Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A photon–photon quantum gate based on a single atom in an optical resonator

Abstract

That two photons pass each other undisturbed in free space is ideal for the faithful transmission of information, but prohibits an interaction between the photons. Such an interaction is, however, required for a plethora of applications in optical quantum information processing1. The long-standing challenge here is to realize a deterministic photon–photon gate, that is, a mutually controlled logic operation on the quantum states of the photons. This requires an interaction so strong that each of the two photons can shift the other’s phase by π radians. For polarization qubits, this amounts to the conditional flipping of one photon’s polarization to an orthogonal state. So far, only probabilistic gates2 based on linear optics and photon detectors have been realized3, because “no known or foreseen material has an optical nonlinearity strong enough to implement this conditional phase shift”4. Meanwhile, tremendous progress in the development of quantum-nonlinear systems has opened up new possibilities for single-photon experiments5. Platforms range from Rydberg blockade in atomic ensembles6 to single-atom cavity quantum electrodynamics7. Applications such as single-photon switches8 and transistors9,10, two-photon gateways11, nondestructive photon detectors12, photon routers13 and nonlinear phase shifters14,15,16,17,18 have been demonstrated, but none of them with the ideal information carriers: optical qubits in discriminable modes. Here we use the strong light–matter coupling provided by a single atom in a high-finesse optical resonator to realize the Duan–Kimble protocol19 of a universal controlled phase flip (π phase shift) photon–photon quantum gate. We achieve an average gate fidelity of (76.2 ± 3.6) per cent and specifically demonstrate the capability of conditional polarization flipping as well as entanglement generation between independent input photons. This photon–photon quantum gate is a universal quantum logic element, and therefore could perform most existing two-photon operations. The demonstrated feasibility of deterministic protocols for the optical processing of quantum information could lead to new applications in which photons are essential, especially long-distance quantum communication and scalable quantum computing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of our setup.
Figure 2: The photon–photon gate mechanism.
Figure 3: Truth table of the controlled-NOT photon–photon gate.
Figure 4: Reconstructed density matrix of the entangled two-photon state created by the gate from the separable input state |DD〉.

Similar content being viewed by others

References

  1. Kok, P. & Lovett, B. W. Introduction to Optical Quantum Information Processing (Cambridge Univ. Press, 2010)

  2. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  CAS  ADS  PubMed  Google Scholar 

  3. O’Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003)

    ADS  PubMed  Google Scholar 

  4. O’Brien, J. L. Optical quantum computing. Science 318, 1567–1570 (2007)

    Article  ADS  PubMed  Google Scholar 

  5. Chang, D. E., Vuletić, V. & Lukin, M. D. Quantum nonlinear optics—photon by photon. Nat. Photon. 8, 685–694 (2014)

    Article  CAS  ADS  Google Scholar 

  6. Gorshkov, A. V., Otterbach, J., Fleischhauer, M., Pohl, T. & Lukin, M. D. Photon-photon interactions via Rydberg blockade. Phys. Rev. Lett. 107, 133602 (2011)

    Article  ADS  PubMed  Google Scholar 

  7. Reiserer, A. & Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015)

    Article  CAS  ADS  Google Scholar 

  8. Baur, S., Tiarks, D., Rempe, G. & Dürr, S. Single-photon switch based on Rydberg blockade. Phys. Rev. Lett. 112, 073901 (2014)

    Article  ADS  PubMed  Google Scholar 

  9. Tiarks, D., Baur, S., Schneider, K., Dürr, S. & Rempe, G. Single-photon transistor using a Förster resonance. Phys. Rev. Lett. 113, 053602 (2014)

    Article  ADS  PubMed  Google Scholar 

  10. Gorniaczyk, H., Tresp, C., Schmidt, J., Fedder, H. & Hofferberth, S. Single-photon transistor mediated by interstate Rydberg interactions. Phys. Rev. Lett. 113, 053601 (2014)

    Article  CAS  ADS  PubMed  Google Scholar 

  11. Kubanek, A. et al. Two-photon gateway in one-atom cavity quantum electrodynamics. Phys. Rev. Lett. 101, 203602 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  12. Reiserer, A., Ritter, S. & Rempe, G. Nondestructive detection of an optical photon. Science 342, 1349–1351 (2013)

    Article  CAS  ADS  PubMed  Google Scholar 

  13. Shomroni, I. et al. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903–906 (2014)

    Article  CAS  ADS  PubMed  Google Scholar 

  14. Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710–4713 (1995)

    Article  CAS  ADS  MathSciNet  PubMed  Google Scholar 

  15. Tiecke, T. G. et al. Nanophotonic quantum phase switch with a single atom. Nature 508, 241–244 (2014)

    Article  CAS  ADS  PubMed  Google Scholar 

  16. Volz, J., Scheucher, M., Junge, C. & Rauschenbeutel, A. Nonlinear π phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom. Nat. Photon. 8, 965–970 (2014)

    Article  CAS  ADS  Google Scholar 

  17. Beck, K. M., Hosseini, M., Duan, Y. & Vuletić, V. Large conditional single-photon cross-phase modulation. Preprint at https://arxiv.org/abs/1512.02166 (2015)

  18. Tiarks, D., Schmidt, S., Rempe, G. & Dürr, S. Optical π phase shift created with a single-photon pulse. Sci. Adv. 2, e1600036 (2016)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. Duan, L.-M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)

    Article  ADS  PubMed  Google Scholar 

  20. Shapiro, J. H. Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73, 062305 (2006)

    Article  ADS  Google Scholar 

  21. Gea-Banacloche, J. Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets. Phys. Rev. A 81, 043823 (2010)

    Article  ADS  Google Scholar 

  22. Reiserer, A., Kalb, N., Rempe, G. & Ritter, S. A quantum gate between a flying optical photon and a single trapped atom. Nature 508, 237–240 (2014)

    Article  CAS  ADS  PubMed  Google Scholar 

  23. Duan, L.-M., Wang, B. & Kimble, H. J. Robust quantum gates on neutral atoms with cavity-assisted photon scattering. Phys. Rev. A 72, 032333 (2005)

    Article  ADS  Google Scholar 

  24. Reiserer, A., Nölleke, C., Ritter, S. & Rempe, G. Ground-state cooling of a single atom at the center of an optical cavity. Phys. Rev. Lett. 110, 223003 (2013)

    Article  ADS  PubMed  Google Scholar 

  25. Poyatos, J. F., Cirac, J. I. & Zoller, P. Complete characterization of a quantum process: the two-bit quantum gate. Phys. Rev. Lett. 78, 390–393 (1997)

    Article  CAS  ADS  Google Scholar 

  26. Bagan, E., Baig, M. & Muñoz-Tapia, R. Minimal measurements of the gate fidelity of a qudit map. Phys. Rev. A 67, 014303 (2003)

    Article  ADS  Google Scholar 

  27. Uphoff, M., Brekenfeld, M., Rempe, G. & Ritter, S. Frequency splitting of polarization eigenmodes in microscopic Fabry-Perot cavities. New J. Phys. 17, 013053 (2015)

    Article  CAS  ADS  Google Scholar 

  28. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  CAS  ADS  Google Scholar 

  29. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  CAS  ADS  PubMed  Google Scholar 

  30. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010)

    Article  CAS  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Kalb, A. Neuzner, A. Reiserer and M. Uphoff for discussions and support throughout the experiment. This work was supported by the European Union (Collaborative Project SIQS) and by the Bundesministerium für Bildung und Forschung via IKT 2020 (Q.com-Q) and by the Deutsche Forschungsgemeinschaft via the excellence cluster Nanosystems Initiative Munich (NIM). S.W. was supported by the doctorate programme Exploring Quantum Matter (ExQM).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the experiment, the analysis of the results and the writing of the manuscript.

Corresponding author

Correspondence to Stephan Ritter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Ramsey-like spectrum to calibrate the atomic state rotations.

After initialization of the atom in |↑〉, we perform the same sequence of three Raman pulses as in the gate protocol. The final population in |↑〉 is determined as a function of the two-photon detuning of the employed Raman pair with respect to the frequency difference between the two atomic qubit states. The solid dots are measured data with statistical error bars (standard error of the mean). The solid line is the fit of a theoretical model based on the sequence of rotations. It yields results for the Rabi frequency of the atomic spin rotation, an offset of the two-photon detuning, as for example, induced by ambient magnetic fields, and the light shift imposed by the Raman laser pair, all with ±3 kHz precision.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hacker, B., Welte, S., Rempe, G. et al. A photon–photon quantum gate based on a single atom in an optical resonator. Nature 536, 193–196 (2016). https://doi.org/10.1038/nature18592

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature18592

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing