Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The road to restoring neural circuits for the treatment of Alzheimer's disease

Abstract

Alzheimer's disease is a progressive loss of memory and cognition, for which there is no cure. Although genetic studies initially suggested a primary role for amyloid-in Alzheimer's disease, treatment strategies targeted at reducing amyloid-have failed to reverse cognitive symptoms. These clinical findings suggest that cognitive decline is the result of a complex pathophysiology and that targeting amyloid-alone may not be sufficient to treat Alzheimer's disease. Instead, a broad outlook on neural-circuit-damaging processes may yield insights into new therapeutic strategies for curing memory loss in the disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neural circuits and synapses during the progression of AD.
Figure 2: Hallmarks of AD in the brain and corresponding therapeutic strategies.
Figure 3: Network-level treatments for AD.

Similar content being viewed by others

David S. Knopman, Helene Amieva, … David T. Jones

References

  1. Hurd, M. D., Martorell, P., Delavande, A., Mullen, K. J. & Langa, K. M. Monetary costs of dementia in the United States. N. Engl. J. Med. 368, 1326–1334 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hyman, B. T. et al. National Institute on Aging—Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimers Dement. 8, 1–13 (2012).

    PubMed  PubMed Central  Google Scholar 

  3. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706 (1991). One of the first demonstrations that mutations in the gene APP correlate with familial AD, suggesting a prominent role for amyloid-β processing in the aetiology of AD.

    ADS  CAS  PubMed  Google Scholar 

  4. Schellenberg, G. et al. Genetic linkage evidence for a familial Alzheimer's disease locus on chromosome 14. Science 258, 668–671 (1992).

    ADS  CAS  PubMed  Google Scholar 

  5. Levy-Lahad, E. et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 269, 973–977 (1995).

    ADS  CAS  PubMed  Google Scholar 

  6. Hardy, J. & Higgins, G. Alzheimer's disease: the amyloid cascade hypothesis. Science 256, 184–185 (1992). First article to synthesize the available data to formally propose that amyloid-β leads to varied neuronal disruption and cognitive impairment in AD.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    ADS  CAS  PubMed  Google Scholar 

  8. Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genet. 45, 1452–1458 (2013). By aggregating data, this paper confirmed previous genetic risk factors associated with late-onset AD and also identified new loci that might increase susceptibility to the disease.

    CAS  PubMed  Google Scholar 

  9. De Strooper, B. & Karran, E. The cellular phase of Alzheimer's disease. Cell 164, 603–615 (2016).

    CAS  PubMed  Google Scholar 

  10. Palop, J. J. & Mucke, L. Amyloid-β-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nature Neurosci. 13, 812–818 (2010).

    CAS  PubMed  Google Scholar 

  11. Reitz, C. & Mayeux, R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem. Pharmacol. 88, 640–651 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hardy, J. The Alzheimer family of diseases: many etiologies, one pathogenesis? Proc. Natl Acad. Sci. USA 94, 2095–2097 (1997).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rovelet-Lecrux, A. et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nature Genet. 38, 24–26 (2006).

    CAS  PubMed  Google Scholar 

  14. Glenner, G. G. & Wong, C. W. Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys. Res. Commun. 122, 1131–1135 (1984).

    CAS  PubMed  Google Scholar 

  15. Hutton, M. et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705 (1998).

    ADS  CAS  PubMed  Google Scholar 

  16. Jonsson, T. et al. A mutation in APP protects against Alzheimer's disease and age-related cognitive decline. Nature 488, 96–99 (2012).

    ADS  CAS  PubMed  Google Scholar 

  17. Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921–923 (1993).

    ADS  CAS  PubMed  Google Scholar 

  18. Morris, J. C. et al. APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann. Neurol. 67, 122–131 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Verghese, P. B. et al. ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions. Proc. Natl Acad. Sci. USA 110, E1807–E1816 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kayed, R. & Lasagna-Reeves, C. Molecular mechanisms of amyloid oligomers toxicity. J. Alzheimers Dis. 33, S67–S78 (2013).

    PubMed  Google Scholar 

  21. Yankner, B. A., Duffy, L. K. & Kirschner, D. A. Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science 250, 279–282 (1990).

    ADS  CAS  PubMed  Google Scholar 

  22. Jack, C. R. et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease. Brain 132, 1355–1365 (2009). Showed how certain events unfold in people with AD and contributed to an understanding of the temporal disconnection between amyloid-β deposition and cognitive impairment.

    PubMed  PubMed Central  Google Scholar 

  23. Shankar, G. M. et al. Natural oligomers of the Alzheimer amyloid-β protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J. Neurosci. 27, 2866–2875 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Šišková, Z. et al. Dendritic structural degeneration is functionally linked to cellular hyperexcitability in a mouse model of Alzheimer's disease. Neuron 84, 1023–1033 (2014).

    PubMed  Google Scholar 

  25. Palop, J. J. et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease. Neuron 55, 697–711 (2007). Demonstrated that amyloid-β and AD-like features could induce hyperactivity in regions of the brain, challenging the idea that neurodegeneration leads to reduced neuronal activity and highlighting the complexity of changes seen in AD.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cirrito, J. R. et al. Synaptic activity regulates interstitial fluid amyloid-β levels in vivo. Neuron 48, 913–922 (2005). First to indicate a considerable physiological role for amyloid-β in the brain, suggesting it could have important functions that influence AD phenotypes.

    CAS  PubMed  Google Scholar 

  27. Wei, W. et al. Amyloid beta from axons and dendrites reduces local spine number and plasticity. Nature Neurosci. 13, 190–196 (2010).

    CAS  PubMed  Google Scholar 

  28. Wu, J. et al. Arc/Arg3.1 regulates an endosomal pathway essential for activity-dependent β-amyloid generation. Cell 147, 615–628 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Das, U. et al. Activity-induced convergence of APP and BACE-1 in acidic microdomains via an endocytosis-dependent pathway. Neuron 79, 447–460 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dougherty, J. J., Wu, J. & Nichols, R. A. β-Amyloid regulation of presynaptic nicotinic receptors in rat hippocampus and neocortex. J. Neurosci. 23, 6740–6747 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Abramov, E. et al. Amyloid-β as a positive endogenous regulator of release probability at hippocampal synapses. Nature Neurosci. 12, 1567–1576 (2009).

    MathSciNet  CAS  PubMed  Google Scholar 

  32. Snyder, E. M. et al. Regulation of NMDA receptor trafficking by amyloid-β. Nature Neurosci. 8, 1051–1058 (2005).

    CAS  PubMed  Google Scholar 

  33. Roselli, F. et al. Soluble β-amyloid1–40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. J. Neurosci. 25, 11061–11070 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Walsh, D. M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002).

    ADS  CAS  PubMed  Google Scholar 

  35. Li, S. et al. Soluble oligomers of amyloid β protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62, 788–801 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hsieh, H. et al. AMPAR removal underlies Aβ-induced synaptic depression and dendritic spine loss. Neuron 52, 831–843 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Verret, L. et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149, 708–721 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Vossel, K. A. et al. Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurol. 70, 1158–1166 (2013). Provided an early demonstration of neuronal hyperactivity in people with AD and confirmed findings made originally in rodent models of AD, suggesting that such models can recapitulate facets of AD accurately, despite limitations.

    PubMed  PubMed Central  Google Scholar 

  39. Volicer, L., Smith, S. & Volicer, B. J. Effect of seizures on progression of dementia of the Alzheimer type. Dementia 6, 258–263 (1995).

    CAS  PubMed  Google Scholar 

  40. Bakker, A., Albert, M. S., Krauss, G., Speck, C. L. & Gallagher, M. Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention assessed by fMRI and memory task performance. Neuroimage Clin. 7, 688–698 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. Sanchez, P. E. et al. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer's disease model. Proc. Natl Acad. Sci. USA 109, E2895–E2903 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Busche, M. A. et al. Rescue of long-range circuit dysfunction in Alzheimer's disease models. Nature Neurosci. 18, 1623–1630 (2015).

    CAS  PubMed  Google Scholar 

  43. Thal, D. R., Rüb, U., Orantes, M. & Braak, H. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58, 1791–1800 (2002).

    PubMed  Google Scholar 

  44. Klunk, W. E. et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh compound-B. Ann. Neurol. 55, 306–319 (2004). This important paper was the first to describe the PET imaging of amyloids in people with AD.

    CAS  PubMed  Google Scholar 

  45. Wong, D. F. et al. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir F 18). J. Nucl. Med. 51, 913–920 (2010).

    CAS  PubMed  Google Scholar 

  46. Jack, C. R. et al. Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer's disease. Brain 133, 3336–3348 (2010).

    PubMed  PubMed Central  Google Scholar 

  47. Forsberg, A. et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol. Aging 29, 1456–1465 (2008).

    CAS  PubMed  Google Scholar 

  48. Albert, M. S. et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging–Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 7, 270–279 (2011).

    PubMed  PubMed Central  Google Scholar 

  49. Greicius, M. D., Srivastava, G., Reiss, A. L. & Menon, V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc. Natl Acad. Sci. USA 101, 4637–4642 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Buckner, R. L. Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory. J. Neurosci. 25, 7709–7717 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sperling, R. A., LaViolette, P. & O'Keefe, K. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron 63, 178–188 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mormino, E. C. et al. Synergistic effect of β-amyloid and neurodegeneration on cognitive decline in clinically normal individuals. JAMA Neurol. 71, 1379–1385 (2014).

    PubMed  PubMed Central  Google Scholar 

  53. Villemagne, V. L. et al. Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann. Neurol. 69, 181–192 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Damoiseaux, J. S., Prater, K. E., Miller, B. L. & Greicius, M. D. Functional connectivity tracks clinical deterioration in Alzheimer's disease. Neurobiol. Aging 33, 828.e19–828.e30 (2012).

    Google Scholar 

  55. Harris, J. A. et al. Transsynaptic progression of amyloid-β-induced neuronal dysfunction within the entorhinal–hippocampal network. Neuron 68, 428–441 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Jucker, M. & Walker, L. C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fleisher, A. S. et al. Phase 2 safety trial targeting amyloid β production with a γ-secretase inhibitor in Alzheimer disease. Arch. Neurol. 65, 1031–1038 (2008).

    PubMed  PubMed Central  Google Scholar 

  58. May, P. C. et al. The Potent BACE1 inhibitor LY2886721 elicits robust central Aβ pharmacodynamic responses in mice, dogs, and humans. J. Neurosci. 35, 1199–1210 (2015).

    PubMed  PubMed Central  Google Scholar 

  59. De Strooper, B. Lessons from a failed γ-secretase Alzheimer trial. Cell 159, 721–726 (2014).

    CAS  PubMed  Google Scholar 

  60. Vassar, R. BACE1 inhibitor drugs in clinical trials for Alzheimer's disease. Alzheimers Res. Ther. 6, 89 (2014).

    PubMed  PubMed Central  Google Scholar 

  61. Doody, R. S. et al. A phase 3 trial of semagacestat for treatment of Alzheimer's disease. N. Engl. J. Med. 369, 341–350 (2013).

    CAS  PubMed  Google Scholar 

  62. Orgogozo, J. M. et al. Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology 61, 46–54 (2003).

    CAS  PubMed  Google Scholar 

  63. Farlow, M. R. et al. Long-term treatment with active Aβ immunotherapy with CAD106 in mild Alzheimer's disease. Alzheimers Res. Ther. 7, 23 (2015).

    PubMed  PubMed Central  Google Scholar 

  64. Holmes, C. et al. Long-term effects of Aβ42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372, 216–223 (2008).

    CAS  PubMed  Google Scholar 

  65. Siemers, E. R. et al. Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer's disease patients. Alzheimers Dement. 12, 110–120 (2016).

    PubMed  Google Scholar 

  66. J. Sevigny et al. The antibody aducanumab reduces Aβ plaques in Alzheimer's disease. Nature 537, 50–56 (2016).

    ADS  CAS  PubMed  Google Scholar 

  67. McKhann, G. M. et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging–Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 7, 263–269 (2011).

    PubMed  PubMed Central  Google Scholar 

  68. van der Kant, R. & Goldstein, L. S. B. Cellular functions of the amyloid precursor protein from development to dementia. Dev. Cell 32, 502–515 (2015).

    CAS  PubMed  Google Scholar 

  69. Duggan, S. P. & McCarthy, J. V. Beyond γ-secretase activity: the multifunctional nature of presenilins in cell signalling pathways. Cell. Signal. 28, 1–11 (2016).

    CAS  PubMed  Google Scholar 

  70. Müller, U. et al. Behavioral and anatomical deficits in mice homozygous for a modified β-amyloid precursor protein gene. Cell 79, 755–765 (1994).

    PubMed  Google Scholar 

  71. Dawson, G. R. et al. Age-related cognitive deficits, impaired long-term potentiation and reduction in synaptic marker density in mice lacking the β-amyloid precursor protein. Neuroscience 90, 1–13 (1999).

    CAS  PubMed  Google Scholar 

  72. Xia, D. et al. Presenilin-1 knockin mice reveal loss-of-function mechanism for familial Alzheimer's disease. Neuron 85, 967–981 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Nelson, O. et al. Familial Alzheimer disease-linked mutations specifically disrupt Ca2+ leak function of presenilin 1. J. Clin. Invest. 117, 1230–1239 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Fabelo, N. et al. Altered lipid composition in cortical lipid rafts occurs at early stages of sporadic Alzheimer's disease and facilitates APP/BACE1 interactions. Neurobiol. Aging 35, 1801–1812 (2014).

    CAS  PubMed  Google Scholar 

  75. Sakae, N. et al. ABCA7 deficiency accelerates amyloid-β generation and Alzheimer's neuronal pathology. J. Neurosci. 36, 3848–3859 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Miller, S. E. et al. CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature. Dev. Cell 33, 163–175 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712–716 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. De Jager, P. L. et al. Alzheimer's disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nature Neurosci. 17, 1156–1163 (2014).

    CAS  PubMed  Google Scholar 

  79. Yu, L. et al. Association of brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 with pathological diagnosis of Alzheimer disease. JAMA Neurol. 72, 15–24 (2015).

    PubMed  PubMed Central  Google Scholar 

  80. Gjoneska, E. et al. Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer's disease. Nature 518, 365–369 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gräff, J. et al. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483, 222–226 (2012).

    ADS  PubMed  PubMed Central  Google Scholar 

  82. Lu, T. et al. REST and stress resistance in ageing and Alzheimer's disease. Nature 507, 448–454 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jo, D.-G. et al. Evidence that γ-secretase mediates oxidative stress-induced β-secretase expression in Alzheimer's disease. Neurobiol. Aging 31, 917–925 (2010).

    CAS  PubMed  Google Scholar 

  84. Mecocci, P., MacGarvey, U. & Beal, M. F. Oxidative damage to mitochondrial DNA is increased in Alzheimer's disease. Ann. Neurol. 36, 747–751 (1994).

    CAS  PubMed  Google Scholar 

  85. Frost, B., Hemberg, M., Lewis, J. & Feany, M. B. Tau promotes neurodegeneration through global chromatin relaxation. Nature Neurosci. 17, 357–366 (2014).

    CAS  PubMed  Google Scholar 

  86. Kim, D. et al. Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity. Neuron 60, 803–817 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Anderson, A. J., Stoltzner, S., Lai, F., Su, J. & Nixon, R. A. Morphological and biochemical assessment of DNA damage and apoptosis in Down syndrome and Alzheimer disease, and effect of postmortem tissue archival on TUNEL. Neurobiol. Aging 21, 511–524 (2000).

    CAS  PubMed  Google Scholar 

  88. Suberbielle, E. et al. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nature Neurosci. 16, 613–621 (2013).

    CAS  PubMed  Google Scholar 

  89. Lu, T. et al. Gene regulation and DNA damage in the ageing human brain. Nature 429, 883–891 (2004).

    ADS  CAS  PubMed  Google Scholar 

  90. Madabhushi, R. et al. Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell 161, 1592–1605 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. LaFerla, F. M. Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease. Nature Rev. Neurosci. 3, 862–872 (2002).

    CAS  Google Scholar 

  92. Seo, J. et al. Activity-dependent p25 generation regulates synaptic plasticity and Aβ-induced cognitive impairment. Cell 157, 486–498 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lindwall, G. & Cole, R. D. Phosphorylation affects the ability of tau protein to promote microtubule assembly. J. Biol. Chem. 259, 5301–5305 (1984).

    CAS  PubMed  Google Scholar 

  94. Bramblett, G. T. et al. Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding. Neuron 10, 1089–1099 (1993).

    CAS  PubMed  Google Scholar 

  95. Sontag, E., Nunbhakdi-Craig, V., Lee, G., Bloom, G. S. & Mumby, M. C. Regulation of the phosphorylation state and microtubule-binding activity of tau by protein phosphatase 2A. Neuron 17, 1201–1207 (1996).

    CAS  PubMed  Google Scholar 

  96. Vogelsberg-Ragaglia, V., Schuck, T., Trojanowski, J. Q. & Lee, V. M. PP2A mRNA expression is quantitatively decreased in Alzheimer's disease hippocampus. Exp. Neurol. 168, 402–412 (2001).

    CAS  PubMed  Google Scholar 

  97. Cruz, J. C., Tseng, H. C., Goldman, J. A., Shih, H. & Tsai, L. H. Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40, 471–483 (2003).

    CAS  PubMed  Google Scholar 

  98. Yamada, K. et al. Neuronal activity regulates extracellular tau in vivo. J. Exp. Med. 211, 387–393 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Pooler, A. M., Phillips, E. C., Lau, D. H. W., Noble, W. & Hanger, D. P. Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep. 14, 389–394 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wu, J. W. et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nature Neurosci. 19, 1085–1092 (2016).

    CAS  PubMed  Google Scholar 

  101. Cohen, T. J. et al. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nature Commun. 2, 252 (2011).

    ADS  Google Scholar 

  102. Moreau, K. et al. PICALM modulates autophagy activity and tau accumulation. Nature Commun. 5, 4998 (2014).

    ADS  CAS  Google Scholar 

  103. Kononenko, N. L. & Haucke, V. Molecular mechanisms of presynaptic membrane retrieval and synaptic vesicle reformation. Neuron 85, 484–496 (2015).

    CAS  PubMed  Google Scholar 

  104. Treusch, S. et al. Functional links between Aβ toxicity, endocytic trafficking, and Alzheimer's disease risk factors in yeast. Science 334, 1241–1245 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  105. Crotti, A. & Ransohoff, R. M. Microglial physiology and pathophysiology: insights from genome-wide transcriptional profiling. Immunity 44, 505–515 (2016).

    CAS  PubMed  Google Scholar 

  106. Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell 160, 1061–1071 (2015). The first demonstration that AD genetic risk loci affect microglia, which play an important part in modulating the AD state.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Orre, M. et al. Isolation of glia from Alzheimer's mice reveals inflammation and dysfunction. Neurobiol. Aging 35, 2746–2760 (2014).

    CAS  PubMed  Google Scholar 

  108. Mandrekar, S. et al. Microglia mediate the clearance of soluble Aβ through fluid phase macropinocytosis. J. Neurosci. 29, 4252–4262 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Chen, Z. et al. Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain. Nature Commun. 5, 4486 (2014).

    ADS  CAS  Google Scholar 

  110. Cacucci, F., Yi, M., Wills, T. J., Chapman, P. & O'Keefe, J. Place cell firing correlates with memory deficits and amyloid plaque burden in Tg2576 Alzheimer mouse model. Proc. Natl Acad. Sci. USA 105, 7863–7868 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ciupek, S. M., Cheng, J., Ali, Y. O., Lu, H.-C. & Ji, D. Progressive functional impairments of hippocampal neurons in a tauopathy mouse model. J. Neurosci. 35, 8118–8131 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Morris, R. G., Garrud, P., Rawlins, J. N. & O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982).

    ADS  CAS  PubMed  Google Scholar 

  113. Wilson, M. A. & McNaughton, B. L. Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058 (1993).

    ADS  CAS  PubMed  Google Scholar 

  114. Whitehouse, P. J., Price, D. L., Clark, A. W., Coyle, J. T. & DeLong, M. R. Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann. Neurol. 10, 122–126 (1981).

    CAS  PubMed  Google Scholar 

  115. Metherate, R., Cox, C. L. & Ashe, J. H. Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine. J. Neurosci. 12, 4701–4711 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Mesulam, M., Shaw, P., Mash, D. & Weintraub, S. Cholinergic nucleus basalis tauopathy emerges early in the aging–MCI–AD continuum. Ann. Neurol. 55, 815–828 (2004).

    CAS  PubMed  Google Scholar 

  117. Bartus, R. T., Dean, R. L., Beer, B. & Lippa, A. The cholinergic hypothesis of geriatric memory dysfunction. Science 217, 408–414 (1982).

    ADS  CAS  PubMed  Google Scholar 

  118. Hangya, B., Ranade, S. P., Lorenc, M. & Kepecs, A. Central cholinergic neurons are rapidly recruited by reinforcement feedback. Cell 162, 1155–1168 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhu, C. W. et al. Long-term associations between cholinesterase inhibitors and memantine use and health outcomes among patients with Alzheimer's disease. Alzheimers Dement. 9, 733–740 (2013).

    PubMed  Google Scholar 

  120. Mattson, M. P. Pathways towards and away from Alzheimer's disease. Nature 430, 631–639 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  121. Braak, H. & Del Tredici, K. The pathological process underlying Alzheimer's disease in individuals under thirty. Acta Neuropathol. 121, 171–181 (2011).

    PubMed  Google Scholar 

  122. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991). The first comprehensive hierarchical staging of AD, which suggested a stereotypical path of progression and highlighted correlations between pathological observations of the brain and cognitive decline.

    CAS  PubMed  Google Scholar 

  123. Johnson, K. A. et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann. Neurol. 79, 110–119 (2016).

    PubMed  Google Scholar 

  124. Steffenach, H. A., Witter, M., Moser, M. B. & Moser, E. I. Spatial memory in the rat requires the dorsolateral band of the entorhinal cortex. Neuron 45, 301–313 (2005).

    CAS  PubMed  Google Scholar 

  125. Vargha-Khadem, F. et al. Differential effects of early hippocampal pathology on episodic and semantic memory. Science 277, 376–380 (1997).

    CAS  PubMed  Google Scholar 

  126. Schöll, M. et al. PET imaging of tau deposition in the aging human brain. Neuron 89, 971–982 (2016).

    PubMed  PubMed Central  Google Scholar 

  127. Ossenkoppele, R. et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease. Brain 139, 1551–1567 (2016).

    PubMed  PubMed Central  Google Scholar 

  128. Ye, L. et al. Progression of seed-induced Aβ deposition within the limbic connectome. Brain Pathol. 25, 743–752 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Bruen, P. D., McGeown, W. J., Shanks, M. F. & Venneri, A. Neuroanatomical correlates of neuropsychiatric symptoms in Alzheimer's disease. Brain 131, 2455–2463 (2008).

    PubMed  Google Scholar 

  130. Iba, M. et al. Tau pathology spread in PS19 tau transgenic mice following locus coeruleus (LC) injections of synthetic tau fibrils is determined by the LC's afferent and efferent connections. Acta Neuropathol. 130, 349–362 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Nestor, P. J., Fryer, T. D., Smielewski, P. & Hodges, J. R. Limbic hypometabolism in Alzheimer's disease and mild cognitive impairment. Ann. Neurol. 54, 343–351 (2003).

    PubMed  Google Scholar 

  132. Fletcher, E., Carmichael, O., Pasternak, O., Maier-Hein, K. H. & DeCarli, C. Early brain loss in circuits affected by Alzheimer's disease is predicted by fornix microstructure but may be independent of gray matter. Front. Aging Neurosci. 6, 106 (2014).

    PubMed  PubMed Central  Google Scholar 

  133. Laxton, A. W. et al. A phase I trial of deep brain stimulation of memory circuits in Alzheimer's disease. Ann. Neurol. 68, 521–534 (2010). This paper describes the feasibility of deep-brain stimulation in people and targets regions that are not typically described in studies of disrupted processes in AD; it suggests that complex brain-wide network effects occur in AD.

    CAS  PubMed  Google Scholar 

  134. McEwen, B. S. Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur. J. Pharmacol. 583, 174–185 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Diano, S. et al. Ghrelin controls hippocampal spine synapse density and memory performance. Nature Neurosci. 9, 381–388 (2006).

    CAS  PubMed  Google Scholar 

  136. Lupien, S. J. et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nature Neurosci. 1, 69–73 (1998).

    CAS  PubMed  Google Scholar 

  137. Baglietto-Vargas, D. et al. Short-term modern life-like stress exacerbates Aβ-pathology and synapse loss in 3xTg-AD mice. J. Neurochem. 134, 915–926 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Rei, D. et al. Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway. Proc. Natl Acad. Sci. USA 112, 7291–7296 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  139. Roy, D. S. et al. Memory retrieval by activating engram cells in mouse models of early Alzheimer's disease. Nature 531, 508–512 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M. & Tsai, L.-H. Recovery of learning and memory is associated with chromatin remodelling. Nature 447, 178–182 (2007). One of the first papers to highlight the importance of epigenetic alterations in AD and the first to demonstrate experimentally that memories can be recovered through treatment, even after considerable neurodegeneration has occurred.

    ADS  CAS  PubMed  Google Scholar 

  141. Talantova, M. et al. Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc. Natl Acad. Sci. USA 110, E2518–E2527 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Shytle, R. D. et al. Cholinergic modulation of microglial activation by α7 nicotinic receptors. J. Neurochem. 89, 337–343 (2004).

    CAS  PubMed  Google Scholar 

  143. Pedersen, J. T. & Sigurdsson, E. M. Tau immunotherapy for Alzheimer's disease. Trends Mol. Med. 21, 394–402 (2015).

    CAS  PubMed  Google Scholar 

  144. Kuhn, J. et al. Deep brain stimulation of the nucleus basalis of meynert in early stage of Alzheimer's dementia. Brain Stimul. 8, 838–839 (2015).

    ADS  PubMed  Google Scholar 

  145. Sankar, T. et al. Deep brain stimulation influences brain structure in Alzheimer's disease. Brain Stimul. 8, 645–654 (2015).

    PubMed  Google Scholar 

  146. Hamelin, L. et al. Early and protective microglial activation in Alzheimer's disease: a prospective study using 18F-DPA-714 PET imaging. Brain 139, 1252–1264 (2016).

    PubMed  Google Scholar 

  147. Nhan, H. S., Chiang, K. & Koo, E. H. The multifaceted nature of amyloid precursor protein and its proteolytic fragments: friends and foes. Acta Neuropathol. 129, 1–19 (2015).

    CAS  PubMed  Google Scholar 

  148. Lammich, S. et al. Constitutive and regulated α-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl Acad. Sci. USA 96, 3922–3927 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  149. De Jonghe, C. et al. Pathogenic APP mutations near the γ-secretase cleavage site differentially affect Aβ secretion and APP C-terminal fragment stability. Hum. Mol. Genet. 10, 1665–1671 (2001).

    CAS  PubMed  Google Scholar 

  150. Willem, M. et al. η-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature 526, 443–447 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the US National Institutes of Health for grants R01 NS051874, R01 NS078839, RF1 AG042978 and RF1 AG047661 in support of L.-H.T. We thank the Barbara J. Weedon Fellowship and Norman B. Leventhal Fellowship for supporting R.G.C. and the Human Frontier Science Program for supporting J.P. We also thank the JPB Foundation, the Belfer Neurodegeneration Consortium, the Glenn Foundation for Medical Research, the Cure Alzheimer's Fund and the Alana Foundation for support of L.-H.T. and for continued championship of ageing and neurodegenerative disease research. We thank C. Yao for contributions to the original figure artwork. Last, we express profound gratitude to A. Watson, H. Meharena, W. Raja and N. Dedic for insightful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Huei Tsai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Reviewer Information Nature thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canter, R., Penney, J. & Tsai, LH. The road to restoring neural circuits for the treatment of Alzheimer's disease. Nature 539, 187–196 (2016). https://doi.org/10.1038/nature20412

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature20412

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing