers from terpene-derived monomers. ACS Macro Lett. 3, 717–720 (2014).

    CAS  Google Scholar 

  47. Stempfle, F., Ortmann, P. & Mecking, S. Long-chain aliphatic polymers to bridge the gap between semicrystalline polyolefins and traditional polycondensates. Chem. Rev. 116, 4597–4641 (2016).

    CAS  PubMed  Google Scholar 

  48. Santacesaria, E. et al. Chemical and technical aspects of the synthesis of chlorohydrins from glycerol. Ind. Eng. Chem. Res. 53, 8939–8962 (2014).

    CAS  Google Scholar 

  49. Sharninghausen, L. S., Campos, J., Manas, M. G. & Crabtree, R. H. Efficient selective and atom economic catalytic conversion of glycerol to lactic acid. Nature Commun. 5, 5084 (2014).

    ADS  CAS  Google Scholar 

  50. Maisonneuve, L., Lebarbe, T., Grau, E. & Cramail, H. Structure–properties relationship of fatty acid-based thermoplastics as synthetic polymer mimics. Polym. Chem. 4, 5472–5517 (2013).

    CAS  Google Scholar 

  51. De Maria, G. Plenish high oleic soybean oil. The first biotech soybean product with consumer nutrition benefits. Agro Food Ind. High-Tech 24, 10–11 (2013).

    Google Scholar 

  52. Meier, M. A. R., Metzger, J. O. & Schubert, U. S. Plant oil renewable resources as green alternatives in polymer science. Chem. Soc. Rev. 36, 1788–1802 (2007).

    CAS  PubMed  Google Scholar 

  53. Goldbach, V., Roesle, P. & Mecking, S. Catalytic isomerizing ω-functionalization of fatty acids. ACS Catal. 5, 5951–5972 (2015).

    CAS  Google Scholar 

  54. Stempfle, F., Ritter, B. S., Mulhaupt, R. & Mecking, S. Long-chain aliphatic polyesters from plant oils for injection molding, film extrusion and electrospinning. Green Chem. 16, 2008–2014 (2014). This paper reveals how plant oils can be converted by means of highly selective catalysis to produce polyesters with properties that mimic polyethylene.

    CAS  Google Scholar 

  55. Witt, T., Stempfle, F., Roesle, P., Häußler, M. & Mecking, S. Unsymmetrical α,ω-difunctionalized long-chain compounds via full molecular incorporation of fatty acids. ACS Catal. 5, 4519–4529 (2015).

    CAS  Google Scholar 

  56. Liu, C. et al. Polymers from fatty acids: poly(ω-hydroxyl tetradecanoic acid) synthesis and physico–mechanical studies. Biomacromolecules 12, 3291–3298 (2011).

    CAS  PubMed  Google Scholar 

  57. Gross, R. A., Ganesh, M. & Lu, W. Enzyme-catalysis breathes new life into polyester condensation polymerizations. Trends Biotechnol. 28, 435–443 (2010).

    CAS  PubMed  Google Scholar 

  58. Witt, T. & Mecking, S. Large-ring lactones from plant oils. Green Chem. 15, 2361–2364 (2013).

    CAS  Google Scholar 

  59. Pepels, M. P. F., Koeken, R. A. C., van der Linden, S. J. J., Heise, A. & Duchateau, R. Mimicking (linear) low-density polyethylenes using modified polymacrolactones. Macromolecules 48, 4779–4792 (2015).

    ADS  CAS  Google Scholar 

  60. Peng, Y., Decatur, J., Meier, M. A. R. & Gross, R. A. Ring-opening metathesis polymerization of a naturally derived macrocyclic glycolipid. Macromolecules 46, 3293–3300 (2013).

    ADS  CAS  Google Scholar 

  61. Roesle, P. et al. Synthetic polyester from algae oil. Angew. Chem. Int. Edn Engl. 53, 6800–6804 (2014).

    CAS  Google Scholar 

  62. Cordier, P., Tournilhac, F., Soulie-Ziakovic, C. & Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008).

    ADS  CAS  PubMed  Google Scholar 

  63. Montarnal, D., Capelot, M., Tournilhac, F. & Leibler, L. Silica-like malleable materials from permanent organic networks. Science 334, 965–968 (2011).

    ADS  CAS  PubMed  Google Scholar 

  64. Altuna, F. I., Pettarin, V. & Williams, R. J. J. Self-healable polymer networks based on the cross-linking of epoxidised soybean oil by an aqueous citric acid solution. Green Chem. 15, 3360–3366 (2013).

    CAS  Google Scholar 

  65. Chen, G. Q. & Patel, M. K. Plastics derived from biological sources: present and future: a technical and environmental review. Chem. Rev. 112, 2082–2099 (2012). This review provides a techno–environmental assessment of bio-based polymers and monomers.

    ADS  CAS  PubMed  Google Scholar 

  66. Galbis, J. A., García-Martín, M. G., de Paz, M. V. & Galbis, E. Synthetic polymers from sugar-based monomers. Chem. Rev. 116, 1600–1636 (2016).

    CAS  PubMed  Google Scholar 

  67. Bozell, J. J. & Petersen, G. R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy's “Top 10” revisited. Green Chem. 12, 539–554 (2010).

    CAS  Google Scholar 

  68. Auras, R., Harte, B. & Selke, S. An overview of polylactides as packaging materials. Macromol. Biosci. 4, 835–864 (2004).

    CAS  PubMed  Google Scholar 

  69. Inkinen, S., Hakkarainen, M., Albertsson, A. C. & Sodergard, A. From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 12, 523–532 (2011).

    CAS  PubMed  Google Scholar 

  70. Abdel-Rahman, M. A., Tashiro, Y. & Sonomoto, K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnol. Adv. 31, 877–902 (2013).

    CAS  PubMed  Google Scholar 

  71. Dusselier, M., Van Wouwe, P., Dewaele, A., Jacobs, P. A. & Sels, B. F. Shape-selective zeolite catalysis for bioplastics production. Science 349, 78–80 (2015).

    ADS  CAS  PubMed  Google Scholar 

  72. Dusselier, M., Van Wouwe, P., Dewaele, A., Makshina, E. & Sels, B. F. Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy Environ. Sci. 6, 1415–1442 (2013).

    CAS  Google Scholar 

  73. Ikada, Y., Jamshidi, K., Tsuji, H. & Hyon, S. H. Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20, 904–906 (1987).

    ADS  CAS  Google Scholar 

  74. Shen, L., Worrell, E. & Patel, M. K. Comparing life cycle energy and GHG emissions of bio-based PET, recycled PET, PLA, and man-made cellulosics. Biofuel. Bioprod. Bior. 6, 625–639 (2012).

    CAS  Google Scholar 

  75. Groot, W. J. & Borén, T. Life cycle assessment of the manufacture of lactide and PLA biopolymers from sugarcane in Thailand. Int. J. Life Cycle Assess. 15, 970–984 (2010).

    CAS  Google Scholar 

  76. Corbion. Corbion Purac successfully develops PLA resin from second generation feedstocks. Corbion http://www.corbion.com/media/press-releases?newsId=1955535 (2015).

  77. Müller, H.-M. & Seebach, D. Poly(hydroxyalkanoates) — a fifth class of physiologically important organic biopolymers. Angew. Chem. Int. Edn Engl. 32, 477–502 (1993).

    Google Scholar 

  78. Eerhart, A. J. J. E., Faaij, A. P. C. & Patel, M. K. Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy Environ. Sci. 5, 6407–6422 (2012). This paper describes a life-cycle assessment that compares the outputs associated with petrochemical-derived PET and biomass-derived PEF.

    CAS  Google Scholar 

  79. Burgess, S. K. et al. Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate). Macromolecules 47, 1383–1391 (2014).

    ADS  CAS  Google Scholar 

  80. Jong, E. d., Dam, M. A., Sipos, L. & Gruter, G.-J. M. in Biobased Monomers, Polymers, and Materials Vol. 1105 ACS Symposium Series Ch. 1, 1–13 (American Chemical Society, 2012).

    Google Scholar 

  81. Delidovich, I. et al. Alternative monomers based on lignocellulose and their use for polymer production. Chem. Rev. 116, 1540–1599 (2015).

    PubMed  Google Scholar 

  82. Jeske, R. C., DiCiccio, A. M. & Coates, G. W. Alternating copolymerization of epoxides and cyclic anhydrides: an improved route to aliphatic polyesters. J. Am. Chem. Soc. 129, 11330–11331 (2007).

    CAS  PubMed  Google Scholar 

  83. Longo, J. M., DiCiccio, A. M. & Coates, G. W. Poly(propylene succinate): a new polymer stereocomplex. J. Am. Chem. Soc. 136, 15897–15900 (2014).

    CAS  PubMed  Google Scholar 

  84. Hong, M. & Chen, E. Y. X. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Nature Chem. 8, 42–49 (2016).

    ADS  CAS  Google Scholar 

  85. Myers, D., Cyriac, A. & Williams, C. K. Polymer synthesis: to react the impossible ring. Nature Chem. 8, 3–4 (2016).

    ADS  CAS  Google Scholar 

  86. Xiong, M. Y., Schneiderman, D. K., Bates, F. S., Hillmyer, M. A. & Zhang, K. C. Scalable production of mechanically tunable block polymers from sugar. Proc. Natl Acad. Sci. USA 111, 8357–8362 (2014).

    ADS  CAS  PubMed  Google Scholar 

  87. Juntaro, J. et al. Creating hierarchical structures in renewable composites by attaching bacterial cellulose onto sisal fibers. Adv. Mater. 20, 3122–3126 (2008).

    CAS  Google Scholar 

  88. Braun, B., Dorgan, J. R. & Hollingsworth, L. O. Supra-molecular ecobionanocomposites based on polylactide and cellulosic nanowhiskers: synthesis and properties. Biomacromolecules 13, 2013–2019 (2012).

    CAS  PubMed  Google Scholar 

  89. Goffin, A.-L. et al. From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules 12, 2456–2465 (2011).

    CAS  PubMed  Google Scholar 

  90. Söderqvist Lindblad, M., Albertsson, A. C., Ranucci, E., Laus, M. & Giani, E. Biodegradable polymers from renewable sources: rheological characterization of hemicellulose-based hydrogels. Biomacromolecules 6, 684–690 (2005).

    PubMed  Google Scholar 

  91. Jung, Y. H. et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nature Commun. 6, 7170 (2015).

    ADS  Google Scholar 

  92. Haba, O., Tomizuka, H. & Endo, T. Anionic ring-opening polymerization of methyl 4,6-O-benzylidene-2,3-O-carbonyl-α-D-glucopyranoside: a first example of anionic ring-opening polymerization of five-membered cyclic carbonate without elimination of CO2 . Macromolecules 38, 3562–3563 (2005).

    ADS  CAS  Google Scholar 

  93. Mikami, K. et al. Polycarbonates derived from glucose via an organocatalytic approach. J. Am. Chem. Soc. 135, 6826–6829 (2013).

    CAS  PubMed  Google Scholar 

  94. Upton, B. M. & Kasko, A. M. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem. Rev. 116, 2275–2306 (2015).

    PubMed  Google Scholar 

  95. Rahimi, A., Ulbrich, A., Coon, J. J. & Stahl, S. S. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515, 249–252 (2014).

    ADS  CAS  PubMed  Google Scholar 

  96. Wang, X. & Rinaldi, R. A route for lignin and bio-oil conversion: dehydroxylation of phenols into arenes by catalytic tandem reactions. Angew. Chem. Int. Edn Engl. 52, 11499–11503 (2013).

    CAS  Google Scholar 

  97. Mialon, L., Pemba, A. G. & Miller, S. A. Biorenewable polyethylene terephthalate mimics derived from lignin and acetic acid. Green Chem. 12, 1704–1706 (2010).

    CAS  Google Scholar 

  98. Maiorana, A. et al. Structure property relationships of biobased n-alkyl bisferulate epoxy resins. Green Chem. http://dx.doi.org/10.1039/C6GC01308B (2016).

Download references

Acknowledgements

The UK Engineering and Physical Sciences Research Council (EP/K035274/1, EP/M013839/1, EP/L017393/1 and EP/K014070/1) and the China Scholarship Council Imperial Scholarship (Y.Z.) are acknowledged for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte K. Williams.

Ethics declarations

Competing interests

C.K.W. is a director and founder of Econic Technologies.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Reviewer information Nature thanks the anonymous reviewers for their contributions to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Romain, C. & Williams, C. Sustainable polymers from renewable resources. Nature 540, 354–362 (2016). https://doi.org/10.1038/nature21001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature21001

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing