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            Abstract
X-chromosome inactivation (XCI) involves major reorganization of the X chromosome as it becomes silent and heterochromatic. During female mammalian development, XCI is triggered by upregulation of the non-coding Xist RNA from one of the two X chromosomes. Xist coats the chromosome in cis and induces silencing of almost all genes via its A-repeat region1,2, although some genes (constitutive escapees) avoid silencing in most cell types, and others (facultative escapees) escape XCI only in specific contexts3. A role for Xist in organizing the inactive X (Xi) chromosome has been proposed4,5,6. Recent chromosome conformation capture approaches have revealed global loss of local structure on the Xi chromosome and formation of large mega-domains, separated by a region containing the DXZ4 macrosatellite7,8,9,10. However, the molecular architecture of the Xi chromosome, in both the silent and expressed regions, remains unclear. Here we investigate the structure, chromatin accessibility and expression status of the mouse Xi chromosome in highly polymorphic clonal neural progenitors (NPCs) and embryonic stem cells. We demonstrate a crucial role for Xist and the DXZ4-containing boundary in shaping Xi chromosome structure using allele-specific genome-wide chromosome conformation capture (Hi-C) analysis, an assay for transposase-accessible chromatin with high throughput sequencing (ATACâ€“seq) and RNA sequencing. Deletion of the boundary disrupts mega-domain formation, and induction of Xist RNA initiates formation of the boundary and the loss of DNA accessibility. We also show that in NPCs, the Xi chromosome lacks active/inactive compartments and topologically associating domains (TADs), except around genes that escape XCI. Escapee gene clusters display TAD-like structures and retain DNA accessibility at promoter-proximal and CTCF-binding sites. Furthermore, altered patterns of facultative escape genes in different neural progenitor clones are associated with the presence of different TAD-like structures after XCI. These findings suggest a key role for transcription and CTCF in the formation of TADs in the context of the Xi chromosome in neural progenitors.
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                    Figure 1: The distinct conformation of the Xi and Xa chromosomes.[image: ]


Figure 2: Expression, chromatin accessibility and chromatin conformation along the Xi chromosome.[image: ]


Figure 3: Deletion of the mega-domain boundary leads to loss of bipartite folding.[image: ]


Figure 4: Xist-mediated silencing is sufficient to generate a boundary at DXZ4 in ES cells.[image: ]
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Extended data figures and tables

Extended Data Figure 1 Description of allele-specific Hi-C and ATACâ€“seq.
a, Schematic of hybrid mouse strains used for all experiments. b, Top, scheme outlining differentiation of ES cells to NPCs and picking of clones. Bottom, scheme outlining CRISPR deletion of the mega-domain boundary in ES cells, differentiation to NPCs and the picking of clones. c, Schematic of Hi-C library generation. d, Schematic of the Hi-C alignment strategy. Paired-end reads are aligned to a â€˜diploidâ€™ genome consisting of 22 chromosomes from Cast, and 22 chromosomes from 129 (1â€“19 X, Y, M). The interaction row shows all possible paired-end read combinations between the 129, Cast and ambiguous (AMB) genomes. e, Schematic showing the re-assignment of a subset of â€˜cisâ€™ interactions. Paired-end reads in which one side uniquely aligned to an allele and the other side aligned equally to both alleles (AMB), were re-classified as allelic reads, only if both reads aligned to the same chromosome (cis). f, Cartoon explaining the re-assignment of 129:amb or cast:amb cis interactions. g, Scheme for ATACâ€“seq library preparation. Cells are lysed followed by incubation with adaptor-loaded hyperactive Tn5 transposase. The transposase integrates into accessible DNA, and these fragments are then directly amplified and sequenced. h, Scheme for allele-specific ATACâ€“seq data analysis. i, SNP-mapping simulation. For each SNP location on the X chromosome, all overlapping 50 bp reads were extracted (50 total) for each of the 129 and Cast alleles. All reads were then processed through the Hi-C and ATACâ€“seq mapping pipelines described in the Methods to measure assignment accuracy. Results are shown in the table.


Extended Data Figure 2 Structure of the Xa chromosome in ES cells, compartment analysis and characterization of interactions between genes that escape XCI.
a, Allele-specific Hi-C contact maps for X chromosome in ES cells at 500-kb resolution (top), and for a ~40-Mb region centred around the DXZ4-containing locus at 40-kb resolution (bottom). The insulation score is plotted at the bottom of each 40-kb heat map as in Fig. 1a. Purple shaded areas indicate the IQR of insulation scores along the chromosome. b, Zoomed in view of three regions showing Hi-C interactions, RNA-seq and ATACâ€“seq signal on the Cast and 129 Xa chromosomes in ES cells. c, Compartment profiles of X chromosome in ES cells and NPCs. The first eigenvector (PC1) of each allele-specific Hi-C contact map, obtained with principal component analysis, is shown, together with the difference in chromosome-wide insulation score between the 129 and Cast allele. A/B-compartments are evident in ES cells and NPCs along both Xa (red and blue signal), whereas the first eigenvector corresponds to the two mega-domains for the Xi chromosome in NPCs. In ES cells, both Xa chromosomes display comparable insulation profiles (difference is close to 0 along the chromosome), whereas in NPCs large differences are observed (difference in insulation fluctuates along the chromosome). Grey areas indicate regions with low SNP density that were excluded from analysis. d, Same plots as in Fig. 2e for the same set of genes that escape XCI in NPCs, but using Hi-C data obtained in ES cells. e, As in d, where the interactions between loci that escape XCI on the wild-type Xi chromosome were divided in three different groups, according to whether pairs of loci belong to the same or different mega-domains. Interactions across the mega-domain boundary only occur on the wild-type Xi chromosome and are lost on the Î”FT Xi chromosome concomitant with loss of transcription of constitutive escapees.


Extended Data Figure 3 Comparison of allele-specific Hi-C maps of chromosomes X and 13 in ES cells, NPCs and boundary-mutant Î”FT NPCs.
a, Hi-C data, insulation scores, and the difference in insulation scores (129 Cast) are shown for ES cells, NPCs and mutant Î”FT NPCs for both alleles (Cast and 129) for the X chromosome. Large dips in the insulation vector are found at TAD boundaries. Peaks in the insulation vector are found towards the centre of each TAD. The insulation difference plot highlights areas of differential TAD structure between the alleles (many differences along the X chromosome in NPCs as compared to the allelic differences along autosomes, see b). b, Same as a for chromosome 13. The insulation difference plot highlights areas of differential TAD structure between the alleles (rare).


Extended Data Figure 4 Quantitative analysis of 3D DNA FISH on the Xa and Xi chromosomes.
a, Top left, scheme of the procedure used to quantify the Pearson correlation. A background is generated for each xy plane in a three-dimensional z-stack by morphological opening the image with a circle of 5 pixels in radius, and subtracted from it. Pearson correlation between red and green pixel intensities is measured inside a fixed-size region of 40â€‰Ã—â€‰40â€‰Ã—â€‰20 pixels (5.16â€‰Ã—â€‰5.16â€‰Ã—â€‰4â€‰Î¼m) centred on each FISH signal. To demonstrate that background subtraction does not affect the measured correlations, we show here a line-scan of 10â€‰Î¼m across a typical DNA FISH signal (top right). The shape of the signals along the line scan, as well as their relative intensities, is not affected by background subtraction (bottom). Pre- and post- refer to line scans taken on images before and after background subtraction, respectively. b, In more than 80% of nuclei in NPCs, Pearson correlations are higher on the Xi than on the Xa chromosome. Shown is NPC clone C2 (the same where Hi-C was performed). c, Same quantification as in Fig. 1c (and b) for an independent NPC clone (E1) where the active X is on the 129 allele and the inactive X chromosome on the Cast, and in astrocytes derived from NPC clone C2. n denotes the number of cells analysed in DNA FISH. Centre lines represent medians; crosses denote experimental points that were considered as outliers (larger than (q3â€‰+â€‰1.5â€‰Ã—â€‰(q3â€‰âˆ’â€‰q1) or smaller than q1â€‰âˆ’â€‰w(q3â€‰âˆ’â€‰q1), where q1 and q3 are the twenty-fifth and seventy-fifth percentiles of the data distribution, respectively). d, Scheme of the gyration tensor based analysis of FISH volumes (see Methods). e, Left, gyration radii of DNA FISH signals from probes a, b and c. Probe b was used in combination with both probes a and c separately in two independent experiments. Statistical significance was assessed by Wilcoxonâ€™s rank sum test (*Pâ€‰<â€‰0.05, **Pâ€‰<â€‰1â€‰Ã—â€‰10âˆ’5). The mean gyration radii for Xa and Xi chromosome signals are indicated by dotted lines as a guide for the eye. On the Xi chromosome, the mean gyration radius is approximately 6% smaller than on the Xa chromosome corresponding to approximately 20% smaller volume. Right, representative images of probe a, showing smaller size and increased roundness of the Xi chromosome signals. f, Left, scheme of the thresholding-based method for volume quantification. Thirty increasing threshold levels were imposed, starting from the residual grayscale background level surrounding the signal, up to the minimum between the red and green channel grayscale maxima. For each of these thresholds we determined the number of voxels in each channel, where the greyscale intensity was higher than the threshold. Centre, the fraction of cells where the Xa chromosome signal is larger than the Xi chromosome is between 60% and 80% in the entire threshold range. Right, in a wide range of thresholds, the volume of Xa chromosome signals is approximately 25% bigger than Xi chromosome signals. Results are shown here for probes a and b; the same holds for probe c (not shown). n denotes the number of cells analysed in DNA FISH. Centre lines: medians. Boxes: middle 50% of data points. Two biological replicates were analysed for each experiment.


Extended Data Figure 5 Integrative analysis of allele-specific Hi-C, RNA-seq and ATACâ€“seq.
a, X-chromosome-wide ATACâ€“seq and RNA-seq in ES cells and NPCs. ATAC shows signal for ambiguous, 129- and Cast-specific reads in ES cells and NPCs. RNA-seq shows total signal as well as expressed gene calls. ATACâ€“seq shows global loss of chromatin accessibility and expression on the Xi chromosome, except at specific locations that mostly overlap with escape genes. Dotted line denotes mega-domain boundary. Position of constitutive escapees was adapted from ref. 3. b, Escape genes on the Xi chromosome (as determined by RNA-seq) fall within regions with high ATACâ€“seq signal (Kolmogorovâ€“Smirnov test Pâ€‰<â€‰2.2â€‰Ã—â€‰10âˆ’16). c, Pie charts showing the distribution of peaks that escape XCI versus the peaks that are unique to the Xa chromosome. Peaks are classified into those that are promoter-proximal (within 5â€‰kb of TSS) and distal (>5â€‰kb from TSS). Annotations are based on binding sites identified by ChIPâ€“seq37,38. d, Scatter plot showing the relationship between TAD signal (insulation score) and number of expressed genes of the wild-type NPC 129 (Xi) Hi-C data set. The y axis shows the mean insulation score in a 480-kb window with a 40-kb step size. The x axis shows the number of expressed genes in a 480-kb window with a 40-kb step size. The Pearson R value (0.395) is shown above and is calculated on only the middle 90% (red points) of the residuals. Outliers are shown in black (bottom 5% and top 5% of residuals)


Extended Data Figure 6 Analysis of wild-type and boundary-mutant Î”FT NPCs by FISH and RTâ€“PCR followed by pyrosequencing.
a, Scheme of the strategy used to delete the mega-domain boundary region in ES cells and to derive Î”FT NPCs. b, RNA FISH against constitutive and facultative escapees confirms RNA-seq and ATACâ€“seq results in the Î”FT NPC clone D9B2. Top, the positions of BAC probes (RP23-328M22 and RP23-436K) are shown relative to the escape genes that they span. Coloured gene names correspond to transcripts that were detected with specific fosmid probes. Bottom, sample RNA FISH images showing that expression of facultative (Mecp2 and BAC probes) but not constitutive (Jarid1c) escapees is lost on the Î”FT Xi chromosome. c, Quantification of the RNA FISH experiment in b. d, RTâ€“PCR followed by pyrosequencing of Xist, two facultative escape genes (Huwe1 and Mecp2) and the constitutive escapee Jarid1c indicate the percentage of expression from the 129 allele (red) or the Cast allele (blue) in 56 wild-type and 17 Î”FT NPC clones. Absence of Mecp2 and Huwe1 escape is observed in a moderately higher proportion of Î”FT than wild-type clones. Absence of Jarid1c escape is never observed.


Extended Data Figure 7 Allele-specific Hi-C analysis of wild-type and boundary-mutant Î”FT NPCs.
a, Hi-C data, insulation scores, and the difference in insulation scores are shown to compare the wild-type Xi chromosome (NPC 129) and the Î”FT Xi chromosome (NPC 129). Top, the Cast allele (Xa chromosome) for both samples. Bottom, the 129 allele (Xi chromosome) for both samples. Large dips in the insulation vector are indicative of TAD boundaries. Peaks in the insulation vector are found towards the centre of each TAD. The insulation difference plot highlights areas of differential TAD structure between the wild-type and Î”FT NPCs. b, Cumulative plots of TAD strength at the wild-type expressed versus the wild-type silenced genes on Cast and 129 chromosomes, for ES cells, wild-type and Î”FT NPCs. Escapee genes on the Xi chromosome (NPC 129, Î”FT NPC 129) show higher insulation scores as compared to silenced genes.


Extended Data Figure 8 3D DNA FISH and integrative ATACâ€“seq/RNA-seq analysis in Î”FT NPCs.
a, Top left, scheme of the DNA FISH probe sets (aâ€“b: inside the same mega-domain, bâ€“c: across the boundary). Bottom, loci detected by probe set bâ€“c are more interacting in the Î”FT than in the wild-type Xi chromosome both in Hi-C (left) and in 3D-DNA FISH (right), showing loss of mega-domain boundary. *Pâ€‰<â€‰2â€‰Ã—â€‰10âˆ’4, **Pâ€‰<â€‰1â€‰Ã—â€‰10âˆ’5 (Wilcoxonâ€™s rank sum test corrected with Bonferroni for multiple hypothesis testing). Right, sample RNA/DNA FISH images showing that signals from probe set bâ€“c are more overlapping on the Î”FT Xi than on the wild-type Xi chromosome. Two biological replicates were analysed. b, Chromosome-wide ATACâ€“seq and RNA-seq signal generated with ambiguous (mm9), 129- and Cast-specific reads in wild-type NPCs and Î”FT NPCs, showing global loss of chromatin accessibility on the Î”FT Xi chromosome except at the X-inactivation centre (Xic) region and constitutive escape genes. Dotted line indicates the position of the mega-domain boundary. c, Zoomed-in view of a region on the Î”FT Xi chromosome encompassing the Xic showing Hi-C interactions, RNA-seq and ATACâ€“seq signal. ATACâ€“seq from wild-type NPCs is included for reference (previously shown in Fig. 1).


Extended Data Figure 9 3D DNA FISH and integrative Hi-C/ATAC-seq analysis of inducible Xist ES cell lines.
a, Left, schematic representation of TXY and TXY:Î”A male cell lines, carrying a tetracycline-inducible wild-type and A-repeat mutant Xist, respectively, at the endogenous Xist locus. Centre right, RNA FISH against G6pdx and a group of genes recognized by the RP23-436K BAC (see Extended Data Fig. 6b) showing that expression of X-chromosome-linked genes is lost upon induction of wild-type but not A-repeat mutant Xist in male ES cells. TXY and TXY:Î”A were treated with doxycycline for 48â€‰h. b, Representative images from RNA/DNA FISH experiments in TXY and TXY:Î”A male ES cell lines, showing increased overlap of probes aâ€“b on the Xist-coated X chromosome after 48â€‰h of wild-type, but not Î”A Xist induction. c, Left, schematic representation of TX1072 female ES cells in which Xist expression can be induced via a tetracycline-responsive promoter at one of the two endogenous Xist loci. Center right, RNA/DNA FISH in TX1072 cells treated for 3 days with doxycycline. Probes aâ€“b overlap more on the Xist-coated than on the wild-type X chromosome, whereas signals from bâ€“c show lower overlap and partitioning of the Xist-coated chromosome into two separate domains. *Pâ€‰<â€‰1â€‰Ã—â€‰10âˆ’7 (Wilcoxonâ€™s rank sum test corrected with Bonferroni for multiple hypothesis testing). n denotes the number of cells analysed in DNA FISH. Centre lines: medians. Boxes: middle 50% of data points. Two biological replicates were analysed. d, Correlation between changes in Hi-C interactions and ATACâ€“seq signal following 48-h wild-type Xist induction in male ES cells (TXY cell line). log2(+dox/âˆ’dox) was calculated for bins of 40â€‰kb (left), 100â€‰kb (middle), and 500â€‰kb (right). e, Model of mega-domain boundary-mediated control of chromosome folding and facultative escape. Xist coating causes gene silencing and initiates chromosome-wide conformational changes in a manner dependent on its A-repeat region, which result in formation of mega-domains, overall compaction of chromosome folding, and loss of TADs. During differentiation, transient interactions with the mega-domain boundary may occur and may contribute to facultative escape and re-establishment of TADs at facultative escape loci, although the presence of residual TADs at escapee loci on the Xi chromosome is not necessarily due to the mega-domain boundary.
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During female development, X-chromosome inactivation is triggered by upregulation of the non-coding Xist RNA from one of the two X chromosomes. Chromosome conformation capture approaches have shown a loss of local structure on the inactive X (Xi) and formation of large mega-domains, separated by a region containing the DXZ4 macrosatellite. These authors investigate the structure, chromatin accessibility and expression status of the mouse Xi using allele-specific Hi-C, ATACâ€“seq and RNAâ€“seq in embryonic stem cells and neural progenitor cells (NPCs). The Xi in NPCs lacks topologically associating domains (TADs) except around genes that escape X-chromosome inactivation, suggesting that TAD formation is driven by gene activity. The DXZ4-containing region and Xist shape the mega-domain structure of the Xi.
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